JP2005045957A - Rush current prevention circuit - Google Patents

Rush current prevention circuit Download PDF

Info

Publication number
JP2005045957A
JP2005045957A JP2003279066A JP2003279066A JP2005045957A JP 2005045957 A JP2005045957 A JP 2005045957A JP 2003279066 A JP2003279066 A JP 2003279066A JP 2003279066 A JP2003279066 A JP 2003279066A JP 2005045957 A JP2005045957 A JP 2005045957A
Authority
JP
Japan
Prior art keywords
capacitor
current
voltage
fet
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003279066A
Other languages
Japanese (ja)
Other versions
JP4186739B2 (en
Inventor
Akio Ogawa
明生 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003279066A priority Critical patent/JP4186739B2/en
Publication of JP2005045957A publication Critical patent/JP2005045957A/en
Application granted granted Critical
Publication of JP4186739B2 publication Critical patent/JP4186739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a rush current prevention circuit that can reduce a rush current with a simple constitution. <P>SOLUTION: The rush current prevention circuit comprises: a load 3 connected to a DC power supply 1 and an input capacitor 4 connected to the load 3 in parallel therewith; a field effect transistor 5 that restrains the rush current to the input capacitor 4; a time constant circuit that comprises bias resistors 7, 8 for generating gate voltages of the field-effect transistor 5, and a capacitor 6; and a capacitor 9 that is connected in parallel between a drain and a gate of the field effect transistor 5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、大容量の入力コンデンサを持つ回路を電源に接続した際に生じる突入電流に対し、これを低く抑える突入電流抑制回路に関するものである。   The present invention relates to an inrush current suppressing circuit that suppresses an inrush current generated when a circuit having a large capacity input capacitor is connected to a power source.

従来の電気電子回路において、回路の動作安定や、回路の動作による外部への影響の抑制のため、回路の電源入力部分には比較的大容量の入力コンデンサが接続されている。このため、電源を接続した瞬間に流れる突入電流は、入力コンデンサへ流れる多量の充電電流により非常に大きなものとなる。このような大きな突入電流を抑制するため、必要に応じて電源回路に突入電流防止回路を設けている(例えば、特許文献1参照)。   In a conventional electric / electronic circuit, a relatively large-capacity input capacitor is connected to the power supply input portion of the circuit in order to stabilize the operation of the circuit and to suppress the influence of the circuit operation on the outside. For this reason, the inrush current that flows at the moment when the power supply is connected becomes very large due to the large amount of charging current that flows to the input capacitor. In order to suppress such a large inrush current, an inrush current prevention circuit is provided in the power supply circuit as necessary (see, for example, Patent Document 1).

特開平9−37456号公報(図2)Japanese Patent Laid-Open No. 9-37456 (FIG. 2)

以上に述べたような従来の突入電流防止回路では、以下に述べる問題点がある。一般的に、電界効果トランジスタのオン抵抗は、ゲート・ソース間電圧の上昇と共に急激に減少し、0Ωに近づくとゆっくりと減少する。回路の定常状態においては、電界効果トランジスタによる損失を低減するため、オン抵抗の低くなる領域を用いる。また一方、突入電流を抑制する過渡状態においては、電流を制限するのに適切な抵抗値が得られる領域を用いている。しかし、上述の適切な抵抗値が得られる領域においては、ゲート・ソース間電圧のわずかな変化によってオン抵抗が急変するため、上述したような時定数回路のみで突入電流を制御しようとすると、抵抗やコンデンサの容量,電界効果トランジスタの特性のばらつきにより、突入電流が大きくばらつくことになる。突入電流を低く一定に抑え込む必要がある場合は、従来の突入電流防止回路で実現するのは困難である。   The conventional inrush current prevention circuit as described above has the following problems. In general, the on-resistance of a field effect transistor decreases rapidly as the gate-source voltage increases, and slowly decreases as it approaches 0Ω. In a steady state of the circuit, a region where the on-resistance is lowered is used in order to reduce loss due to the field effect transistor. On the other hand, in a transient state in which the inrush current is suppressed, a region where an appropriate resistance value is obtained for limiting the current is used. However, in the region where the appropriate resistance value is obtained, the on-resistance changes suddenly due to a slight change in the gate-source voltage. Therefore, if the inrush current is controlled only by the time constant circuit as described above, the resistance The inrush current varies greatly due to variations in the capacitance of the capacitor and the characteristics of the field effect transistor. When it is necessary to keep the inrush current low and constant, it is difficult to realize with a conventional inrush current prevention circuit.

