JP2005046744A - Apparatus for dehumidifying compressed air - Google Patents

Apparatus for dehumidifying compressed air Download PDF

Info

Publication number
JP2005046744A
JP2005046744A JP2003281925A JP2003281925A JP2005046744A JP 2005046744 A JP2005046744 A JP 2005046744A JP 2003281925 A JP2003281925 A JP 2003281925A JP 2003281925 A JP2003281925 A JP 2003281925A JP 2005046744 A JP2005046744 A JP 2005046744A
Authority
JP
Japan
Prior art keywords
compressed air
drain
compressor
drain trap
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003281925A
Other languages
Japanese (ja)
Inventor
Mitsuo Kofuchi
充雄 小淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Machinery Co Ltd
Original Assignee
Orion Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Machinery Co Ltd filed Critical Orion Machinery Co Ltd
Priority to JP2003281925A priority Critical patent/JP2005046744A/en
Publication of JP2005046744A publication Critical patent/JP2005046744A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Drying Of Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive, sure method for automatically controlling the electromagnetic drain trap of a drain discharge apparatus by efficiently detecting a drain storage speed in an air compressor, especially in the cooler of an apparatus for dehumidifying compressed air. <P>SOLUTION: In the apparatus for dehumidifying compressed air having at least an inverter-controlled cooling medium compressor, a heat exchanger, and an apparatus for discharging drain in a compressed air supply path equipped with the electromagnetic drain trap, the actuation interval of the electromagnetic drain trap is changed over corresponding to the operation frequency of the cooling medium compressor. When the average of the operation frequency of the compressor during 45 seconds is 45-90 Hz, the operation interval of an electromagnetic valve is made 45 seconds. When the average is 0-44 Hz, the actuation interval of the electromagnetic valve is made 90 seconds. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、圧縮空気機器特に圧縮空気の除湿装置の圧縮空気供給路からドレンを除去するためのドレン排出装置において、電磁式ドレントラップを有するドレン排出装置の運転を最適化する技術に関する。   The present invention relates to a technology for optimizing the operation of a drain discharge device having an electromagnetic drain trap in a drain discharge device for removing drain from a compressed air supply path of a compressed air device, particularly a compressed air dehumidifier.

圧縮空気機器で発生するドレン水は利用上様々な問題を引き起こすので、圧縮空気の除湿装置を設け、その冷却器に電磁式ドレントラップを備えたドレン排出装置を設置することが知られている。電磁式ドレントラップは圧縮空気の発生中に間欠的に動作し、冷却器に溜まったドレン水を主配管からの圧縮空気を利用してドレン処理部へ排出する。   Since drain water generated in compressed air equipment causes various problems in use, it is known to provide a dehumidifier for compressed air and install a drain discharge device equipped with an electromagnetic drain trap in its cooler. The electromagnetic drain trap operates intermittently during the generation of compressed air, and discharges the drain water accumulated in the cooler to the drain processing unit using the compressed air from the main pipe.

圧縮空気の除湿装置から発生するドレンの量は、圧縮空気の流量、入気(大気)の温度、湿度等様々な要因によって変化する。このときドレントラップの動作回数がドレン発生量に比べて少ないとドレン水が機器内に残って害を与えるので、従来はドレントラップの動作時間と動作間隔を最大ドレン量に合わせて決定していた。しかし、圧縮空気の流量が減少したり入気温度が下がったときは、動作回数が多すぎて主配管の圧力を消耗させ、エネルギーをロスすることになる。   The amount of drain generated from the compressed air dehumidifier varies depending on various factors such as the flow rate of compressed air, the temperature of the intake air (atmosphere), and humidity. At this time, if the number of operation of the drain trap is less than the amount of drain generated, drain water will remain in the equipment and cause harm, so conventionally the operation time and operation interval of the drain trap were determined according to the maximum drain amount. . However, when the flow rate of compressed air decreases or the intake air temperature decreases, the number of operations is too many, and the pressure of the main pipe is consumed, resulting in loss of energy.

