JP2005046245A - Ophthalmologic measuring device - Google Patents

Ophthalmologic measuring device Download PDF

Info

Publication number
JP2005046245A
JP2005046245A JP2003204413A JP2003204413A JP2005046245A JP 2005046245 A JP2005046245 A JP 2005046245A JP 2003204413 A JP2003204413 A JP 2003204413A JP 2003204413 A JP2003204413 A JP 2003204413A JP 2005046245 A JP2005046245 A JP 2005046245A
Authority
JP
Japan
Prior art keywords
light
optical axis
eye
examined
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003204413A
Other languages
Japanese (ja)
Other versions
JP4235504B2 (en
Inventor
Takayoshi Suzuki
孝佳 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kowa Co Ltd
Original Assignee
Kowa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Co Ltd filed Critical Kowa Co Ltd
Priority to JP2003204413A priority Critical patent/JP4235504B2/en
Publication of JP2005046245A publication Critical patent/JP2005046245A/en
Application granted granted Critical
Publication of JP4235504B2 publication Critical patent/JP4235504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ophthalmologic measuring device with a high measuring precision suppressing the influence by outer disturbing light. <P>SOLUTION: The ophthalmologic measuring device is constituted as the following. The projection light optical axis L1 of a projection optical system 4 and the reception light optical axis L2 of a reception light optical system 5 make a substantially right angle at the peak of the site S to be measured. The reception light optical axis L2 is set between the optical axis L4 of a cornea reflection light reflecting on the cornea when a projection light enter an eye to be tested and the optical axis L3 of an IOL reflection light which is the reflecting light of the projection light on an IOL 2 with the proviso that the IOL 2 is inserted into the eye to be tested so as not to intersect with any of the optical axis L3, L4. The distances between the reception light optical axis L2, the optical axis L4 of the cornea reflection light, and the optical axis L3 of the IOL reflection light is set so that the reception optical system 5 does not receive the cornea reflection light and the IOL reflection light. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、被検眼内に光を投射し、この投射した光による被検眼内の測定対象部分の散乱光を受光することにより、例えば前房内の浮遊する細胞数や蛋白質濃度等の生体特性を測定する眼科測定装置に関するものである。
【0002】
【従来の技術】
従来、眼科測定装置として、フレアメータやフレアセルメータが知られている。これらの眼科測定装置は、被検眼の前房内に浮遊している細胞数や蛋白質濃度(フレア濃度)を測定することができるものである。
【0003】
このような眼科測定装置は、被検眼の眼球光軸に対して斜め方向から被検眼内に光を投射させ、投射した光とは眼球光軸の反対側で斜め方向から散乱光を受光する方式を採用している(特許文献1〜4参照)。
【0004】
上記方式では、散乱光を好適に測定するため、投射光学系の投射光光軸に対して略直角となる方向から測定対象の散乱光(測定対象光)を受光するように受光光学系の受光光軸を配置して、投射光光軸と受光光軸とが被検眼内の測定対象部分を頂点に略直角としている。
【0005】
そして、投射光光軸と受光光軸とが略直角となることから、被検眼に向かい合う眼科測定装置から投射光光軸及び受光光軸の両方を形成し易い配置にできるようにすることが考えられていた。従来の眼科測定装置では、投射光光軸及び受光光軸の間を、眼球光軸に平行な被検眼内の測定対象部分を通過する軸で等分する角度、即ち投射光光軸と、眼球光軸に平行な被検眼内の測定対象部分を通過する軸との間の投射角を略45°とする設定がなされていた(特許文献2参照)。
【0006】
【特許文献1】
特開平3−264044号公報
【特許文献2】
特開平6−217939号公報
【特許文献3】
特開平7−178052号公報
【特許文献4】
特開平9−84763号公報
【0007】
【発明が解決しようとする課題】
しかし、近年では、白内障患者の被検眼に人工水晶体(intraocular lens:IOL)を挿入手術することがある。
【0008】
IOLは屈折率が高いので、従来の眼科測定装置の投射光がIOL表面に到達し、IOL表面でIOL反射光(人工水晶体反射光)として反射する。従来の眼科測定装置は、図5に示すように、投射光光軸L1の軸L0’に対する投射角を略45°としているので、IOLを使用している被検者について測定を行う場合には、投射光が測定対象部分Sを通過してIOL表面で反射したIOL反射光のIOL反射光光軸L3が受光光軸L2と近接して並んでしまう。
【0009】
そうすると、受光光軸L2に沿った被検眼内の測定対象部分Sの散乱光を受光するはずの受光光学系の受光素子がIOL反射光も受光する。IOL反射光が強い光強度を有することから、受光光学系の受光素子は、IOL反射光を受光してしまうと、図6に示すように、飽和光強度を受光することになり測定不能、ひいては装置の破損が生じてしまう。
【0010】
このため、図7に示すように、IOLを使用している被検者にも良好に測定が行えるように、投射光光軸L1の軸L0’に対する投射角を30°として、IOL反射光を、投射光の被検眼進入時に角膜で反射される角膜反射光(光軸L4)と共に除去することが考えられた。この場合には、IOL反射光光軸L3と角膜反射光光軸L4が両方とも眼球光軸L0とのなす角度が小さく設定され、受光光軸L2から離すことができた。
【0011】
しかしこれでも、IOL反射光の被検眼外出時の角膜での散乱光(IOL反射散乱光(光軸L5))が受光光学系の受光素子に入り込む。IOL反射散乱光の光強度は、測定対象部分の散乱が多い場合の光強度に近似する。よって、図8に示すように、測定結果は、測定対象部分Sの散乱が少なくてもゴースト像Gを生じさせて見掛けのフレア量を、実際のフレア量よりも大きくして測定誤差を生じていた。
【0012】
本発明は上記従来技術に鑑みてなされたもので、その目的とするところは、外乱光による影響を抑制した測定精度の高い眼科測定装置を提供することにある。
【0013】
【課題を解決するための手段】
本発明にあっては、人工水晶体反射光(IOL反射光)の被検眼外出時の角膜での散乱光(IOL反射散乱光)が受光光学系の受光素子に入り込むという問題が、受光光学系の受光光軸付近に人工水晶体反射光の被検眼外出時の角膜上での散乱領域Rが存在して、角膜上を通過する間の散乱光(IOL反射散乱光(光軸L5))のゴースト像が受光光軸上の測定領域にかぶってしまっているために生じることに着眼した(図7参照)。
【0014】
そして、人工水晶体反射光の被検眼外出時の角膜での散乱領域Rを、受光光学系の受光光軸L2から離すことはできないかと考え、これが投射光学系の投射光光軸L1の投射角を45°よりも広げることで達成できることを想起した。
【0015】
しかし、投射光光軸L1の投射角を大きく広げると、今度は、全ての被検者の被検眼でも発生する投射光の被検眼進入時の角膜での反射光(角膜反射光(光軸L4))が受光光学系の受光素子に入り込むことになり、角膜反射光によって人工水晶体反射光やそれの角膜での散乱光(IOL反射散乱光)と同種の測定不良の問題を引き起こすため、投射角をあまりに大きく広げることもできない。
【0016】
そこで、人工水晶体反射光の延出方向を定めると共に人工水晶体反射光の被検眼外出時の角膜での散乱位置を定める人工水晶体反射光の光軸と、投射光の被検眼進入時の角膜での反射光の光軸と、の間にいずれの光軸とも交わらず且ついずれの光軸とも近接しない受光光軸を設定するような範囲に限って投射角を広げることとして発明を具現化した。
【0017】
具体的な本発明の眼科測定装置は、被検眼内に光を投射して散乱光を受光することにより被検眼内の生体特性を測定する眼科測定装置において、光源から被検眼内へ被検眼の眼球光軸に対して斜めに投射光を投射する投射光学系と、該投射光学系の投射光が被検眼内の測定部で散乱した散乱光を受光する受光光学系と、を備え、前記投射光学系の投射光光軸と前記受光光学系の受光光軸とが前記測定部を頂点に略直角をなし、前記受光光軸は、前記投射光が被検眼進入時に角膜で反射した角膜反射光の光軸と、前記投射光が被検眼内に挿入された人工水晶体を想定した場合の人工水晶体で反射した人工水晶体反射光の光軸と、の間にいずれの光軸とも交差することなく設定され、前記受光光軸と前記角膜反射光の光軸及び前記人工水晶体反射光の光軸とのそれぞれの間は、前記受光光学系に前記角膜反射光及び前記人工水晶体反射光を受光させない距離としたことを特徴とする。