また、ゲート・ソース間電圧がある程度まで上昇しないとオン抵抗が減少せず電流が流れないため、回路を閉じてから電流が流れ出すまでに時間がかかる。突入電流を低く抑えるために時定数を大きく取ると時間も更に多くかかり、回路全体の立ち上がりが遅くなる。   If the gate-source voltage does not rise to a certain extent, the on-resistance is not reduced and no current flows. Therefore, it takes time until the current flows after the circuit is closed. If a large time constant is taken in order to keep the inrush current low, more time is required and the rise of the entire circuit is delayed.

更に、DC/DCコンバータのような、負荷の種類によっては、入力コンデンサに完全に充電される前の、ある程度の電圧が負荷に入力された時点で負荷の動作を開始する場合がある。このとき、負荷が動作するのに十分な電流を供給できるようにならないと、入力コンデンサの電圧は降下し、負荷の動作を維持できなくなる。   Furthermore, depending on the type of load such as a DC / DC converter, the load operation may be started when a certain voltage is input to the load before the input capacitor is fully charged. At this time, unless sufficient current can be supplied for the load to operate, the voltage of the input capacitor drops and the operation of the load cannot be maintained.

そこで、簡単な時定数回路だけでなく、シャント抵抗にて電流を検出し、突入電流が一定以上とならないよう負帰還をかける回路を用い、突入電流を抑制する方法もあるが、一般に負帰還を用いる回路は部品点数が多く、大幅なコストアップが避けられない。   Therefore, in addition to a simple time constant circuit, there is a method to detect the current with a shunt resistor and apply a negative feedback so that the inrush current does not exceed a certain level. The circuit used has a large number of parts, and a significant increase in cost is inevitable.

この発明は、上述の問題点を解決するためになされたもので、簡単な構成により、突入電流を低く抑えることができる突入電流防止回路を得るものである。   The present invention has been made to solve the above-described problems, and provides an inrush current prevention circuit capable of suppressing an inrush current with a simple configuration.

また、電源投入から電流が流れ出すまでを早くし、回路全体の立ち上がり時間を早くするものである。   In addition, the time from when the power is turned on until the current flows out is accelerated, and the rise time of the entire circuit is accelerated.

さらに、突入電流抑制中に負荷が動作開始した場合、負荷回路への電流の供給を速やかに行い、突入電流防止回路による負荷への影響を少なくするものである。   Further, when the load starts to operate while the inrush current is suppressed, the current is quickly supplied to the load circuit, and the influence on the load by the inrush current preventing circuit is reduced.

この発明に係る突入電流防止回路は、直流電源に接続された負荷及びこの負荷と並列に接続された入力コンデンサと、この入力コンデンサへの突入電流を制限する電界効果トランジスタと、この電界効果トランジスタのゲート電圧を生成するためのバイアス抵抗と第一のコンデンサとを有する時定数回路と、前記電界効果トランジスタのドレイン・ゲート間に並列に接続された第二のコンデンサとを備えたものである。   An inrush current prevention circuit according to the present invention includes a load connected to a DC power source, an input capacitor connected in parallel with the load, a field effect transistor for limiting an inrush current to the input capacitor, and the field effect transistor A time constant circuit having a bias resistor and a first capacitor for generating a gate voltage, and a second capacitor connected in parallel between the drain and gate of the field effect transistor are provided.

また、第二のコンデンサに直列に抵抗を接続したものである。   A resistor is connected in series with the second capacitor.