ドレントラップの動作間隔を手動で切換えてエアーロスを減少させるようにした除湿装置のドレン排出装置では、1日の時間毎の較差など短時間での変動が大きいときに度々切り換え作業が必要となって実用上不便であった。一方ドレンの貯溜をレベルセンサ等で常時監視する方法は故障の可能性や電力消費等の欠点があった。従って実用的なドレン排出装置を提供するためには、ドレンの貯溜速度をどのように検知し、どのようなタイミングでドレントラップを動作させるかが重要な問題である。   In the drain discharge device of the dehumidifier that manually switches the operation interval of the drain trap to reduce the air loss, it is often necessary to perform a switching operation when there is a large fluctuation in a short time such as a difference in time every day. It was inconvenient in practice. On the other hand, the method of constantly monitoring the accumulation of drain with a level sensor or the like has drawbacks such as the possibility of failure and power consumption. Therefore, in order to provide a practical drain discharge device, it is an important problem how to detect the drain storage speed and at what timing to operate the drain trap.

特開平9−317994号公報記載の発明は、圧縮空気配管のドレン排出装置のドレントラップの動作を空気圧縮機の負荷に連動させることを提案し、その具体的手段として圧縮空気タンク内の圧力により空気圧縮機の運転をアンローダ方式(弁の開閉で出力を制御)と圧力開閉方式(圧縮機のスイッチで出力を制御)に切換えると共に、アンローダ運転中はロード開始時、圧力開閉運転中にはON時にドレントラップを1回作動させる方法を開示している。また各種センサ等の情報からドレン量の増加が予測される場合には、動作1回当たりのドレン排出時間を変化させることを記載している。また除湿装置の圧縮空気供給路にドレントラップを設けた場合において、冷媒配管に設置した温度計の測定値により動作1回当たりのドレン排出時間を変化させることを記載している。
特開平9−317994号公報
The invention described in Japanese Patent Application Laid-Open No. 9-317994 proposes that the operation of the drain trap of the drain discharge device of the compressed air piping is linked to the load of the air compressor, and the specific means is based on the pressure in the compressed air tank. The operation of the air compressor is switched between the unloader system (output is controlled by opening and closing the valve) and the pressure switching system (output is controlled by the compressor switch). At the start of loading during unloader operation, ON during pressure switching operation Sometimes a method of operating the drain trap once is disclosed. In addition, when an increase in the drain amount is predicted from information from various sensors or the like, it is described that the drain discharge time per operation is changed. It also describes that when a drain trap is provided in the compressed air supply path of the dehumidifier, the drain discharge time per operation is changed by the measured value of a thermometer installed in the refrigerant pipe.
JP-A-9-317994

次に、特開平11−351497号公報記載の発明は、圧縮空気配管のドレントラップにおいて空気圧縮機の運転時間を積算する積算カウンタを設け、その積算値が一定値に達する毎に電磁式ドレントラップを1回作動させる方法、及びドレントラップは定期的に作動させ、動作1回当たりのドレン排出時間を前記積算値に応じて増減させる方法を提案している。
特開平11−351497号公報
Next, the invention described in Japanese Patent Application Laid-Open No. 11-351497 is provided with an integration counter that integrates the operating time of the air compressor in the drain trap of the compressed air piping, and an electromagnetic drain trap every time the integration value reaches a certain value. Have been proposed, and a drain trap is operated periodically, and a drain discharge time per operation is increased or decreased according to the integrated value.
JP-A-11-351497

特許文献1、2記載の発明のように動作間隔を主配管の空気圧縮機の負荷に連動させるものでは、結局のところ圧縮空気タンク内の圧力すなわち圧縮空気の使用量に応じて動作間隔が決まるから、季節や天候により空気圧縮機の負荷が大きくても実際のドレン発生量は少ないなど、空気圧縮機の負荷と排出すべきドレン量とが必ずしも連動しないおそれがある。各種センサ等の出力から1回当たりのドレン排出時間を変化させることも記載されているが、手動での切り換えは短時間での変動に対応し難く、一方自動の場合は制御装置を複雑化したりコストを増大させる問題がある。   In the case where the operation interval is interlocked with the load of the air compressor of the main pipe as in the inventions described in Patent Documents 1 and 2, the operation interval is ultimately determined according to the pressure in the compressed air tank, that is, the amount of compressed air used. Therefore, there is a possibility that the load of the air compressor and the amount of drain to be discharged are not necessarily linked, for example, even if the load of the air compressor is large due to the season or the weather, the actual amount of drain generation is small. Although it is also described that the drain discharge time per time is changed from the output of various sensors, manual switching is difficult to cope with fluctuations in a short time, while in the case of automatic, the control device is complicated. There is a problem of increasing costs.