【0018】
前記受光光学系は、前記散乱光を受光する受光素子と、該受光素子までの前記受光光軸に沿った受光光路中に設けられて前記測定部と光学的に共役な位置に所定の大きさの開口を有する遮光部材と、を有し、前記遮光部材は、前記開口を透過する前記散乱光のみを前記受光素子に導くことが好適である。
【0019】
この構成では、受光光学系に角膜反射光、人工水晶体反射光及び人工水晶体反射光の被検眼外出時の角膜での散乱光のいずれも受光させないので、人工水晶体(IOL)を使用している被検者にとって、外乱光による影響を抑制し、外乱光によるゴースト像が無いために測定誤差が生じず、高度な測定精度で測定を良好に行うことができる。また、人工水晶体を使用していない被検者にとっても、人工水晶体は屈折率が高いが通常の水晶体は屈折率が低く、水晶体での反射が起き難いだけであるので、外乱光による影響を抑制し、良好に測定できる。
【0020】
よって、本発明では、測定対象の被検者を限定することなく、全ての被検者に対して一律に高精度に画一的な測定を行うことができる。
【0021】
【発明の実施の形態】
以下に図面を参照して、この発明の好適な実施の形態を例示的に詳しく説明する。
【0022】
「全体構成」
図1は本実施の形態に係るレーザフレアメータ(以下、LFMと称す)の概略構成図である。本実施の形態では、LFMを眼科測定装置の一例として説明を進める。なお、本実施の形態のLFMは、通常の被検眼前房内の浮遊する細胞(セル)数や蛋白質濃度(フレア濃度)等の生体特性を測定するだけでなく、その他に被検眼水晶体の混濁度の生体特性も測定できるものである。
【0023】
図1において、被検者の眼球である被検眼1が示されており、被検眼1に対向してLFMの測定部3が配置されている。被検眼1は、混濁水晶体の中身を吸い出して人工水晶体(intraocular lens:IOL)2が挿入手術されている。
【0024】
LFMの測定部3は、概略、投射光光軸L1に沿った投射光学系4と、受光光軸L2に沿った受光光学系5と、被検眼1の凝視する眼球光軸L0に沿ったXY方向アライメント部6と、入射光光軸L6及び反射光光軸L7に沿ったZ方向アライメント部7と、を備えている。
【0025】
また、LFMの測定部3は、各種表示を1箇所で行うための1つの表示部8と、各種データ解析等を行う解析部9と、表示部8に表示するデータを切り換える切換器10と、を備えている。
【0026】
本実施の形態では、LFMの測定部3に搭載された全ての構成が測定部3のアライメントによって移動する。
【0027】
ここで、眼球光軸L0は、被検眼1の角膜頂点から正面へ真直ぐに延びている。眼球光軸L0は、投射光光軸L1及び受光光軸L2の交点である測定対象部分Sに重ならずにずれている。なお、眼球光軸L0は、通常は1本となるが、説明のために図1では各光源からの光路毎に示してある。
【0028】
また、Z方向アライメント用の入射光光軸L6及び反射光光軸L7は、図2に示すように、眼球光軸L0と交わる被検眼1の角膜頂点で反射し、眼球光軸L0に対して対称な30°の入射角と反射角を有する。
【0029】
一方、投射光光軸L1と受光光軸L2は、被検眼1内の所定位置、すなわち被検眼1の前房内にて、交わって両光軸L1,L2の交点を形成しており、この交点位置が測定対象部分Sを指す。これにより、投射光学系4からの投射光が被検眼の前房内の測定対象部分Sで散乱した受光光軸L2上の散乱光を、受光光学系5で受光することができる。
【0030】
この投射光光軸L1と受光光軸L2の交点での角度は、図2に示すように、測定対象の散乱光を好適に測定できるように、直角をなすように設定される。言い換えると、投射光学系4の投射光光軸L1に対して略直角となる方向から測定対象の散乱光を受光するように受光光学系5の受光光軸L2を配置して、投射光光軸L1と受光光軸L2とが被検眼1内の測定対象部分Sを頂点に直角となっている。
【0031】
投射光光軸L1は、眼球光軸L0に平行な測定対象部分Sを通過する軸L0’との間の投射角を50°にとって被検眼内に延びている。投射光光軸L1と受光光軸L2とが直角をなしているので、受光光軸L2は、眼球光軸L0に平行な測定対象部分Sを通過する軸L0’との間の受光角を40°にとって被検眼1内から延びている。
【0032】
「投射光光軸L1及び受光光軸L2の光学位置関係」
上記したように、投射光光軸L1は、眼球光軸L0に平行な測定対象部分Sを通過する軸L0’との間の投射角を50°にとって配置されている。この50°の投射角としたのは、IOL2を使用している被検者にも良好に測定が行え、外乱光による影響を抑制して測定精度を高めるためである。
【0033】
具体的には、近年、白内障患者の被検眼1にIOL2を挿入手術して視力を回復させることがある。IOL2は屈折率が高いので、図3に示すように、被検眼1内の測定対象部分Sを通過してIOL2表面で反射したIOL反射光(人工水晶体反射光)を発生させてしまう。このIOL反射光を受光してしまうと、受光光学系5の光電検出器15は、飽和光量を受光することになり測定不能となってしまう(図6参照)。
【0034】
また、IOL反射光の被検眼外出時の角膜での散乱光(IOL反射散乱光)が受光光学系5の光電検出器15に入り込むと、IOL反射散乱光は、測定対象部分Sの散乱が多い場合の光強度に近似するため、測定対象部分Sの散乱が少なくてもゴースト像Gを生じさせて見掛けのフレア量を大きくしてしまい、測定誤差を生じてしまう(図8参照)。
【0035】
さらに、全ての被検者の被検眼1でも発生する投射光の被検眼進入時の角膜での反射光(角膜反射光)が受光光学系5の光電検出器15に入り込むと、IOL反射光やそれの角膜での散乱光(IOL反射散乱光)と同種の測定不良の問題を引き起こしてしまう。
【0036】
そこで、図3に示すように、IOL反射光の延出方向を定めると共にIOL反射光の被検眼外出時の角膜での散乱位置を定めるIOL反射光光軸L3と、投射光の被検眼進入時の角膜での角膜反射光光軸L4と、の間にいずれの光軸L3,L4とも交わらず且つ近接しない受光光軸L2を設定するような範囲に限った投射光光軸L1の投射角として、本実施の形態では50°を設定した。なお、発明としては、上記の条件を満たすことができれば投射角は50°だけに限られない。好適なのは50°〜53°の範囲である。
【0037】
このように投射光光軸L1の投射角が設定されることによって、受光光軸L2は、投射光が被検眼1内のIOL2で反射したIOL反射光の光軸L3と、投射光が被検眼進入時に角膜で反射した角膜反射光の光軸L4と、の間にいずれの光軸L3,L4とも交差することなく設定され、かつ、受光光軸L2とIOL反射光光軸L3の間及び受光光軸L2と角膜反射光光軸L4の間は、受光光学系5に角膜反射光及びIOL反射光を受光させない距離に隔てられる。IOL反射光光軸L3と角膜反射光光軸L4は、受光光軸L2から被検眼1に離れるほどに離間していく。
【0038】
このため、受光光学系5に角膜反射光、IOL反射光及びIOL反射光の被検眼外出時の角膜での散乱光のいずれもが受光しないので、IOL2を使用している被検者にとって、外乱光による影響を抑制し、外乱光によるゴースト像が無いために測定誤差が生じず、高度な測定精度で測定を良好に行うことができる。また、IOL2を使用していない被検者にとっても、IOL2は屈折率が高いが通常の水晶体は屈折率が低く、水晶体での投射光の反射が起き難いだけであるので、外乱光による影響を抑制し、良好に測定できる。
【0039】
よって、本実施の形態のLFMでは、測定対象の被検者をIOL使用の被検者やIOL不使用の被検者のいずれかに限定することなく、全ての被検者に対して外乱光による影響を抑制して一律に高精度に画一的な測定を行うことができる。
【0040】
「各構成要素の具体的な説明」
(投射光学系)
LFMの測定部3の投射光学系4について説明する。投射光学系4は、可視レーザダイオード等のレーザ光源11から発せられた投射光としてのレーザ光が集光レンズ12を介して投射光光軸L1に沿って被検者の被検眼1の前房内に投射される。
【0041】
集光レンズ12は、不図示の駆動手段によって投射光光軸L1と紙面との垂直方向に駆動され、レーザ光を微細に1次元的に走査する。
【0042】
このように、レーザ光の走査を単純な集光レンズ12の移動だけで行うので、簡易な構成で走査を実現でき、低コスト化が図れる。また、レーザフレアセルメータとして前房内の浮遊する細胞(セル)数を測定するためにレーザ光を複数方向に走査する場合にも、移動可能な他の集光レンズを追加するだけで良く、装置の改良も簡易である。
【0043】
(受光光学系)
次に、受光光学系5について説明する。受光光学系5は、レーザ光源11からのレーザ光による被検眼1内の測定対象部分Sにおける散乱光を受光光軸L2に沿ってレンズ13、遮光部材としての受光マスク14を介して受光素子である光電子増倍管等の光電検出器15で検出する。
【0044】
レンズ13は、受光光軸L2に対してレンズ13の光軸を傾けた球面レンズである。レンズ13は、大きな収差を発生させている角膜を透過した散乱光の像を結像させた際に発生する大きな非点収差を除去するために用いられる。これにより、容易に収差を除去することができ、測定精度を向上することができる。
【0045】
受光マスク14は、受光光軸L2方向の視野を限定し、測定範囲を規定するために用いられる。受光マスク14は、光電検出器15までの受光光軸L2に沿った受光光路中に設けられて測定対象部分Sと光学的に共役な位置に所定の大きさの開口を有する。そして、受光マスク14は、開口を透過する散乱光のみを光電検出器15に導く。この受光マスク14の開口で限られた光路範囲にIOL反射光光軸L3と角膜反射光光軸L4とが図3の光軸配置関係により重ならず、IOL反射光、IOL反射散乱光、角膜反射光が受光マスク14で遮光される。
【0046】
光電検出器15は、受光マスク14で限定された散乱光のみを受光し、受光した光強度を電気信号に変換して出力信号として出力する。
【0047】
なお、被検眼1内の散乱光は、例えば被検眼1の前房内に存在する蛋白質からの散乱光であったり、前房内の浮遊する細胞(セル)からの散乱光であったり、被検眼1の水晶体からの散乱光であったりする。
【0048】
また、受光光学系5では、レンズ13と受光マスク14の間に、非測定時に散乱光を遮断するためのシャッター16が配置されている。シャッター16は、閉じられることによって、非測定時に光電検出器15に散乱光や外部の外乱光が受光されることを防止する。
【0049】
そして、受光光学系5において散乱光を受光した光電検出器15からの出力信号は、解析部9に供給される。解析部9では、散乱光の出力信号から蛋白質濃度等の生体特性が計算され、その計算に基づき表示部8に測定結果が表示される。