この発明によれば、簡単な構成により、入力コンデンサへの充電電流に対する負帰還がかかり、充電電流を一定に保つことが可能となる。
また、電源の投入直後にゲート・ソース間のコンデンサに電圧が発生するようになり、電界効果トランジスタのオン抵抗を速やかに下げ、突入電流を速やかに流すことができる。
また、この負帰還は入力コンデンサへの充電電流に対してかかるため、充電電流以外の電流には負帰還がかからないこととなり、突入電流抑制中に負荷が動作開始しても、負荷への電流供給を速やかに行うことができる。
According to the present invention, with a simple configuration, negative feedback is applied to the charging current to the input capacitor, and the charging current can be kept constant.
In addition, a voltage is generated in the capacitor between the gate and the source immediately after the power is turned on, so that the on-resistance of the field effect transistor can be quickly reduced and an inrush current can be passed quickly.
Since this negative feedback is applied to the charging current to the input capacitor, no current other than the charging current will be negatively fed. Even if the load starts to operate while the inrush current is suppressed, the current is supplied to the load. Can be performed promptly.

実施の形態1.
この発明の第一の実施の形態による突入電流防止回路を、図1乃至図4を用いて説明する。図1はこの発明の第一の実施形態による突入電流防止回路の構成を示す回路図、図2はMOS型電界効果トランジスタのゲート・ソース間電圧とドレイン・ソース間オン抵抗の関係を示したグラフ、図3はMOS型電界効果トランジスタのゲート・ソース間の電圧の変化を示したグラフ、図4は直流電源から供給される入力電流の変化を示したグラフである。
図1において、1は直流電源、2はスイッチ、3は負荷、4は入力コンデンサである。101は突入電流防止回路部であり、5はMOS型電界効果トランジスタ(以下適宜、FETと記す)、6及び9はコンデンサ、7及び8は抵抗で、FET5のドレイン・ソース間の電圧変化を一定とするようにFET5のゲート電圧を調節する。
なお、この実施の形態のものにおいては、直流電源1を24V、入力コンデンサ4を47μF、FET5に2SK1590(NECエレクトロニクス製)、コンデンサ6を0.22μF、抵抗7を390kΩ、抵抗8を820kΩ、コンデンサ9を0.022μFとする。
Embodiment 1 FIG.
An inrush current preventing circuit according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a circuit diagram showing a configuration of an inrush current preventing circuit according to a first embodiment of the present invention, and FIG. 2 is a graph showing a relationship between a gate-source voltage and a drain-source on-resistance of a MOS field effect transistor. FIG. 3 is a graph showing changes in the voltage between the gate and source of the MOS field effect transistor, and FIG. 4 is a graph showing changes in the input current supplied from the DC power supply.
In FIG. 1, 1 is a DC power source, 2 is a switch, 3 is a load, and 4 is an input capacitor. 101 is an inrush current prevention circuit unit, 5 is a MOS field effect transistor (hereinafter referred to as FET as appropriate), 6 and 9 are capacitors, 7 and 8 are resistors, and the voltage change between the drain and source of the FET 5 is constant. The gate voltage of the FET 5 is adjusted so that
In this embodiment, the DC power source 1 is 24 V, the input capacitor 4 is 47 μF, the FET 5 is 2SK1590 (manufactured by NEC Electronics), the capacitor 6 is 0.22 μF, the resistor 7 is 390 kΩ, the resistor 8 is 820 kΩ, the capacitor 9 is 0.022 μF.

各コンデンサ4,6,9の電圧が0Vの状態からスイッチを閉じた直後、各コンデンサ4,6,9が直列に接続されていることから、各コンデンサ4,6,9には容量に反比例した電圧が発生する。また、入力コンデンサ4の容量はコンデンサ6やコンデンサ9と比較して大きいため、入力コンデンサ4にはほとんど電圧が発生せず、大半の電圧がコンデンサ6とコンデンサ9とに発生する。この実施の形態のものではコンデンサ6に約2.2V、コンデンサ9に約21.8V発生する。このときのコンデンサ6の電圧がFET5のゲート・ソース間電圧となるため、FET5のオン抵抗が電圧に応じて低下し、入力コンデンサ4への充電電流を速やかに流す。この実施の形態のものでは充電電流は約45mA流れる。この電流を期待する突入電流とするためには、図2の特性に従い、FET5のゲート・ソース間電圧、すなわちコンデンサ6の電圧を決定し、この電圧となるように各コンデンサの容量を設定する。   Immediately after the switch is closed from the state where the voltage of each capacitor 4, 6 and 9 is 0V, each capacitor 4, 6 and 9 is connected in series. Voltage is generated. Further, since the capacity of the input capacitor 4 is larger than that of the capacitors 6 and 9, almost no voltage is generated in the input capacitor 4, and most of the voltage is generated in the capacitors 6 and 9. In this embodiment, about 2.2 V is generated in the capacitor 6 and about 21.8 V is generated in the capacitor 9. Since the voltage of the capacitor 6 at this time becomes the gate-source voltage of the FET 5, the on-resistance of the FET 5 decreases according to the voltage, and the charging current to the input capacitor 4 flows quickly. In this embodiment, the charging current flows about 45 mA. In order to make this current an expected inrush current, the gate-source voltage of the FET 5, that is, the voltage of the capacitor 6 is determined according to the characteristics of FIG. 2, and the capacitance of each capacitor is set so as to be this voltage.