本発明は、空気圧縮機器、特に圧縮空気の除湿装置の冷却器内のドレン貯溜速度を効率的に検知し、ドレン排出装置の電磁式ドレントラップを自動制御するための安価で確実な方法を提供することを目的とする。   The present invention provides an inexpensive and reliable method for efficiently detecting the drain storage speed in the cooler of an air compression device, particularly a compressed air dehumidifier, and automatically controlling the electromagnetic drain trap of the drain discharge device. The purpose is to do.

請求項1記載の発明は、冷媒圧縮機と、熱交換器と、電磁式ドレントラップを備えた圧縮空気供給路のドレン排出装置とを少なくとも有する圧縮空気の除湿装置において、冷媒圧縮機の負荷に応じて電磁式ドレントラップの動作間隔を切換えることにより上記の課題を解決する。除湿したドレンの量に応じて電磁弁の動作間隔を自動的に変更してエアーロスを減少するものである。   The invention according to claim 1 is a compressed air dehumidifying device having at least a refrigerant compressor, a heat exchanger, and a drain discharge device of a compressed air supply path provided with an electromagnetic drain trap. Accordingly, the above problem is solved by switching the operation interval of the electromagnetic drain trap. The air loss is reduced by automatically changing the operation interval of the solenoid valve according to the amount of dehumidified drain.

空気圧縮機の出力が、一般に圧縮空気タンク等における圧力すなわち圧縮空気の使用量に合わせて制御されるのに対し、除湿装置の冷媒圧縮機の出力は、一般に熱交換器の出口の温度センサ及び/または湿度センサ等の出力によって制御されるから、冷媒圧縮機の負荷は実際のドレン発生量とより良く対応していると考えられる。   While the output of the air compressor is generally controlled in accordance with the pressure in the compressed air tank or the like, that is, the amount of compressed air used, the output of the refrigerant compressor of the dehumidifier is generally a temperature sensor at the outlet of the heat exchanger and Since it is controlled by the output of the humidity sensor or the like, it is considered that the load of the refrigerant compressor better corresponds to the actual drain generation amount.

すなわちドレン発生量が多くなる原因としては、(1)圧縮空気流量の増大、(2)入気に含まれる水蒸気の量の増大、(3)空気流に乗った水滴の量の増大、(4)入気温度の上昇などが考えられるが、圧縮空気の使用量による制御では(1)のみを反映するのに対し、冷媒圧縮機の出力による制御ではこれらのすべての要素を反映させることができる。従って冷媒圧縮機の負荷に応じて電磁式ドレントラップの動作間隔を切換えれば、単に圧縮空気の使用量に合わせて制御するよりも、簡単な構成で効果的にドレン排出装置の自動制御を行うことができる。   That is, the cause of the increased drain generation amount is (1) an increase in the flow rate of compressed air, (2) an increase in the amount of water vapor contained in the intake air, (3) an increase in the amount of water droplets on the air flow, (4 ) An increase in the intake air temperature is conceivable, but only (1) is reflected in the control based on the amount of compressed air used, whereas all these factors can be reflected in the control based on the output of the refrigerant compressor. . Therefore, if the operation interval of the electromagnetic drain trap is switched in accordance with the load of the refrigerant compressor, automatic control of the drain discharge device is effectively performed with a simple configuration rather than simply controlling according to the amount of compressed air used. be able to.

請求項2記載の発明は、前記冷媒圧縮機がインバータ式冷媒圧縮機である場合において、該インバータ式冷媒圧縮機の運転周波数に応じて電磁式ドレントラップの動作間隔を切換えることにより上記の課題を解決する。   When the refrigerant compressor is an inverter type refrigerant compressor, the invention according to claim 2 solves the above problem by switching the operation interval of the electromagnetic drain trap according to the operating frequency of the inverter type refrigerant compressor. Resolve.