【0050】
例えば、生体特性の計算としては、光子計数法を用いてデジタル化した出力信号を解析部9で解析したりする。この光子計数法の場合、受光強度はフォトカウント値を用いる。レーザ光の走査によって得られる各フォトカウント値は、解析部9内のメモリに時系列的に格納される。
【0051】
加えて、受光光学系5には、光路を分岐するハーフミラー17と、ハーフミラー17で分岐された光路上の第2撮像手段としてのCCDカメラ18と、CCDカメラ18の前方に設けられたレンズ19と、が配置されている。
【0052】
ハーフミラー17は受光光軸L2上から散乱光を分岐させ、ハーフミラー17で分岐した散乱光をレンズ19で集光し、その集光した像をCCDカメラ18で受光する。
【0053】
これにより、CCDカメラ18で受光光学系5からの被検眼1の測定部分外観を撮影できる。そして、CCDカメラ18の出力を表示部8に表示させることで、検者は、被検眼1の測定部分外観の様子を表示部8に拡大表示して観察することができる。
【0054】
(XY方向アライメント部)
次に、XY方向アライメント部6について説明する。XY方向アライメント部6は、眼球光軸L0に沿って配置される光学構成である。XY方向アライメント部6では、赤外LEDである照明光源20からの照明光が、レンズ21、ハーフミラー22、レンズ23を介して、眼球光軸L0に沿って被検眼1の前眼部、特に角膜頂点に照射される。
【0055】
また、被検者が1点を凝視するための緑LEDである内部固視灯24からの照明光が、ハーフミラー25、ハーフミラー22、レンズ23を介して、眼球光軸L0に沿って被検眼1に照射される。
【0056】
そして、照明光源20からの照明光が被検眼1の角膜表面に到達すると、角膜反射の輝点の虚像である被検眼1の前眼部像が反射される。反射される被検眼1の前眼部像は、眼球光軸L0上で、レンズ23、ハーフミラー22、ハーフミラー25を介して直進した後、レンズ26によって受光部を構成する第1撮像手段としてのCCDカメラ27の受光面上に結像される。
【0057】
また、CCDカメラ27の受光面の前面には、外乱光の影響を低減するために、照明光源20の赤外LEDの波長だけを通過させる赤外フィルタ28が配置される。
【0058】
また、前眼部像を表示する画面に対して赤外LEDである光源29からの照明光もCCDカメラ27に受光される。光源29からの照明光は、環状に光るサークルを表示させる。サークルは、LFMの測定部3の位置を示すもので、前眼部像をサークル内に合わせることで、LFMの測定部3のアライメント整合が採れた位置決定点が決定される。
【0059】
光源29からの照明光は、サークル表示用マスク30、レンズ31、ハーフミラー25、レンズ26を介してCCDカメラ27に受光される。この光源29も赤外LEDであるため、光源29からのサークル表示は赤外フィルタ28で除外されずにCCDカメラ27に受光される。
【0060】
CCDカメラ27は、切換器10を介して表示部8に接続されている。CCDカメラ27で受光した被検眼1の前眼部像及びサークルは、表示部8の表示画面に表示される。
【0061】
(Z方向アライメント部)
次に、Z方向アライメント部7について説明する。Z方向アライメント部7では、照明光源20と波長の異なるLEDである光源32からの照明光が、レンズ33を介して入射光光軸L6に沿って被検眼1の角膜へ照射される。
【0062】
そして、角膜表面での輝点の虚像となる反射光が、レンズ34を介して反射光光軸L7上の2分割型フォトダイオード等の2分割センサ35で検出される。
【0063】
これらの入射光光軸L6及び反射光光軸L7は、角膜頂点を頂角として眼球光軸L0に対して線対称な傾きに設定されている。本実施の形態では、入射光光軸L6及び反射光光軸L7は、眼球光軸L0に対して、それぞれ30°をなす。
【0064】
2分割センサ35は、受光面に入射する角膜反射の光量比率から、被検眼1の角膜頂点とLFMの測定部3との間の距離(Z軸方向)を判定するためのものである。この2分割センサ35には、標準で2箇所のアライメント完了点が設定されている。なお、アライメント完了点はさらに複数箇所設けることもできる。
【0065】
本実施の形態では、2分割センサ35の出力により、測定対象を被検眼1の前房内位置と水晶体位置とに各々設定することができる。例えば、2分割センサ35の強度比が10対10のとき前房内の蛋白質量(フレア)の測定対象部分に設定し、強度比が5対15のとき水晶体の混濁度の測定対象部分に設定する。なお、本実施の形態では、前房内位置に位置する調整を行って測定する場合を説明している。
【0066】
ここで、XYZ方向についてのLFMの測定部3のアライメントの調節は、全て検者のジョイスティックによる手動操作で行ってもよい。また、全てのアライメントの調節を自動的に行わせるように制御してもよい。またXY方向について粗動は検者のジョイスティック等の操作で行い、微細な移動は自動的に行わせる制御としてもよい。
【0067】
(表示部)
表示部8は、(1)測定時の解析部9からの測定結果、(2)アライメント調節時のCCDカメラ18からの被検眼1の測定部分外観の様子、(3)CCDカメラ27からの被検眼1の前眼部像及びサークルが表示されるものである。つまり、(1)〜(3)の3つの表示が切り換えられて表示されるものである。その表示の切換は解析部9の制御によって切換器10により切り換えられる。
【0068】
表示部8は1つだけ設けられており、上記のように表示を切り換えるので、検者はこの表示部8の画面を常に観察するだけでよく、検者がアライメント調節時と測定時とで異なる部分に視点を動かす必要がなく、検者にとっての操作性を向上している。
【0069】
(解析部)
解析部9は、情報解析や操作制御を行う部分である。つまり、予め記憶したプログラムに従いハードウエア構成を用いて解析作業や操作作業等の処理を実行する。ハードウエア構成としては、例えば一般的なコンピュータ構成を採用することができる。
【0070】
解析部9は、一方で出力信号の解析等を行い、他方で検者の入力に応じて切換器10を制御して表示部8に表示する表示対象の切り換えを行うと共に検者のジョイスティック等の入力動作に応じて駆動モータを駆動する。
【0071】
「測定」
次にLFMを用いた測定について説明する。測定は、測定開始前のアライメントの調節と、実際の測定の実行と、に分かれる。
【0072】
「アライメントの調節」
まず、被検眼1に対してアライメントの調節を行う場合について説明する。
【0073】
アライメントの調節は、XY方向アライメント部6によるXY方向アライメントの調節と、Z方向アライメント部7によるZ方向アライメントの調節と、が、XY方向アライメントの調節から先に行われる。
【0074】
(XY方向アライメントの調節)
先に行われるXY方向アライメントの調節について述べる。XY方向アライメントの調節は、XY方向アライメント部6を用いて行われる。
【0075】
XY方向アライメントの調節は、表示部8に表示されるCCDカメラ27で受光した被検眼1の前眼部像及びサークルを用い、被検眼の角膜反射の虚像を示す角膜前眼部像を眼球光軸L0に垂直なXY方向に移動させて、LFMの測定部3の位置を定めたサークル内に合わせることにより行われる。
【0076】
まず、照明光源20を点灯し、照明光源20の被検眼1の角膜表面から反射される反射光をCCDカメラ27で受光し、表示部8の表示画面に被検眼1の前眼部像を表示させる。また、同じくLFMの測定部3の位置を定めたサークルも受光し、表示部8の表示画面に表示させる。
【0077】
そして、例えば、検者が表示部8の前眼部像及びサークルを見ながら、ジョイスティックでLFMの測定部3を移動させて前眼部像をサークル内に合わせる。
【0078】
なお、本実施の形態では、XY方向におけるX方向はLFMの水平(左右)方向に設定され、Y方向はLFMの鉛直(上下)方向に設定されている。
【0079】
(Z方向のアライメントの調節)
XY方向のアライメントが完了となると、次にZ方向のアライメントの調節を行う。
【0080】
Z方向のアライメントの調節は、Z方向アライメント部7を用いて行われる。
【0081】
Z方向アライメントの調節は、調節完了となる2分割センサ35の出力値が予め設定されているので、被検眼1の測定対象についてZ方向、すなわち被検眼1に対しての遠近方向に向けてLFMの測定部3を前後に移動する。
【0082】
検者が表示部8を見ながらジョイスティックで表示部8に表示される前進指示や後退指示等に従った操作を行う。
【0083】
LFMの測定部3を被検眼1に対し遠近方向に移動させて2分割センサ35の出力値が予め設定された値となると、位置決定され、例えばブザー音や決定完了の表示を行うことで検者にアライメントが完了したことを知らせる。
【0084】
「測定の実行」
以上の操作によってアライメントが完了した後は実際に測定を開始する。
【0085】
(外乱のチェック)
まず、外乱光の影響を考えて装置周辺の明るさをチェックする。装置周辺の明るさのチェックは、投射光学系4からレーザ光を照射せずに受光光学系5のシャッター16を開き、光電検出器15で受光する外乱光の光量が測定可能な所定量を超えるかどうかで判断する。
【0086】
(本測定)
外乱光の光量が測定可能な所定量以内であれば、投射光学系4のレーザ光源11からレーザ光を照射開始して、測定を開始する。
【0087】
レーザ光の照射開始点は、集光レンズ12の走査による被検眼1の測定走査幅を超えた上方の位置に設定されており、集光レンズ12が微細に1次元的走査を行うことで、レーザ光は被検眼1の上方から下方に測定走査幅をまたいで走査が行われる。
【0088】
よって、受光光学系5では、照射されたレーザ光の被検眼1内の散乱光を、測定走査幅をまたいだレーザ光の照射開始位置(被検眼上方)から照射終了位置(被検眼下方)までの範囲で検出する。
【0089】
(散乱光の強度)
光電検出器15で検出される散乱光の強度は、図4に示す表図のようになる。ここで、この図4の表図では、最初にシャッター16が開いた時T1から示されており、レーザ光が照射開始された時T2、測定開始時T3、測定終了時T4、レーザ光が照射完了した時T5、シャッター16が閉じた時T6までの時系列に散乱光の強度が示されている。
【0090】
図4において、領域A,Eはレーザ光が照射されていない外乱光による光電検出器15で検出された光強度である。領域B,Dはレーザ光の照射もあるが未だ測定対象部分での走査を行っていない外乱光による光強度(バックグラウンド値)である。領域Cは実際に測定対象部分をレーザ光が走査している測定中(測定走査幅)の光強度である。
【0091】
領域C中において、高さHが被検眼の前房内の蛋白質濃度であるフレア量(フレア値)を示している。また、不図示であるが所々突き出して高くなる値が被検眼1の前房内に浮遊する細胞(セル)を示す。
【0092】
(測定結果表示)