また、スイッチ2を閉じた直後から、抵抗8を流れる電流は、コンデンサ6を充電してコンデンサ6の電圧、すなわちFET5のゲート・ソース間電圧を上昇させ、FET5のオン抵抗を減少させて入力コンデンサ4への充電電流を増加するように働く。また同時に、入力コンデンサ4への充電により入力コンデンサ4の電圧が増加し、同じだけFET5のドレイン・ソース間電圧が減少する。FET5のドレイン・ソース間電圧の減少により、コンデンサ9の電圧も減少する。このため、コンデンサ9には電流が流れ、この電流はコンデンサ6の電圧上昇を抑える方向に働く。   Immediately after the switch 2 is closed, the current flowing through the resistor 8 charges the capacitor 6 to increase the voltage of the capacitor 6, that is, the voltage between the gate and source of the FET 5, and decrease the on-resistance of the FET 5, thereby reducing the input capacitor. 4 to increase the charging current to 4. At the same time, charging of the input capacitor 4 increases the voltage of the input capacitor 4 and decreases the drain-source voltage of the FET 5 by the same amount. As the drain-source voltage of the FET 5 decreases, the voltage of the capacitor 9 also decreases. For this reason, a current flows through the capacitor 9, and this current acts in a direction to suppress the voltage increase of the capacitor 6.

コンデンサ6の電圧をほぼ一定とした場合、FET5のドレイン・ソース間の電圧変化とコンデンサ9の電圧変化とは等しい。このため、コンデンサ9を流れる電流は、FET5のドレイン・ソース間電圧の微分に比例する。また、入力コンデンサ4の電圧は入力コンデンサ4への充電電流の積分に比例するが、これを微分すると入力コンデンサ4の電圧の微分は入力コンデンサ4への充電電流に比例すると言える。また、入力コンデンサ4の電圧が増加すると、FET5のドレイン・ソース間電圧は同じだけ減少することから、FET5のドレイン・ソース間電圧の微分は入力コンデンサ4への充電電流に比例すると言える。以上のことから、コンデンサ9を流れる電流は入力コンデンサ4の充電電流に比例すると言える。   When the voltage of the capacitor 6 is substantially constant, the voltage change between the drain and source of the FET 5 is equal to the voltage change of the capacitor 9. For this reason, the current flowing through the capacitor 9 is proportional to the differentiation of the drain-source voltage of the FET 5. Further, the voltage of the input capacitor 4 is proportional to the integral of the charging current to the input capacitor 4, but when differentiated, it can be said that the differentiation of the voltage of the input capacitor 4 is proportional to the charging current to the input capacitor 4. Further, when the voltage of the input capacitor 4 increases, the drain-source voltage of the FET 5 decreases by the same amount. Therefore, it can be said that the differentiation of the drain-source voltage of the FET 5 is proportional to the charging current to the input capacitor 4. From the above, it can be said that the current flowing through the capacitor 9 is proportional to the charging current of the input capacitor 4.