インバータを搭載した冷媒圧縮機では、圧縮空気の流量や入気温度、湿度等のセンサーからの出力に基いてドレンの発生量を推定し、モーターの回転数を例えば0〜90Hzまたは30〜90Hzのように連続的に可変させることができ、またその運転周波数を他の制御装置に出力できるように構成されている。本発明の除湿装置では、冷却回路におけるインバータ圧縮機の運転周波数によって発生するドレン量を近似的に判断し、それにより電磁式ドレントラップの動作間隔を切換える。   In a refrigerant compressor equipped with an inverter, the amount of drain generated is estimated based on the output from a sensor such as the flow rate of compressed air, the intake air temperature, and humidity, and the number of revolutions of the motor is, for example, 0 to 90 Hz or 30 to 90 Hz. The operation frequency can be continuously varied, and the operation frequency can be output to another control device. In the dehumidifying apparatus of the present invention, the amount of drain generated by the operating frequency of the inverter compressor in the cooling circuit is approximately determined, and thereby the operation interval of the electromagnetic drain trap is switched.

ドレントラップの動作間隔を不連続的(2段階若しくは3段階)に切換える場合は、連続的に変化させる場合に比べて簡易な制御とすることができる。例えば、45秒間における圧縮機の運転周波数の平均値が45〜90Hzのときはドレン量が大と判断して、電磁弁の動作間隔を45秒とする。この平均値が0〜44Hzのときはドレン量が小と判断して、電磁弁の動作間隔を90秒とする。   When the operation interval of the drain trap is switched discontinuously (two steps or three steps), the control can be simplified compared to the case where the operation is continuously changed. For example, when the average value of the operating frequency of the compressor in 45 seconds is 45 to 90 Hz, it is determined that the drain amount is large, and the operation interval of the solenoid valve is set to 45 seconds. When this average value is 0 to 44 Hz, the drain amount is judged to be small, and the operation interval of the solenoid valve is set to 90 seconds.

本発明は、上記のようにして空気圧縮機器、特に圧縮空気の除湿装置の冷却器内のドレン貯溜速度を効率的に検知するので、ドレン排出装置の電磁式ドレントラップを自動制御するための安価で確実な方法を提供できる。   Since the present invention efficiently detects the drain storage speed in the cooler of the air compressor, particularly the compressed air dehumidifier, as described above, it is inexpensive to automatically control the electromagnetic drain trap of the drain discharger. Can provide a reliable method.

以下、図を参照しつつ、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

図1は、空気圧縮機器の構成の一例を示す。図において1は空気圧縮機、2は圧縮空気タンク、3は除湿装置、4はラインフィルターである。空気圧縮機1で圧縮された空気は圧力安定のため圧縮空気タンク2に一旦貯えられるが、この圧縮空気は高温で水蒸気を多く含んでいるから、除湿装置3で水と油を除去する必要がある。除湿装置3から出た圧縮空気はさらにラインフィルター4で不純物を除去した後、利用機器に供給される。空気圧縮機の形式によっては圧縮空気タンク2を設けないこともある。   FIG. 1 shows an example of the configuration of an air compression device. In the figure, 1 is an air compressor, 2 is a compressed air tank, 3 is a dehumidifier, and 4 is a line filter. The air compressed by the air compressor 1 is temporarily stored in the compressed air tank 2 for pressure stabilization. However, since this compressed air contains a large amount of water vapor at a high temperature, it is necessary to remove water and oil by the dehumidifier 3. is there. The compressed air that has come out of the dehumidifying device 3 is further removed by the line filter 4 and then supplied to the user equipment. Depending on the type of the air compressor, the compressed air tank 2 may not be provided.

図2は、本実施例の除湿装置3の内部構造を示す。図において31は熱交換器、32は電磁式ドレントラップ、33は冷媒圧縮機、34は凝縮器、35は電子膨張弁、38はアキュムレータ、39は容量制御弁、40は制御回路、41は温度センサー、42はインバータである。圧縮空気タンク2からの高温で湿った圧縮空気は、空気入口から熱交換器31に入り、内部のフィンの間を通る際に冷媒と熱交換して冷やされ、空気出口から排出される。このとき油及び水蒸気が凝縮して熱交換器31の底部に溜り、電磁式ドレントラップ32で図示しないドレン処理部へ間欠的に排出される。   FIG. 2 shows the internal structure of the dehumidifying device 3 of this embodiment. In the figure, 31 is a heat exchanger, 32 is an electromagnetic drain trap, 33 is a refrigerant compressor, 34 is a condenser, 35 is an electronic expansion valve, 38 is an accumulator, 39 is a capacity control valve, 40 is a control circuit, and 41 is a temperature. A sensor 42 is an inverter. The compressed air moistened with high temperature from the compressed air tank 2 enters the heat exchanger 31 from the air inlet, is cooled by exchanging heat with the refrigerant when passing between the fins inside, and discharged from the air outlet. At this time, the oil and water vapor are condensed and accumulated at the bottom of the heat exchanger 31 and are intermittently discharged to the drain treatment unit (not shown) by the electromagnetic drain trap 32.