測定が完了すると、光電検出器15の出力信号は解析部9で解析され、測定結果が表示部8に表示画面として表示される。この表示部8の表示は解析部9が切換器10を制御してCCDカメラ27の画像表示から解析部9内のデータ表示に表示を切り換えることで表示される。
【0093】
【発明の効果】
以上説明したように、本発明は、外乱光による影響を抑制し、測定精度を高めることができる。
【図面の簡単な説明】
【図1】実施の形態に係るレーザフレアメータ(LFM)を示す概略構成図である。
【図2】実施の形態に係るレーザフレアメータ(LFM)の被検眼に対する光学位置関係を説明する詳細図である。
【図3】実施の形態に係るレーザフレアメータ(LFM)の投射光光軸及び受光光軸の光学位置関係を説明する詳細図である。
【図4】実施の形態に係る光電検出器で検出された光強度を経時的に示す表図である。
【図5】従来のレーザフレアメータ(LFM)の投射光光軸及び受光光軸の光学位置関係を説明する詳細図である。
【図6】図5の装置の受光する光強度を示す表図である。
【図7】従来の改良されたレーザフレアメータ(LFM)の投射光光軸及び受光光軸の光学位置関係を説明する詳細図である。
【図8】図7の装置が受光する光強度を示す表図である。
【符号の説明】
1 被検眼
2 IOL
3 測定部
4 投射光学系
5 受光光学系
6 XY方向アライメント部
7 Z方向アライメント部
8 表示部
9 解析部
10 切換器
L0 眼球光軸
L0’ 眼球光軸L0に平行な測定対象部分Sを通過する軸
L1 投射光光軸
L2 受光光軸
L3 反射光光軸
L4 角膜反射光光軸
L5 反射散乱光光軸
L6 入射光光軸
L7 反射光光軸
[0001]
BACKGROUND OF THE INVENTION
The present invention projects light into the eye to be examined, and receives the scattered light of the measurement target portion in the eye to be examined by the projected light, for example, biological characteristics such as the number of cells floating in the anterior chamber and protein concentration The present invention relates to an ophthalmologic measurement apparatus that measures the above.
[0002]
[Prior art]
Conventionally, flare meters and flare cell meters are known as ophthalmic measuring apparatuses. These ophthalmologic measuring apparatuses are capable of measuring the number of cells floating in the anterior chamber of the eye to be examined and the protein concentration (flare concentration).
[0003]
Such an ophthalmologic measuring apparatus projects light into the eye to be examined from an oblique direction with respect to the eyeball optical axis of the eye to be examined, and receives scattered light from the oblique direction on the opposite side of the eyeball optical axis from the projected light. (See Patent Documents 1 to 4).
[0004]
In the above method, in order to suitably measure scattered light, the light receiving optical system receives light from the measurement target scattered light (measurement target light) from a direction substantially perpendicular to the projection light optical axis of the projection optical system. The optical axis is arranged, and the projected optical axis and the received optical axis are substantially perpendicular to the measurement target portion in the eye to be examined.
[0005]
Then, since the projection light optical axis and the light reception optical axis are substantially perpendicular to each other, it is considered to be able to easily arrange both the projection light optical axis and the light reception optical axis from the ophthalmic measurement device facing the eye to be examined. It was done. In a conventional ophthalmic measurement apparatus, an angle between the projection light optical axis and the light reception optical axis is equally divided by an axis that passes through the measurement target portion in the subject eye parallel to the eyeball optical axis, that is, the projection light optical axis and the eyeball. A setting has been made such that the projection angle between the axis passing through the measurement target portion in the eye to be examined parallel to the optical axis is approximately 45 ° (see Patent Document 2).
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 3-264044
[Patent Document 2]
JP-A-6-217939
[Patent Document 3]
Japanese Patent Laid-Open No. 7-178052
[Patent Document 4]
Japanese Patent Laid-Open No. 9-84763
[0007]
[Problems to be solved by the invention]
However, in recent years, an artificial lens (intraocular lens: IOL) is sometimes inserted into an eye to be examined in a cataract patient.
[0008]
Since the IOL has a high refractive index, the projection light of the conventional ophthalmic measurement apparatus reaches the IOL surface and is reflected as IOL reflected light (artificial crystalline lens reflected light) on the IOL surface. As shown in FIG. 5, the conventional ophthalmic measurement apparatus has a projection angle of about 45 ° with respect to the axis L0 ′ of the projection light optical axis L1, so when measuring a subject using an IOL. The IOL reflected light optical axis L3 of the IOL reflected light that has passed through the measurement target portion S and reflected from the IOL surface is aligned close to the light receiving optical axis L2.
[0009]
Then, the light receiving element of the light receiving optical system that should receive the scattered light of the measurement target portion S in the eye to be examined along the light receiving optical axis L2 also receives the IOL reflected light. Since the IOL reflected light has a strong light intensity, if the light receiving element of the light receiving optical system receives the IOL reflected light, as shown in FIG. 6, the light intensity of the saturated light is received and cannot be measured. Damage to the device will occur.