コンデンサ9を流れる電流は入力コンデンサ4への充電電流に比例することから、入力コンデンサ4への充電電流が小さいときはコンデンサ9を流れる電流も小さくなる。このため、抵抗8を流れる電流がコンデンサ9と抵抗7を流れる電流を上回り、上回った分の電流はコンデンサ6に流れ込むためコンデンサ6の電圧は上昇し、FET5のオン抵抗は小さくなり、入力コンデンサ4への充電電流は増加することとなる。同様に、入力コンデンサ4への充電電流が大きいときはコンデンサ9を流れる電流も大きくなり、よって抵抗8を流れる電流がコンデンサ9と抵抗7を流れる電流を下回り、コンデンサ6からコンデンサ9へ電流が流れ出すためコンデンサ6の電圧は減少し、FET5のオン抵抗は大きくなり、入力コンデンサ4への充電電流は減少することとなる。これらの作用により、入力コンデンサ4への充電電流には負帰還がかかり、充電電流は一定の値に収束する。   Since the current flowing through the capacitor 9 is proportional to the charging current to the input capacitor 4, the current flowing through the capacitor 9 is small when the charging current to the input capacitor 4 is small. For this reason, the current flowing through the resistor 8 exceeds the current flowing through the capacitor 9 and the resistor 7, and the excess current flows into the capacitor 6, so the voltage of the capacitor 6 rises, the on-resistance of the FET 5 decreases, and the input capacitor 4 The charging current to increases. Similarly, when the charging current to the input capacitor 4 is large, the current flowing through the capacitor 9 also increases, so that the current flowing through the resistor 8 is less than the current flowing through the capacitor 9 and the resistor 7, and the current flows from the capacitor 6 to the capacitor 9. Therefore, the voltage of the capacitor 6 decreases, the on-resistance of the FET 5 increases, and the charging current to the input capacitor 4 decreases. By these actions, negative feedback is applied to the charging current to the input capacitor 4, and the charging current converges to a constant value.

上記の収束した状態では、抵抗8を流れる電流と、抵抗7とコンデンサ9を流れる電流の和がほぼ等しくなっており、このときはコンデンサ6の電圧、すなわちFET5のゲート・ソース間電圧がほとんど変化しないため、FET5のオン抵抗はほぼ一定であり、入力コンデンサ4への充電電流は一定に保たれる。そこで、上記条件を満たすように抵抗7,抵抗8,及びコンデンサ9の値を決めることにより期待する突入電流値を得ることができる。この実施の形態のものでは、抵抗8に約27μA、抵抗7に約6μA、コンデンサ9に約21μA流れ、コンデンサ6の電圧はほとんど変化しない。   In the converged state, the current flowing through the resistor 8 and the sum of the current flowing through the resistor 7 and the capacitor 9 are substantially equal. At this time, the voltage of the capacitor 6, that is, the gate-source voltage of the FET 5 is almost changed. Therefore, the on-resistance of the FET 5 is substantially constant, and the charging current to the input capacitor 4 is kept constant. Therefore, the expected inrush current value can be obtained by determining the values of the resistor 7, the resistor 8, and the capacitor 9 so as to satisfy the above conditions. In this embodiment, about 27 μA flows through the resistor 8, about 6 μA flows through the resistor 7 and about 21 μA flows through the capacitor 9, and the voltage of the capacitor 6 hardly changes.

また、入力コンデンサ4が完全に充電された後は、入力コンデンサ4への充電電流がほぼ0となるため、比例してコンデンサ9に流れる電流もほぼ0となる。このため、抵抗8を流れる電流により再びコンデンサ6の電圧が上昇し、FET5のゲート・ソース間電圧は抵抗7と抵抗8の分圧により決まる電圧に収束する。この電圧を、図2に従い、FET5のオン抵抗が十分低い領域Aの範囲にすることにより、突入電流抑制後の定常状態における回路の損失を減らすこととなる。この実施の形態のものではFET5のゲート・ソース間電圧は約7.7Vに収束し、オン抵抗は十分に低くなる。   Further, after the input capacitor 4 is fully charged, the charging current to the input capacitor 4 becomes almost zero, so that the current flowing through the capacitor 9 in proportion is also almost zero. For this reason, the voltage of the capacitor 6 rises again due to the current flowing through the resistor 8, and the gate-source voltage of the FET 5 converges to a voltage determined by the divided voltage of the resistors 7 and 8. By making this voltage within the range A in which the on-resistance of the FET 5 is sufficiently low according to FIG. 2, the circuit loss in the steady state after the inrush current suppression is reduced. In this embodiment, the gate-source voltage of the FET 5 converges to about 7.7 V, and the on-resistance is sufficiently low.