冷媒は冷媒圧縮機33でまず加圧され、凝縮器34でファン冷却により凝縮され、電子膨張弁35にて急激に減圧され、熱交換器31内部で蒸発して気化熱により圧縮空気を冷却する。熱交換器31から出た冷媒はアキュムレータ38で完全な気体となって冷媒圧縮機33に戻される。容量制御弁39は必要に応じて冷媒圧縮機33の負荷を調整する。   The refrigerant is first pressurized by the refrigerant compressor 33, condensed by fan cooling by the condenser 34, rapidly depressurized by the electronic expansion valve 35, evaporated inside the heat exchanger 31, and cools the compressed air by heat of vaporization. . The refrigerant discharged from the heat exchanger 31 is converted into a complete gas by the accumulator 38 and returned to the refrigerant compressor 33. The capacity control valve 39 adjusts the load of the refrigerant compressor 33 as necessary.

制御回路40は熱交換器31に設けられた温度センサー41と、冷媒圧縮機33のインバータ42と、容量制御弁39と、電磁式ドレントラップ32に接続されており、上記の温度センサー41と、制御回路40と、電磁式ドレントラップ32と、図示しないドレン処理部とで、本実施例の圧縮空気の除湿装置のドレン排出装置が構成されている。   The control circuit 40 is connected to the temperature sensor 41 provided in the heat exchanger 31, the inverter 42 of the refrigerant compressor 33, the capacity control valve 39, and the electromagnetic drain trap 32, and the temperature sensor 41, The control circuit 40, the electromagnetic drain trap 32, and a drain processing unit (not shown) constitute a drain discharge device of the compressed air dehumidifier of this embodiment.

制御回路40は圧縮空気の入気温度を監視し、圧縮空気の温度(露点温度)が所定温度以下になるようにインバータ42を制御し、冷媒圧縮機33の運転周波数を0(又は30)〜90Hzの間で連続的に変化させるとともに、必要に応じて容量制御弁39を開閉する。そして一定時間(45秒間)における冷媒圧縮機33の運転周波数の平均値を計算し、運転周波数が45〜90Hzのとき、すなわちドレン量が相対的に多いときは電磁式ドレントラップ32を45秒間隔で動作させ(動作頻度は大)、冷媒圧縮機33の運転周波数が0(又は30)〜44Hzのとき、すなわちドレン量が相対的に少ないときは電磁式ドレントラップ32を90秒間隔(動作頻度は小)で動作させる。   The control circuit 40 monitors the intake air temperature of the compressed air, controls the inverter 42 so that the temperature of the compressed air (dew point temperature) is below a predetermined temperature, and sets the operating frequency of the refrigerant compressor 33 to 0 (or 30) to While changing continuously between 90 Hz, the capacity | capacitance control valve 39 is opened and closed as needed. Then, the average value of the operating frequency of the refrigerant compressor 33 in a certain time (45 seconds) is calculated. When the operating frequency is 45 to 90 Hz, that is, when the drain amount is relatively large, the electromagnetic drain trap 32 is spaced at 45 second intervals. When the operation frequency of the refrigerant compressor 33 is 0 (or 30) to 44 Hz, that is, when the amount of drain is relatively small, the electromagnetic drain trap 32 is set at intervals of 90 seconds (operation frequency). Is small).