[0010]
For this reason, as shown in FIG. 7, the projection angle with respect to the axis L0 ′ of the projection light optical axis L1 is set to 30 ° so that the subject using the IOL can perform measurement well. It was considered that the projection light was removed together with the corneal reflection light (optical axis L4) reflected by the cornea when entering the eye to be examined. In this case, the angle formed by both the IOL reflected light optical axis L3 and the corneal reflected light optical axis L4 with the eyeball optical axis L0 was set small and could be separated from the light receiving optical axis L2.
[0011]
However, even in this case, scattered light from the cornea when the IOL reflected light goes out of the eye to be examined (IOL reflected scattered light (optical axis L5)) enters the light receiving element of the light receiving optical system. The light intensity of the IOL reflected / scattered light approximates the light intensity when the measurement target portion has a large amount of scattering. Therefore, as shown in FIG. 8, the measurement result produces a ghost image G even if there is little scattering of the measurement target portion S, and the apparent flare amount is made larger than the actual flare amount, resulting in a measurement error. It was.
[0012]
The present invention has been made in view of the above prior art, and an object of the present invention is to provide an ophthalmic measurement apparatus with high measurement accuracy in which the influence of ambient light is suppressed.
[0013]
[Means for Solving the Problems]
In the present invention, there is a problem that the scattered light (IOL reflected / scattered light) from the cornea when the artificial lens reflected light (IOL reflected light) goes out of the eye to be examined enters the light receiving element of the light receiving optical system. A ghost image of scattered light (IOL reflected and scattered light (optical axis L5)) while passing through the cornea exists near the light receiving optical axis and has a scattering region R on the cornea when the artificial lens reflected light goes out of the eye to be examined. It was noticed that this occurs because it covers the measurement region on the light receiving optical axis (see FIG. 7).
[0014]
Then, it is considered that the scattering region R in the cornea when the artificial lens reflected light goes out of the eye to be examined can be separated from the light receiving optical axis L2 of the light receiving optical system, and this determines the projection angle of the projection light optical axis L1 of the projection optical system. Recalling that it can be achieved by extending beyond 45 degrees.
[0015]
However, if the projection angle of the projection light optical axis L1 is greatly widened, this time, the reflected light (corneal reflection light (optical axis L4)) of the projection light generated in all the examinee's eyes when entering the test eye. )) Enters the light-receiving element of the light-receiving optical system, and the cornea-reflected light causes a measurement failure problem of the same type as that of the artificial lens-reflected light and the scattered light in the cornea (IOL-reflected scattered light). Can not be expanded too much.
[0016]
Therefore, the optical axis of the artificial lens reflected light that determines the extending direction of the artificial lens reflected light and the scattering position of the artificial lens reflected light in the cornea when going out of the eye to be examined, and the projection light at the cornea when entering the eye to be examined The present invention has been embodied by expanding the projection angle only within a range in which a light receiving optical axis that does not intersect any optical axis and is not close to any optical axis is set between the optical axis of the reflected light.
[0017]
A specific ophthalmologic measurement apparatus according to the present invention is an ophthalmic measurement apparatus that measures biological characteristics in a subject eye by projecting light into the subject eye and receiving scattered light. A projection optical system that projects the projection light obliquely with respect to the optical axis of the eyeball; and a light receiving optical system that receives the scattered light scattered by the measurement unit in the eye to be examined. The projection light optical axis of the optical system and the light reception optical axis of the light receiving optical system form a substantially right angle with the measurement unit at the apex, and the light reception optical axis is reflected by the cornea reflected by the cornea when the projection light enters the eye to be examined. Between the optical axis and the optical axis of the artificial lens reflected light reflected by the artificial crystalline lens when the projected light is assumed to be inserted into the eye to be examined without intersecting any optical axis. The light receiving optical axis, the optical axis of the cornea reflected light, and the artificial crystalline lens reflection Each between the optical axis, and characterized in that said not receiving the corneal reflected light and the artificial lens reflected light to the light receiving optical system distance.
[0018]
The light receiving optical system includes a light receiving element that receives the scattered light, and a light receiving optical path along the light receiving optical axis to the light receiving element, and has a predetermined size at a position optically conjugate with the measurement unit. It is preferable that the light shielding member guides only the scattered light transmitted through the opening to the light receiving element.
[0019]
In this configuration, the light receiving optical system does not receive any of the corneal reflected light, artificial lens reflected light, and artificial lens reflected light scattered by the cornea when going out of the subject's eye, so that the target using an artificial lens (IOL) is used. For the examiner, the influence of disturbance light is suppressed, and since there is no ghost image due to disturbance light, no measurement error occurs and measurement can be performed with high measurement accuracy. Even for subjects who do not use an artificial lens, the artificial lens has a high refractive index, but the normal lens has a low refractive index, and it is difficult for reflection to occur in the lens, thus suppressing the effects of ambient light. And can be measured well.
[0020]
Therefore, in the present invention, uniform measurement can be performed uniformly with high accuracy for all subjects without limiting the subjects to be measured.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Exemplary embodiments of the present invention will be described in detail below with reference to the drawings.
[0022]
"overall structure"
FIG. 1 is a schematic configuration diagram of a laser flare meter (hereinafter referred to as LFM) according to the present embodiment. In the present embodiment, the description will be given by taking LFM as an example of an ophthalmic measurement apparatus. Note that the LFM of the present embodiment not only measures biological properties such as the number of cells (cells) floating in the normal anterior chamber of the eye to be examined and protein concentration (flare concentration), but also turbidity of the eye lens to be examined. The degree of biological properties can also be measured.
[0023]
In FIG. 1, an eye 1 to be examined, which is an eyeball of a subject, is shown, and an LFM measurement unit 3 is arranged facing the eye 1 to be examined. In the eye 1 to be examined, the contents of the turbid lens are sucked out and an artificial lens (IOL) 2 is inserted and operated.
[0024]
The measuring unit 3 of the LFM generally includes a projection optical system 4 along the projection light optical axis L1, a light reception optical system 5 along the light reception optical axis L2, and an XY along the eyeball optical axis L0 where the eye 1 to be examined stares. The direction alignment part 6 and the Z direction alignment part 7 along the incident light optical axis L6 and the reflected light optical axis L7 are provided.
[0025]
The LFM measuring unit 3 includes one display unit 8 for performing various displays at one place, an analysis unit 9 for performing various data analysis, and a switcher 10 for switching data displayed on the display unit 8; It has.
[0026]
In the present embodiment, all the components mounted on the measurement unit 3 of the LFM are moved by the alignment of the measurement unit 3.
[0027]
Here, the eyeball optical axis L0 extends straight from the corneal apex of the subject eye 1 to the front. The eyeball optical axis L0 is shifted without overlapping the measurement target portion S that is the intersection of the projection light optical axis L1 and the light receiving optical axis L2. Note that the eyeball optical axis L0 is normally one, but for the sake of explanation, FIG. 1 shows each optical path from each light source.
[0028]
Further, as shown in FIG. 2, the incident light optical axis L6 and the reflected light optical axis L7 for alignment in the Z direction are reflected at the corneal apex of the eye 1 to be examined, which intersects the eyeball optical axis L0, and with respect to the eyeball optical axis L0. It has a symmetric 30 ° incident angle and reflection angle.
[0029]
On the other hand, the projection light optical axis L1 and the light reception optical axis L2 intersect at a predetermined position in the eye 1 to be examined, that is, in the anterior chamber of the eye 1 to form an intersection of both optical axes L1 and L2. The intersection position indicates the measurement target portion S. Thereby, the light receiving optical system 5 can receive the scattered light on the light receiving optical axis L <b> 2 in which the projection light from the projection optical system 4 is scattered by the measurement target portion S in the anterior chamber of the eye to be examined.
[0030]
As shown in FIG. 2, the angle at the intersection of the projection optical axis L1 and the light receiving optical axis L2 is set to be a right angle so that the scattered light of the measurement target can be measured favorably. In other words, the light receiving optical axis L2 of the light receiving optical system 5 is disposed so as to receive the scattered light to be measured from the direction substantially perpendicular to the projection light optical axis L1 of the projection optical system 4, and the projection light optical axis L1 and the light receiving optical axis L2 are perpendicular to the vertex of the measurement target portion S in the eye 1 to be examined.
[0031]
The projection light optical axis L1 extends into the eye to be examined with a projection angle of 50 ° with the axis L0 ′ passing through the measurement target portion S parallel to the eyeball optical axis L0. Since the projection light optical axis L1 and the light reception optical axis L2 form a right angle, the light reception optical axis L2 has a light reception angle between the axis L0 ′ passing through the measurement target portion S parallel to the eyeball optical axis L0. It extends from the eye 1 to be examined.