以上に説明した、FET5のゲート・ソース間の電圧の変化を図3に示す。なお、負荷3は、入力コンデンサ4の充電完了と共に動作開始するものとする。図3のグラフにおいて、実線201はこの実施の形態のものにおけるFET5のゲート・ソース間電圧で、破線301は従来の一般的な突入電流防止回路におけるFET5のゲート・ソース間電圧を示す。また同様に、図4は直流電源1から供給される入力電流の変化を示したものである。図4のグラフにおいて、実線202はこの実施の形態のものにおける入力電流の変化を示し、破線302は従来の一般的な突入電流防止回路における入力電流の変化を示す。   The change in the voltage between the gate and source of the FET 5 described above is shown in FIG. It is assumed that the load 3 starts operating upon completion of charging of the input capacitor 4. In the graph of FIG. 3, the solid line 201 indicates the gate-source voltage of the FET 5 in this embodiment, and the broken line 301 indicates the gate-source voltage of the FET 5 in the conventional general inrush current prevention circuit. Similarly, FIG. 4 shows a change in the input current supplied from the DC power source 1. In the graph of FIG. 4, a solid line 202 indicates a change in input current in this embodiment, and a broken line 302 indicates a change in input current in a conventional general inrush current prevention circuit.

また、この実施の形態のものにおいては、入力コンデンサ4と負荷3とが並列に接続されているが、負荷3の種類や回路方式によっては、入力コンデンサ4への充電が完了する前に負荷3が起動し、負荷3へ電流が流れ込む場合が考えられる。このとき、負荷3へ電流が流れ込むことにより、その分入力コンデンサ4へ流れ込む電流が小さくなり、あるいは入力コンデンサ4から負荷3へ電流が流れ出すこととなる。
しかし、上述の説明のとおり、FET5のオン抵抗は入力コンデンサ4への充電電流を一定に保つように動作するため、入力コンデンサ4への充電電流が減少した分、FET5のオン抵抗は小さくなり、FET5のドレイン・ソース間に電流を多く流すようになる。すなわち、負荷3に電流が流れた分、FET5は電流制限を弱めて多く電流を流すように動作するため、負荷3が電流不足により動作不安定になるのを防いでいる。
In this embodiment, the input capacitor 4 and the load 3 are connected in parallel. However, depending on the type and circuit system of the load 3, the load 3 may be charged before the charging of the input capacitor 4 is completed. May be activated and current may flow into the load 3. At this time, when the current flows into the load 3, the current flowing into the input capacitor 4 correspondingly decreases, or the current flows out from the input capacitor 4 to the load 3.
However, as described above, the on-resistance of the FET 5 operates so as to keep the charging current to the input capacitor 4 constant. Therefore, the on-resistance of the FET 5 is reduced by the amount of decrease in the charging current to the input capacitor 4. A large amount of current flows between the drain and source of the FET 5. That is, the amount of current flowing through the load 3 causes the FET 5 to operate so that a large amount of current flows by weakening the current limit, thereby preventing the load 3 from becoming unstable due to insufficient current.

実施の形態2.
この発明の第二の実施の形態による突入電流防止回路を、図5を用いて説明する。図5において102が突入電流防止回路部である。上述の第一の実施の形態のものでは、FET5のオン抵抗が大きいときに電源1にサージ等の電磁ノイズが混入した場合、FET5のドレイン・ゲート間にノイズ電圧がかかるため、ドレイン・ゲート間のコンデンサ9を通じてFET5のゲートにもノイズが入り、FET5を破壊する可能性がある。この第二の実施の形態のものでは、コンデンサ9に直列に適切な大きさの抵抗10を設けることにより、FET5にかかるノイズを小さくし、FET5のゲートをノイズから保護することができる。
Embodiment 2. FIG.
An inrush current preventing circuit according to a second embodiment of the present invention will be described with reference to FIG. In FIG. 5, reference numeral 102 denotes an inrush current prevention circuit unit. In the first embodiment described above, when electromagnetic noise such as a surge is mixed into the power supply 1 when the on-resistance of the FET 5 is large, a noise voltage is applied between the drain and gate of the FET 5. There is a possibility that noise enters the gate of the FET 5 through the capacitor 9 and destroys the FET 5. In the second embodiment, by providing a resistor 10 of an appropriate size in series with the capacitor 9, noise applied to the FET 5 can be reduced and the gate of the FET 5 can be protected from noise.