圧縮機の運転周波数は常に変化し、電磁弁の動作切り換えの基準としては不安定なので、本実施例では一定時間(45秒間)における運転周波数の値によって動作を切換えている。ドレン量の多少を判断するために圧縮機の運転周波数を二分し、運転周波数がいずれの範囲にあるかにより判断するようにしている。一回の電磁弁の動作において、弁の開放時間は0.3秒で一定であるから、圧縮機の運転周波数が45Hz以上であるときには44Hz以下であるときの2倍のドレンを排出することになる。この関係を図3に示す。なお、圧縮機の運転周波数の判定を30Hz以下、31〜60Hz、61〜90Hzの3段階とし、電磁弁の動作間隔を3段階に切換えてもよい。   Since the operating frequency of the compressor always changes and is unstable as a reference for switching the operation of the solenoid valve, in this embodiment, the operation is switched depending on the value of the operating frequency for a fixed time (45 seconds). In order to determine the amount of drainage, the operation frequency of the compressor is divided into two, and the determination is made based on which range the operation frequency is in. In one operation of the solenoid valve, the valve opening time is constant at 0.3 seconds. Therefore, when the operating frequency of the compressor is 45 Hz or higher, drain twice as much as when 44 Hz or lower is discharged. Become. This relationship is shown in FIG. The operation frequency of the compressor may be determined in three stages of 30 Hz or less, 31-60 Hz, 61-90 Hz, and the operation interval of the solenoid valve may be switched to three stages.

本実施例では冷媒圧縮機33がインバータ42で制御されているが、冷媒圧縮機の制御においても、熱交換器の出口温度に応じて圧縮機の電源をON・OFFする方式(開閉方式)や空気調整弁の開閉により負荷を制御する方式(アンローダ方式)が用いられる場合がある。これらの冷却方式に本発明を適用するには、電源ONの間やロード運転中に電磁式ドレントラップの動作間隔を小とし、電源OFFの間やアンロード運転中に動作間隔を大とすればよい。   In the present embodiment, the refrigerant compressor 33 is controlled by the inverter 42. However, in the control of the refrigerant compressor, a method (opening / closing method) of turning on / off the compressor according to the outlet temperature of the heat exchanger, A system (unloader system) that controls the load by opening and closing the air regulating valve may be used. In order to apply the present invention to these cooling methods, the operation interval of the electromagnetic drain trap is reduced during power ON or during load operation, and the operation interval is increased during power OFF or during unload operation. Good.

本発明は除湿装置の冷媒圧縮機の出力とドレン貯溜量がよく対応することに着眼してドレントラップの簡易な制御方法を提案したものであり、さらに圧縮空気の流量センサや湿度センサー等を用いて冷媒圧縮機を制御するような場合にも同様に適用できる。またドレントラップの位置は除湿装置に限らず、他の場所に設置することもできる。   The present invention proposes a simple control method for the drain trap by paying attention to the fact that the output of the refrigerant compressor of the dehumidifying device and the drain storage amount correspond well, and further uses a compressed air flow sensor, a humidity sensor, etc. Thus, the present invention can be similarly applied to a case where the refrigerant compressor is controlled. Moreover, the position of the drain trap is not limited to the dehumidifying device, and can be installed in other places.

空気圧縮機器の構成の一例を示す図The figure which shows an example of a structure of an air compression apparatus 実施例1の除湿装置3の内部構造を示す図The figure which shows the internal structure of the dehumidification apparatus 3 of Example 1. FIG. 実施例1におけるドレン量、運転周波数と電磁弁の動作を示す図The figure which shows the amount of drains in Example 1, an operation frequency, and operation | movement of a solenoid valve.

符号の説明Explanation of symbols

1 空気圧縮機
2 圧縮空気タンク
3 除湿装置
4 ラインフィルター
31 熱交換器
32 電磁式ドレントラップ
33 冷媒圧縮機
34 凝縮器
35 電子膨張弁
38 アキュムレータ
39 容量制御弁
40 制御回路
41 温度センサー
42 インバータ
DESCRIPTION OF SYMBOLS 1 Air compressor 2 Compressed air tank 3 Dehumidifier 4 Line filter 31 Heat exchanger 32 Electromagnetic drain trap 33 Refrigerant compressor 34 Condenser 35 Electronic expansion valve 38 Accumulator 39 Capacity control valve 40 Control circuit 41 Temperature sensor 42 Inverter

Claims (2)