[0032]
“Relationship between optical position of projection optical axis L1 and light receiving optical axis L2”
As described above, the projection light optical axis L1 is disposed with a projection angle of 50 ° between the projection light optical axis L1 and the axis L0 ′ passing through the measurement target portion S parallel to the eyeball optical axis L0. The reason for setting the projection angle to 50 ° is that the subject using the IOL 2 can perform measurement well, and the measurement accuracy is improved by suppressing the influence of ambient light.
[0033]
Specifically, in recent years, IOL 2 may be inserted into the eye 1 to be examined of a cataract patient to restore visual acuity. Since the IOL2 has a high refractive index, as shown in FIG. 3, IOL reflected light (artificial crystalline lens reflected light) that passes through the measurement target portion S in the eye 1 and is reflected by the surface of the IOL2 is generated. If the IOL reflected light is received, the photoelectric detector 15 of the light receiving optical system 5 receives the saturated light amount and becomes impossible to measure (see FIG. 6).
[0034]
Further, when scattered light (IOL reflected / scattered light) from the cornea when the IOL reflected light goes out of the subject's eye enters the photoelectric detector 15 of the light receiving optical system 5, the IOL reflected / scattered light is scattered by the measurement target portion S. In order to approximate the light intensity in this case, a ghost image G is generated even if the scattering of the measurement target portion S is small, and the apparent flare amount is increased, resulting in a measurement error (see FIG. 8).
[0035]
Further, when the reflected light (corneal reflected light) of the projection light generated in the subject's eye 1 of all subjects enters the photoelectric detector 15 of the light receiving optical system 5 when entering the subject's eye, IOL reflected light or It causes the same measurement failure problem as the scattered light (IOL reflected scattered light) in the cornea.
[0036]
Therefore, as shown in FIG. 3, the IOL reflected light optical axis L3 that determines the extending direction of the IOL reflected light and determines the scattering position of the IOL reflected light in the cornea when going out of the eye to be examined, and when the projection light enters the eye to be examined As a projection angle of the projection light optical axis L1 limited to a range in which the light reception optical axis L2 that does not intersect with any of the optical axes L3 and L4 and is not close to the cornea reflected light optical axis L4 in the cornea In this embodiment, 50 ° is set. As an invention, the projection angle is not limited to 50 ° as long as the above conditions can be satisfied. A range of 50 ° to 53 ° is preferred.
[0037]
By setting the projection angle of the projection light optical axis L1 in this way, the light reception optical axis L2 is the optical axis L3 of the IOL reflected light in which the projection light is reflected by the IOL2 in the eye 1 to be examined, and the projection light is the eye to be examined. The optical axis L4 of the corneal reflected light reflected by the cornea at the time of entry is set without crossing any of the optical axes L3 and L4, and between the light receiving optical axis L2 and the IOL reflected light optical axis L3 and light receiving. The optical axis L2 and the corneal reflected light optical axis L4 are separated by a distance at which the light receiving optical system 5 does not receive the corneal reflected light and the IOL reflected light. The IOL reflected light optical axis L3 and the corneal reflected light optical axis L4 are separated away from the light receiving optical axis L2 toward the eye 1 to be examined.
[0038]
For this reason, since the corneal reflected light, the IOL reflected light, and the scattered light of the IOL reflected light at the cornea when going out of the subject's eye are not received by the light receiving optical system 5, disturbance to the subject using the IOL 2 Since the influence of light is suppressed and there is no ghost image due to disturbance light, no measurement error occurs, and measurement can be performed with high measurement accuracy. Also, for subjects not using IOL2, IOL2 has a high refractive index, but a normal crystalline lens has a low refractive index, and it is difficult for reflection of projection light from the crystalline lens to occur. Suppress and measure well.
[0039]
Therefore, in the LFM of the present embodiment, the disturbance light is applied to all subjects without limiting the subject to be measured to either a subject using IOL or a subject not using IOL. It is possible to perform uniform measurement with high accuracy uniformly while suppressing the influence of.
[0040]
"Specific explanation of each component"
(Projection optical system)
The projection optical system 4 of the LFM measuring unit 3 will be described. In the projection optical system 4, laser light as projection light emitted from a laser light source 11 such as a visible laser diode passes through a condenser lens 12 along the projection optical axis L 1 and the anterior chamber of the subject's eye 1. Projected into.
[0041]
The condenser lens 12 is driven in a direction perpendicular to the projection light optical axis L1 and the paper surface by a driving unit (not shown), and scans the laser light in a one-dimensional manner.
[0042]
As described above, since the scanning of the laser beam is performed by simply moving the condensing lens 12, the scanning can be realized with a simple configuration, and the cost can be reduced. In addition, when scanning laser light in multiple directions to measure the number of cells (cells) floating in the anterior chamber as a laser flare cell meter, it is only necessary to add another movable condensing lens, Improvement of the device is also simple.
[0043]
(Reception optical system)
Next, the light receiving optical system 5 will be described. The light receiving optical system 5 is a light receiving element that scatters the scattered light in the measurement target portion S in the eye 1 to be examined by the laser light from the laser light source 11 through the lens 13 and the light receiving mask 14 as a light shielding member along the light receiving optical axis L2. Detection is performed by a photoelectric detector 15 such as a photomultiplier tube.
[0044]
The lens 13 is a spherical lens in which the optical axis of the lens 13 is inclined with respect to the light receiving optical axis L2. The lens 13 is used to remove large astigmatism that occurs when an image of scattered light that has passed through the cornea that generates large aberration is formed. Thereby, aberrations can be easily removed, and measurement accuracy can be improved.
[0045]
The light receiving mask 14 is used to limit the field of view in the direction of the light receiving optical axis L2 and to define the measurement range. The light receiving mask 14 is provided in a light receiving optical path along the light receiving optical axis L2 up to the photoelectric detector 15 and has an opening of a predetermined size at a position optically conjugate with the measurement target portion S. The light receiving mask 14 guides only the scattered light transmitted through the opening to the photoelectric detector 15. The IOL reflected light optical axis L3 and the corneal reflected light optical axis L4 do not overlap in the optical path range limited by the opening of the light receiving mask 14 due to the optical axis arrangement relationship of FIG. 3, but the IOL reflected light, the IOL reflected scattered light, the cornea The reflected light is blocked by the light receiving mask 14.
[0046]
The photoelectric detector 15 receives only the scattered light limited by the light receiving mask 14, converts the received light intensity into an electrical signal, and outputs it as an output signal.
[0047]
The scattered light in the subject eye 1 is, for example, scattered light from proteins present in the anterior chamber of the subject eye 1, scattered light from floating cells (cells) in the anterior chamber, Or scattered light from the crystalline lens of the optometer 1.
[0048]
In the light receiving optical system 5, a shutter 16 is disposed between the lens 13 and the light receiving mask 14 to block scattered light when not measuring. The shutter 16 is closed to prevent the photoelectric detector 15 from receiving scattered light or external disturbance light when not measuring.
[0049]
Then, the output signal from the photoelectric detector 15 that has received the scattered light in the light receiving optical system 5 is supplied to the analysis unit 9. The analysis unit 9 calculates biological characteristics such as protein concentration from the output signal of the scattered light, and displays the measurement result on the display unit 8 based on the calculation.
[0050]
For example, for the calculation of the biological characteristics, the analysis unit 9 analyzes the output signal digitized using the photon counting method. In the case of this photon counting method, a photocount value is used as the received light intensity. Each photocount value obtained by scanning with laser light is stored in a memory in the analysis unit 9 in time series.
[0051]
In addition, the light receiving optical system 5 includes a half mirror 17 for branching the optical path, a CCD camera 18 as second imaging means on the optical path branched by the half mirror 17, and a lens provided in front of the CCD camera 18. 19 are arranged.
[0052]
The half mirror 17 branches scattered light from the light receiving optical axis L 2, the scattered light branched by the half mirror 17 is collected by the lens 19, and the collected image is received by the CCD camera 18.
[0053]
As a result, the CCD camera 18 can photograph the appearance of the measurement portion of the eye 1 from the light receiving optical system 5. Then, by displaying the output of the CCD camera 18 on the display unit 8, the examiner can enlarge and display the appearance of the measurement part appearance of the eye 1 to be examined on the display unit 8.
[0054]
(XY direction alignment part)
Next, the XY direction alignment unit 6 will be described. The XY-direction alignment unit 6 is an optical configuration that is disposed along the eyeball optical axis L0. In the XY direction alignment unit 6, the illumination light from the illumination light source 20, which is an infrared LED, passes through the lens 21, the half mirror 22, and the lens 23 along the eyeball optical axis L 0, in particular, Irradiates the apex of the cornea.
[0055]
In addition, illumination light from the internal fixation lamp 24, which is a green LED for the subject to stare at one point, passes through the half mirror 25, the half mirror 22, and the lens 23 along the eyeball optical axis L0. The optometry 1 is irradiated.