なお、上述の第一及び第二の実施の形態の説明においては、図1及び図5に示すようにFETにN型を用いているが、図6に示すようにP型のFET15を用いても同様である。図6において103が突入電流防止回路部である。   In the description of the first and second embodiments described above, an N-type FET is used as shown in FIGS. 1 and 5, but a P-type FET 15 is used as shown in FIG. Is the same. In FIG. 6, reference numeral 103 denotes an inrush current prevention circuit unit.

この発明の第一の実施形態による突入電流防止回路の構成を示す回路図。The circuit diagram which shows the structure of the inrush current prevention circuit by 1st Embodiment of this invention. MOS型電界効果トランジスタのゲート・ソース間電圧とドレイン・ソース間オン抵抗の関係を示したグラフ。The graph which showed the relationship between the gate-source voltage and the drain-source on-resistance of a MOS field effect transistor. FET5のゲート・ソース間電圧について、この発明と従来のものとの差異を示したグラフ。The graph which showed the difference between this invention and the conventional thing about the gate-source voltage of FET5. 直流電源1から供給される入力電流の変化について、この発明と従来のものとの差異を示したグラフ。The graph which showed the difference of this invention and a conventional thing about the change of the input current supplied from the DC power supply 1. FIG. この発明の第二の実施形態による突入電流防止回路の構成を示す回路図。The circuit diagram which shows the structure of the inrush current prevention circuit by 2nd Embodiment of this invention. この発明の第二の実施形態においてP型のFETを用いた突入電流防止回路の構成を示す回路図。The circuit diagram which shows the structure of the inrush current prevention circuit using P-type FET in 2nd embodiment of this invention.

符号の説明Explanation of symbols

1 直流電源
2 スイッチ
3 負荷
4 入力コンデンサ
5,15 MOS型電界効果トランジスタ(FET)
6,9 コンデンサ
7,8,10 抵抗
101,102,103 突入電流防止回路部
1 DC power supply 2 Switch 3 Load 4 Input capacitor 5, 15 MOS field effect transistor (FET)
6,9 Capacitor 7,8,10 Resistor 101,102,103 Inrush current prevention circuit

Claims (2)

直流電源に接続された負荷及びこの負荷と並列に接続された入力コンデンサと、この入力コンデンサへの突入電流を制限する電界効果トランジスタと、この電界効果トランジスタのゲート電圧を生成するためのバイアス抵抗と第一のコンデンサとを有する時定数回路と、前記電界効果トランジスタのドレイン・ゲート間に並列に接続された第二のコンデンサとを備えたことを特徴とする突入電流防止回路。   A load connected to the DC power supply and an input capacitor connected in parallel with the load; a field effect transistor for limiting an inrush current to the input capacitor; and a bias resistor for generating a gate voltage of the field effect transistor; An inrush current prevention circuit comprising: a time constant circuit having a first capacitor; and a second capacitor connected in parallel between the drain and gate of the field effect transistor. 第二のコンデンサに直列に抵抗を接続したことを特徴とする請求項1に記載の突入電流防止回路。   The inrush current prevention circuit according to claim 1, wherein a resistor is connected in series with the second capacitor.
JP2003279066A 2003-07-24 2003-07-24 Inrush current prevention circuit Expired - Lifetime JP4186739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003279066A JP4186739B2 (en) 2003-07-24 2003-07-24 Inrush current prevention circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003279066A JP4186739B2 (en) 2003-07-24 2003-07-24 Inrush current prevention circuit

Publications (2)

Publication Number Publication Date
JP2005045957A true JP2005045957A (en) 2005-02-17
JP4186739B2 JP4186739B2 (en) 2008-11-26

Family

ID=34265297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003279066A Expired - Lifetime JP4186739B2 (en) 2003-07-24 2003-07-24 Inrush current prevention circuit

Country Status (1)

Country Link
JP (1) JP4186739B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008220056A (en) * 2007-03-05 2008-09-18 Nec Corp Rush current prevention circuit and method
WO2009096414A1 (en) * 2008-01-31 2009-08-06 Idec Corporation Electric circuit
WO2012145897A1 (en) * 2011-04-27 2012-11-01 海能达通信股份有限公司 Battery protection device and method
JP2016139257A (en) * 2015-01-27 2016-08-04 Necプラットフォームズ株式会社 Power source circuit and power source device
JP2018148511A (en) * 2017-03-09 2018-09-20 オムロン株式会社 Rush current control circuit and power supply circuit
CN109104079A (en) * 2018-10-17 2018-12-28 天津七二通信广播股份有限公司 A kind of preventing reverse connection for DC power source soft-start circuit and implementation method
EP3514906A1 (en) * 2018-01-19 2019-07-24 Hamilton Sundstrand Corporation System for and method of controlling inrush current between a power source and a load
JP2020509502A (en) * 2017-03-03 2020-03-26 ズワイプ アクティーゼルスカブ Smart card
CN114006362A (en) * 2021-11-12 2022-02-01 中国电子科技集团公司第二十九研究所 Input surge current suppression circuit and method of capacitor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008220056A (en) * 2007-03-05 2008-09-18 Nec Corp Rush current prevention circuit and method
WO2009096414A1 (en) * 2008-01-31 2009-08-06 Idec Corporation Electric circuit
JP2009182266A (en) * 2008-01-31 2009-08-13 Idec Corp Electric circuit
US8508902B2 (en) 2008-01-31 2013-08-13 Idec Corporation Electric circuit
WO2012145897A1 (en) * 2011-04-27 2012-11-01 海能达通信股份有限公司 Battery protection device and method
JP2016139257A (en) * 2015-01-27 2016-08-04 Necプラットフォームズ株式会社 Power source circuit and power source device
JP2020509502A (en) * 2017-03-03 2020-03-26 ズワイプ アクティーゼルスカブ Smart card
JP7193867B2 (en) 2017-03-03 2022-12-21 ズワイプ アクティーゼルスカブ smart card
JP2018148511A (en) * 2017-03-09 2018-09-20 オムロン株式会社 Rush current control circuit and power supply circuit
EP3514906A1 (en) * 2018-01-19 2019-07-24 Hamilton Sundstrand Corporation System for and method of controlling inrush current between a power source and a load
US10847970B2 (en) 2018-01-19 2020-11-24 Hamilton Sundstrand Corporation System for and method of controlling inrush current between a power source and a load
CN109104079A (en) * 2018-10-17 2018-12-28 天津七二通信广播股份有限公司 A kind of preventing reverse connection for DC power source soft-start circuit and implementation method
CN114006362A (en) * 2021-11-12 2022-02-01 中国电子科技集团公司第二十九研究所 Input surge current suppression circuit and method of capacitor
CN114006362B (en) * 2021-11-12 2023-06-02 中国电子科技集团公司第二十九研究所 Input surge current suppression circuit and method for capacitor

Also Published As

Publication number Publication date
JP4186739B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
TWI437404B (en) Voltage regulator
US8242760B2 (en) Constant-voltage circuit device
US8044708B2 (en) Reference voltage generator
TWI355785B (en) Voltage regulator
US8575906B2 (en) Constant voltage regulator
JP4966592B2 (en) Power circuit
JP5078866B2 (en) Voltage regulator
JP4651428B2 (en) Switching regulator and electronic device equipped with the same
US20130049721A1 (en) Linear Regulator and Control Circuit Thereof
JP2021518061A (en) Low quiescent current load switch
US20140247523A1 (en) Switching regulator and electronic device
JP2004038831A (en) Stabilized power supply with current limiting function
TWI647557B (en) Load switching controller and method
KR102279836B1 (en) Overcurrent protection circuit, semiconductor device and voltage regulator
JP2005033865A (en) Semiconductor integrated circuit device
JP4186739B2 (en) Inrush current prevention circuit
KR101869565B1 (en) Voltage regulator
JP2010282432A (en) Regulator circuit
JP2005157604A (en) Excess current protection circuit
JP2008011585A (en) Switching regulator
JP2010217965A (en) Constant voltage circuit
CN113381386B (en) Electrical switching system including constant power controller and related methods
JP2007236129A (en) Switching regulator
JP3745723B2 (en) Method of operating inrush current prevention circuit and inrush current prevention circuit
JPH06276677A (en) Inrush current preventive circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R151 Written notification of patent or utility model registration

Ref document number: 4186739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term