冷媒圧縮機と、熱交換器と、電磁式ドレントラップを備えた圧縮空気供給路のドレン排出装置とを少なくとも有する圧縮空気の除湿装置において、冷媒圧縮機の負荷に応じて電磁式ドレントラップの動作間隔を切換えることを特徴とする圧縮空気の除湿装置。 Operation of an electromagnetic drain trap according to a load of a refrigerant compressor in a compressed air dehumidifying device having at least a refrigerant compressor, a heat exchanger, and a drain discharge device of a compressed air supply path provided with an electromagnetic drain trap A compressed air dehumidifying device characterized by switching the interval. 前記冷媒圧縮機がインバータ式冷媒圧縮機であり、該インバータ式冷媒圧縮機の運転周波数に応じて電磁式ドレントラップの動作間隔を切換えることを特徴とする圧縮空気の除湿装置。
A dehumidifying device for compressed air, wherein the refrigerant compressor is an inverter type refrigerant compressor, and the operation interval of the electromagnetic drain trap is switched in accordance with the operating frequency of the inverter type refrigerant compressor.
JP2003281925A 2003-07-29 2003-07-29 Apparatus for dehumidifying compressed air Pending JP2005046744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003281925A JP2005046744A (en) 2003-07-29 2003-07-29 Apparatus for dehumidifying compressed air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003281925A JP2005046744A (en) 2003-07-29 2003-07-29 Apparatus for dehumidifying compressed air

Publications (1)

Publication Number Publication Date
JP2005046744A true JP2005046744A (en) 2005-02-24

Family

ID=34267293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003281925A Pending JP2005046744A (en) 2003-07-29 2003-07-29 Apparatus for dehumidifying compressed air

Country Status (1)

Country Link
JP (1) JP2005046744A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008528258A (en) * 2005-02-01 2008-07-31 アトラス コプコ エアーパワー,ナームローゼ フェンノートシャップ Gas dryer
JP2013100972A (en) * 2011-11-10 2013-05-23 Orion Machinery Co Ltd Compressed air dehumidifier
CN110906515A (en) * 2019-11-29 2020-03-24 四川长虹空调有限公司 Refrigeration and dehumidification switching method and system of air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008528258A (en) * 2005-02-01 2008-07-31 アトラス コプコ エアーパワー,ナームローゼ フェンノートシャップ Gas dryer
JP2013100972A (en) * 2011-11-10 2013-05-23 Orion Machinery Co Ltd Compressed air dehumidifier
CN110906515A (en) * 2019-11-29 2020-03-24 四川长虹空调有限公司 Refrigeration and dehumidification switching method and system of air conditioner
CN110906515B (en) * 2019-11-29 2021-07-23 四川长虹空调有限公司 Refrigeration and dehumidification switching method and system of air conditioner

Similar Documents

Publication Publication Date Title
JP4427008B2 (en) Method for preventing freezing of heat exchanger in compressed gas dehumidifier and compressed gas dehumidifier
KR101059176B1 (en) Improved Cooling Drying Unit
KR102010375B1 (en) Apparatus for dehumidification and method for controlling the same
KR101802107B1 (en) Refrigeration system
JPWO2012070101A1 (en) Compressed air supply device
US8721301B2 (en) Smart blow-down system for variable frequency drive compressor units
GB2405360A (en) A dehumidifier with a temperature controlled operating cycle.
JP2005046744A (en) Apparatus for dehumidifying compressed air
KR101711337B1 (en) Air water system
JP6468849B2 (en) Air conditioner for vehicles
AU2018253576B2 (en) Heater control for an air dryer
JP4073340B2 (en) Air conditioner and control method of air conditioner
JP2009287844A (en) Refrigeration device
JP2005282902A (en) Full-water control device for air conditioner
JP3996321B2 (en) Air conditioner and its control method
JP2008286026A (en) Switchboard temperature control device for compressed air dehumidifier
CN110243115A (en) A kind of condensing pressure control system and method
JPH05141792A (en) High-humidity refrigerator
JP3208654B2 (en) Control method and control device for air compressor and drain discharge
JP2005282894A (en) Dehumidifier
JP2001066038A (en) Constant-temperature refrigerant liquid circulating apparatus
JP2007085659A (en) Controller for air conditioner
KR101553550B1 (en) White plume preventing system using cooling and dehumidifying and preventing method for white plume using it
JP2006170575A (en) Compressor control system
JP2005049073A (en) Fluid cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071210