[0056]
When the illumination light from the illumination light source 20 reaches the corneal surface of the eye 1 to be examined, the anterior segment image of the eye 1 to be examined, which is a virtual image of the bright spot of corneal reflection, is reflected. The reflected anterior segment image of the subject eye 1 travels straight through the lens 23, the half mirror 22, and the half mirror 25 on the eyeball optical axis L 0, and then serves as a first imaging unit that constitutes a light receiving unit with the lens 26. The image is formed on the light receiving surface of the CCD camera 27.
[0057]
In addition, an infrared filter 28 that passes only the wavelength of the infrared LED of the illumination light source 20 is disposed in front of the light receiving surface of the CCD camera 27 in order to reduce the influence of disturbance light.
[0058]
Further, illumination light from the light source 29 that is an infrared LED is also received by the CCD camera 27 on the screen displaying the anterior segment image. The illumination light from the light source 29 displays a circle that glows in a ring shape. The circle indicates the position of the measurement unit 3 of the LFM, and the position determination point where the alignment matching of the measurement unit 3 of the LFM is taken is determined by aligning the anterior segment image in the circle.
[0059]
The illumination light from the light source 29 is received by the CCD camera 27 via the circle display mask 30, the lens 31, the half mirror 25, and the lens 26. Since the light source 29 is also an infrared LED, the circle display from the light source 29 is received by the CCD camera 27 without being excluded by the infrared filter 28.
[0060]
The CCD camera 27 is connected to the display unit 8 via the switch 10. The anterior ocular segment image and circle of the subject eye 1 received by the CCD camera 27 are displayed on the display screen of the display unit 8.
[0061]
(Z direction alignment part)
Next, the Z direction alignment part 7 is demonstrated. In the Z-direction alignment unit 7, illumination light from a light source 32 that is an LED having a wavelength different from that of the illumination light source 20 is irradiated to the cornea of the eye 1 through the lens 33 along the incident light optical axis L 6.
[0062]
Then, the reflected light that becomes a virtual image of the bright spot on the surface of the cornea is detected by the two-divided sensor 35 such as a two-divided photodiode on the reflected light optical axis L7 through the lens 34.
[0063]
The incident light optical axis L6 and the reflected light optical axis L7 are set to have a line-symmetric inclination with respect to the eyeball optical axis L0 with the apex angle of the cornea. In the present embodiment, the incident light optical axis L6 and the reflected light optical axis L7 are each 30 ° with respect to the eyeball optical axis L0.
[0064]
The two-divided sensor 35 is for determining the distance (Z-axis direction) between the corneal apex of the eye 1 to be examined and the LFM measuring unit 3 from the light quantity ratio of the corneal reflection incident on the light receiving surface. In this two-divided sensor 35, two alignment completion points are set as standard. A plurality of alignment completion points can also be provided.
[0065]
In the present embodiment, the measurement target can be set to the anterior chamber position and the crystalline lens position of the eye 1 to be measured by the output of the two-divided sensor 35. For example, when the intensity ratio of the two-divided sensor 35 is 10:10, it is set as the measurement target part of the protein mass (flare) in the anterior chamber, and when the intensity ratio is 5:15, it is set as the measurement target part of the turbidity of the lens To do. In the present embodiment, a case is described in which measurement is performed by adjusting the position in the anterior chamber position.
[0066]
Here, all adjustments of the alignment of the LFM measurement unit 3 in the XYZ directions may be performed manually by the examiner's joystick. Alternatively, control may be performed so that all alignment adjustments are automatically performed. Further, the coarse movement may be performed in the XY directions by an examiner's operation of a joystick, and the fine movement may be automatically performed.
[0067]
(Display section)
The display unit 8 includes (1) a measurement result from the analysis unit 9 at the time of measurement, (2) appearance of a measurement part appearance of the eye 1 to be examined from the CCD camera 18 at the time of alignment adjustment, and (3) an object to be measured from the CCD camera 27. An anterior segment image and a circle of the optometry 1 are displayed. That is, the three displays (1) to (3) are switched and displayed. The display is switched by the switch 10 under the control of the analysis unit 9.
[0068]
Since only one display unit 8 is provided and the display is switched as described above, the examiner only needs to observe the screen of the display unit 8 at all times, and the examiner is different between the alignment adjustment and the measurement. There is no need to move the viewpoint to the part, improving the operability for the examiner.
[0069]
(Analysis Department)
The analysis unit 9 is a part that performs information analysis and operation control. That is, processing such as analysis work and operation work is executed using a hardware configuration according to a program stored in advance. As a hardware configuration, for example, a general computer configuration can be adopted.
[0070]
The analysis unit 9 analyzes the output signal on the one hand, and controls the switch 10 in accordance with the input of the examiner on the other hand to switch the display target to be displayed on the display unit 8 and also displays the joystick of the examiner and the like. The drive motor is driven according to the input operation.
[0071]
"Measurement"
Next, measurement using LFM will be described. Measurement is divided into alignment adjustment before the start of measurement and execution of actual measurement.
[0072]
"Adjusting the alignment"
First, the case where alignment adjustment is performed on the eye 1 to be examined will be described.
[0073]
The alignment is adjusted by adjusting the XY direction alignment by the XY direction alignment unit 6 and the Z direction alignment by the Z direction alignment unit 7 before adjusting the XY direction alignment.
[0074]
(Adjustment of XY direction alignment)
The adjustment of the XY direction alignment performed first will be described. The XY direction alignment is adjusted using the XY direction alignment unit 6.
[0075]
The XY direction alignment is adjusted by using an anterior ocular segment image and a circle of the subject eye 1 received by the CCD camera 27 displayed on the display unit 8, and an anterior corneal eye image showing a virtual image of the corneal reflection of the subject eye. It is performed by moving in the XY direction perpendicular to the axis L0 and aligning the position of the LFM measuring unit 3 within a defined circle.
[0076]
First, the illumination light source 20 is turned on, and the reflected light reflected from the cornea surface of the eye 1 to be examined of the illumination light source 20 is received by the CCD camera 27, and the anterior segment image of the subject eye 1 is displayed on the display screen of the display unit 8. Let Similarly, the circle in which the position of the measurement unit 3 of the LFM is received is also received and displayed on the display screen of the display unit 8.
[0077]
Then, for example, the examiner moves the LFM measurement unit 3 with a joystick while looking at the anterior ocular segment image and the circle on the display unit 8 so as to align the anterior ocular segment image within the circle.
[0078]
In the present embodiment, the X direction in the XY direction is set to the horizontal (left and right) direction of the LFM, and the Y direction is set to the vertical (up and down) direction of the LFM.
[0079]
(Adjustment of alignment in Z direction)
When the alignment in the XY directions is completed, the alignment in the Z direction is next adjusted.
[0080]
Adjustment of alignment in the Z direction is performed using the Z direction alignment unit 7.
[0081]
In the adjustment of the Z-direction alignment, the output value of the two-divided sensor 35, which is the adjustment completion, is set in advance, so that the LFM is measured in the Z direction, that is, in the perspective direction with respect to the eye 1 to be measured. The measurement unit 3 is moved back and forth.
[0082]
The examiner performs an operation according to a forward instruction, a backward instruction, or the like displayed on the display unit 8 with a joystick while looking at the display unit 8.
[0083]
When the measurement unit 3 of the LFM is moved in the perspective direction with respect to the subject eye 1 and the output value of the two-divided sensor 35 reaches a preset value, the position is determined, for example, by displaying a buzzer sound or a determination completion display. Inform the person that the alignment is complete.
[0084]
“Perform Measurement”
After the alignment is completed by the above operation, the measurement is actually started.
[0085]
(Check for disturbance)
First, the brightness around the device is checked in consideration of the influence of ambient light. The brightness around the apparatus is checked by opening the shutter 16 of the light receiving optical system 5 without irradiating laser light from the projection optical system 4 and the amount of disturbance light received by the photoelectric detector 15 exceeds a predetermined amount that can be measured. Judge whether or not.
[0086]
(Main measurement)
If the amount of disturbance light is within a predetermined amount that can be measured, the laser light source 11 of the projection optical system 4 starts to irradiate and starts measurement.
[0087]
The laser beam irradiation start point is set at an upper position exceeding the measurement scanning width of the eye 1 to be examined by scanning of the condensing lens 12, and the condensing lens 12 finely performs one-dimensional scanning, The laser beam is scanned across the measurement scanning width from above to below the eye 1 to be examined.
[0088]
Therefore, in the light receiving optical system 5, the scattered light in the subject eye 1 of the irradiated laser light is irradiated from the laser light irradiation start position (above the subject eye) across the measurement scanning width to the irradiation end position (below the subject eye). Detect in the range of.
[0089]
(Intensity of scattered light)
The intensity of the scattered light detected by the photoelectric detector 15 is as shown in the table of FIG. Here, in the table of FIG. 4, it is shown from T1 when the shutter 16 is first opened, T2 when the laser beam irradiation starts, T3 when measurement starts, T4 when measurement ends, and laser beam irradiation. The intensity of the scattered light is shown in a time series from T5 when completed to T6 when the shutter 16 is closed.
[0090]
In FIG. 4, regions A and E are light intensities detected by the photoelectric detector 15 due to disturbance light that is not irradiated with laser light. Regions B and D are light intensities (background values) due to disturbance light that has been irradiated with laser light but has not yet been scanned in the measurement target portion. Region C is the light intensity during measurement (measurement scanning width) in which the laser beam is actually scanned over the portion to be measured.
[0091]
In the region C, the height H indicates the flare amount (flare value) that is the protein concentration in the anterior chamber of the eye to be examined. Moreover, although not shown, the value which protrudes and becomes high in some places shows the cell (cell) which floats in the anterior chamber of the eye 1 to be examined.
[0092]
(Measurement result display)
When the measurement is completed, the output signal of the photoelectric detector 15 is analyzed by the analysis unit 9 and the measurement result is displayed on the display unit 8 as a display screen. The display of the display unit 8 is displayed when the analysis unit 9 controls the switch 10 to switch the display from the image display of the CCD camera 27 to the data display in the analysis unit 9.
[0093]
【The invention's effect】
As described above, the present invention can suppress the influence of disturbance light and increase the measurement accuracy.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a laser flare meter (LFM) according to an embodiment.
FIG. 2 is a detailed diagram illustrating an optical positional relationship with respect to an eye to be examined by a laser flare meter (LFM) according to an embodiment.
FIG. 3 is a detailed diagram illustrating an optical positional relationship between a projection light optical axis and a light reception optical axis of a laser flare meter (LFM) according to an embodiment.
FIG. 4 is a table showing the light intensity detected by the photoelectric detector according to the embodiment over time.
FIG. 5 is a detailed diagram for explaining the optical positional relationship between a projected light optical axis and a received light optical axis of a conventional laser flare meter (LFM).
6 is a table showing the light intensity received by the apparatus of FIG.
FIG. 7 is a detailed diagram for explaining the optical positional relationship between a projection light optical axis and a light reception optical axis of a conventional improved laser flare meter (LFM).
8 is a table showing the light intensity received by the apparatus of FIG.
[Explanation of symbols]
1 Eye to be examined
2 IOL
3 Measurement unit
4 Projection optical system
5 Light receiving optical system
6 XY direction alignment part
7 Z direction alignment part
8 Display section
9 Analysis Department
10 changer
L0 Eye optical axis
L0 'axis passing through the measurement target portion S parallel to the eyeball optical axis L0
L1 Projection optical axis
L2 Light receiving optical axis
L3 Reflected light optical axis
L4 cornea reflection light optical axis
L5 Reflected scattered light optical axis
L6 Incident optical axis
L7 Reflected light optical axis

Claims (2)

被検眼内に光を投射して散乱光を受光することにより被検眼内の生体特性を測定する眼科測定装置において、
光源から被検眼内へ被検眼の眼球光軸に対して斜めに投射光を投射する投射光学系と、
該投射光学系の投射光が被検眼内の測定対象部分で散乱した散乱光を受光する受光光学系と、
を備え、
前記投射光学系の投射光光軸と前記受光光学系の受光光軸とが前記測定対象部分を頂点に略直角をなし、
前記受光光軸は、前記投射光が被検眼進入時に角膜で反射した角膜反射光の光軸と、前記投射光が被検眼内に挿入された人工水晶体を想定した場合の人工水晶体で反射した人工水晶体反射光の光軸と、の間にいずれの光軸とも交差することなく設定され、
前記受光光軸と前記角膜反射光の光軸及び前記人工水晶体反射光の光軸とのそれぞれの間は、前記受光光学系に前記角膜反射光及び前記人工水晶体反射光を受光させない距離としたことを特徴とする眼科測定装置。
In an ophthalmologic measurement apparatus that measures biological characteristics in an eye to be examined by projecting light into the eye to be examined and receiving scattered light,
A projection optical system that projects projection light obliquely with respect to the eyeball optical axis of the eye to be examined from the light source into the eye to be examined;
A light receiving optical system for receiving the scattered light scattered by the measurement target portion in the eye to be examined;
With
The projection optical axis of the projection optical system and the light receiving optical axis of the light receiving optical system form a substantially right angle with the measurement target portion at the top,
The light receiving optical axis is an artificial axis reflected by an artificial crystalline lens when the projected light is assumed to be an optical axis of corneal reflected light reflected by the cornea when entering the eye to be examined and an artificial crystalline lens in which the projected light is inserted into the examined eye. It is set without intersecting any optical axis between the optical axis of the lens reflected light,
The distance between the light receiving optical axis and the optical axis of the corneal reflected light and the optical axis of the artificial crystalline lens reflected light is set to a distance that does not allow the optical receiving system to receive the corneal reflected light and the artificial crystalline lens reflected light. An ophthalmic measurement device characterized by the above.
前記受光光学系は、前記散乱光を受光する受光素子と、該受光素子までの前記受光光軸に沿った受光光路中に設けられて前記測定対象部分と光学的に共役な位置に所定の大きさの開口を有する遮光部材と、を有し、
前記遮光部材は、前記開口を透過する前記散乱光のみを前記受光素子に導くことを特徴とする請求項1に記載の眼科測定装置。
The light receiving optical system includes a light receiving element that receives the scattered light, and a light receiving optical path along the light receiving optical axis to the light receiving element, and a predetermined size at a position optically conjugate with the measurement target portion. A light-shielding member having an opening,
The ophthalmic measurement apparatus according to claim 1, wherein the light shielding member guides only the scattered light transmitted through the opening to the light receiving element.
JP2003204413A 2003-07-31 2003-07-31 Ophthalmic measuring device Expired - Fee Related JP4235504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003204413A JP4235504B2 (en) 2003-07-31 2003-07-31 Ophthalmic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003204413A JP4235504B2 (en) 2003-07-31 2003-07-31 Ophthalmic measuring device

Publications (2)

Publication Number Publication Date
JP2005046245A true JP2005046245A (en) 2005-02-24
JP4235504B2 JP4235504B2 (en) 2009-03-11

Family

ID=34263424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003204413A Expired - Fee Related JP4235504B2 (en) 2003-07-31 2003-07-31 Ophthalmic measuring device

Country Status (1)

Country Link
JP (1) JP4235504B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014023805A (en) * 2012-07-30 2014-02-06 Canon Inc Ophthalmologic apparatus and alignment method of the same
JP2014023806A (en) * 2012-07-30 2014-02-06 Canon Inc Ophthalmologic apparatus and ophthalmologic imaging method
US9636014B2 (en) 2012-07-30 2017-05-02 Canon Kabushiki Kaisha Ophthalmologic apparatus and alignment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014023805A (en) * 2012-07-30 2014-02-06 Canon Inc Ophthalmologic apparatus and alignment method of the same
JP2014023806A (en) * 2012-07-30 2014-02-06 Canon Inc Ophthalmologic apparatus and ophthalmologic imaging method
US9636014B2 (en) 2012-07-30 2017-05-02 Canon Kabushiki Kaisha Ophthalmologic apparatus and alignment method

Also Published As

Publication number Publication date
JP4235504B2 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
JP2942321B2 (en) Transillumination imaging equipment
JP2520418B2 (en) Ophthalmic measuring device
US7896495B2 (en) Reflection microscope apparatus
EP2668893B1 (en) Ophthalmologic photographing apparatus
JP6607346B2 (en) Anterior segment optical coherence tomography apparatus and anterior segment optical coherence tomography method
JP4408640B2 (en) Ophthalmic measuring device
CN110269588B (en) Ophthalmologic apparatus and control method therefor
JP2854657B2 (en) Ophthalmic measurement device
JP2931325B2 (en) Ophthalmic measurement device
US4950068A (en) Ophthalmic disease detection apparatus
US7249851B2 (en) Eye characteristic measuring apparatus
JP6775337B2 (en) Ophthalmic equipment
US11202566B2 (en) Ophthalmologic apparatus and method of controlling the same
JP7181135B2 (en) ophthalmic equipment
JP4235504B2 (en) Ophthalmic measuring device
JP6898712B2 (en) Ophthalmic equipment
JP6864484B2 (en) Ophthalmic equipment
JP3576656B2 (en) Alignment detection device for ophthalmic instruments
JP3461965B2 (en) Ophthalmic measurement device
JP2003111728A (en) Anterior ocular segment measuring instrument
JP4276039B2 (en) Ophthalmic measuring device
US4988184A (en) Ophthalmic disease detection apparatus
EP0380260A2 (en) Ophthalmic measurement apparatus
JP2019058441A (en) Ophthalmologic apparatus and control method
JP6837107B2 (en) Ophthalmic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4235504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees