JP2005044737A - Control method and control device of air mass flow of direct methanol type fuel cell - Google Patents

Control method and control device of air mass flow of direct methanol type fuel cell Download PDF

Info

Publication number
JP2005044737A
JP2005044737A JP2003280111A JP2003280111A JP2005044737A JP 2005044737 A JP2005044737 A JP 2005044737A JP 2003280111 A JP2003280111 A JP 2003280111A JP 2003280111 A JP2003280111 A JP 2003280111A JP 2005044737 A JP2005044737 A JP 2005044737A
Authority
JP
Japan
Prior art keywords
air flow
flow path
pressure
flow rate
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003280111A
Other languages
Japanese (ja)
Inventor
Shigemichi Ichikawa
恵通 市川
Yoshifumi Kawakami
佳史 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP2003280111A priority Critical patent/JP2005044737A/en
Publication of JP2005044737A publication Critical patent/JP2005044737A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To stabilize electric characteristics of a fuel cell by uniformizing the flow of oxygen supplied to an air flow channel by the effective removal of products such as water droplets generated in the air flow channel. <P>SOLUTION: This control method of an air mass flow of a direct methanol type fuel cell controls the air mass flow in the air flow channel within a certain range by repeating (1) a process of measuring the air mass flow or pressure in the air flow channel and detecting its jamming, (2) a process of increasing the number of the revolution of an air supply pump and operating for a certain time at the revolution in the case the air mass flow or the pressure in the air flow channel gets outside a set range, and (3) a process of returning the number of the revolution of the air supply pump back to that of original revolution. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、直接メタノール型燃料電池の運転に際し、当該燃料電池にスムーズに空気を導入するための方法に関する。   The present invention relates to a method for smoothly introducing air into a fuel cell when a direct methanol fuel cell is operated.

ノート型パソコン、携帯電話機、コードレス電話、デジタルカメラ、ビデオカメラ、携帯型CDプレーヤー、携帯型MDプレーヤー等の携帯用電子機器には、更なる小型化、軽量化が求められており、これらの電子機器への燃料電池の実用化が急務となっている。これは、燃料電池により発生する電流が直流であるため、従来の充電式バッテリーに必須のACアダプターを要さず、また、燃料をカートリッジ式とすることができるので、必要なときに燃料を準備できるからである。   Portable electronic devices such as notebook computers, mobile phones, cordless phones, digital cameras, video cameras, portable CD players, and portable MD players are required to be smaller and lighter. There is an urgent need to put fuel cells into practical use. This is because the current generated by the fuel cell is direct current, so there is no need for an AC adapter, which is essential for conventional rechargeable batteries, and the fuel can be cartridge-type, so prepare fuel when you need it. Because it can.

燃料電池には、これに用いる電解質の種類や燃料には様々な種類があるが、直接メタノール型燃料電池は、構造が簡易であり、小型化、軽量化に有利であることから、特に注目されている。   There are various types of electrolytes and fuels used in fuel cells, but direct methanol fuel cells are of particular interest because they have a simple structure and are advantageous for miniaturization and weight reduction. ing.

図1は、直接メタノール型燃料電池の作動状態を示す模式図である。図1に示すように、メタノールおよび水は、燃料極に供給され、下記の(1)式に示す反応をして水素イオン(H+)および電子(e−)を生成させる。   FIG. 1 is a schematic diagram showing an operating state of a direct methanol fuel cell. As shown in FIG. 1, methanol and water are supplied to the fuel electrode and generate a hydrogen ion (H +) and an electron (e−) by the reaction shown in the following formula (1).

CH3OH+H2O → CO2+6H++6e− …(1)
このとき、電子(e−)は、燃料極から電子機器内の回路を通過して酸化剤極に移動し、水素イオン(H+)は、電解質中を通過して酸化剤極に移動し、酸素と下記の(2)式に示す電気化学反応をして水を生成する。
CH3OH + H2O → CO2 + 6H ++ 6e− (1)
At this time, electrons (e−) move from the fuel electrode to the oxidant electrode through the circuit in the electronic device, and hydrogen ions (H +) move to the oxidant electrode through the electrolyte, and oxygen And water is generated by the electrochemical reaction shown in the following formula (2).

3/2O2+6H++6e− → H2O …(2)
このとき、酸化剤極の流路内(以下、「空気流路」という)には、上記(2)式の反応により生成した水が付着し、これが排出口付近で停留すると、空気流路内での流れの抵抗となる。これにより、空気流路内に均一に酸素を供給することができなくなって燃料電池の電気的特性を低下させる。
3 / 2O2 + 6H ++ 6e− → H2O (2)
At this time, water generated by the reaction of the above formula (2) adheres to the flow path of the oxidizer electrode (hereinafter referred to as “air flow path”). It becomes resistance of the flow in. As a result, oxygen cannot be uniformly supplied into the air flow path, and the electrical characteristics of the fuel cell are degraded.

本発明は、上記の問題を解決するためになされたものであり、空気流路内に発生した水滴等の生成物を効果的に除去することにより、空気流路内に供給する酸素の流量を均一化して、燃料電池の電気的特性を安定化することを目的とする。   The present invention has been made to solve the above problems, and by effectively removing products such as water droplets generated in the air channel, the flow rate of oxygen supplied into the air channel is reduced. The purpose is to equalize and stabilize the electrical characteristics of the fuel cell.

本発明は、下記の(A)〜(D)に示す直接メタノール型燃料電池の空気流量の制御方法、および、下記の(E)に示す空気流量の制御装置を要旨とする。   The gist of the present invention is the air flow rate control method of the direct methanol fuel cell shown in the following (A) to (D) and the air flow rate control device shown in the following (E).

(A)下記の工程(1)および(2)を繰り返すことにより空気流路内の空気流量を一定の範囲に制御することを特徴とする直接メタノール型燃料電池の空気流量の制御方法。
(1)空気流路内の空気流量または圧力を測定してつまりを検知する工程、
(2)空気流路内のつまりを除去する工程
(B)下記の工程(1)〜(3)を繰り返すことにより空気流路内の空気流量を一定の範囲に制御することを特徴とする直接メタノール型燃料電池の空気流量の制御方法。
(1)空気流路内のつまりを検知する工程、
(2)空気流路内のつまりを検知した場合に、空気流路内の圧力を上昇させ、この圧力で一定時間運転し、空気流路内のつまりを除去する工程
(3)空気流路内の圧力を元の圧力に戻す工程
(C)下記の工程(1)〜(3)を繰り返すことにより空気流路内の空気流量を一定の範囲に制御することを特徴とする直接メタノール型燃料電池の空気流量の制御方法。
(1)空気流路内の空気流量または圧力を測定してつまりを検知する工程、
(2)空気流路内の空気流量または圧力が設定範囲を外れた場合に、空気流路内の圧力を上昇させ、この圧力で一定時間運転し、空気流路内のつまりを除去する工程
(3)空気流路内の圧力を元の圧力に戻す工程
(D)下記の工程(1)〜(3)を繰り返すことにより空気流路内の空気流量を一定の範囲に制御することを特徴とする直接メタノール型燃料電池の空気流量の制御方法。
(1)空気流路内の空気流量または圧力を測定してつまりを検知する工程、
(2)空気流路内の空気流量または圧力が設定範囲を外れた場合に、空気供給用ポンプの回転数を増加させ、この回転数で一定時間運転する工程、
(3)空気供給用ポンプの回転数を元の回転数に戻す工程
(E)少なくとも空気流路内の空気流量または圧力を測定する検知手段および空気供給用ポンプの回転数を調整する回転数制御手段を有する直接メタノール型燃料電池の空気流量の制御装置であって、空気流量または圧力が一定の範囲を外れる場合に、空気供給用ポンプの回転数を増加させ、一定時間保持した後、元の回転数に戻す機構を有することを特徴とする直接メタノール型燃料電池の空気流量の制御装置。
(A) A method for controlling the air flow rate of a direct methanol fuel cell, wherein the air flow rate in the air flow path is controlled within a certain range by repeating the following steps (1) and (2).
(1) A process of detecting clogging by measuring the air flow rate or pressure in the air flow path,
(2) Step of removing clogging in the air flow path (B) Directly characterized by controlling the air flow rate in the air flow path to a certain range by repeating the following steps (1) to (3) A method for controlling the air flow rate of a methanol fuel cell.
(1) a process for detecting clogging in the air flow path;
(2) When the clogging in the air flow path is detected, the pressure in the air flow path is increased, and the clogging in the air flow path is removed by operating at this pressure for a certain period of time.
(3) Step of returning the pressure in the air flow path to the original pressure (C) The air flow rate in the air flow path is controlled within a certain range by repeating the following steps (1) to (3). A method for controlling the air flow rate of a direct methanol fuel cell.
(1) A process of detecting clogging by measuring the air flow rate or pressure in the air flow path,
(2) When the air flow rate or pressure in the air flow path is out of the set range, the pressure in the air flow path is increased, and this pressure is operated for a certain period of time to remove the blockage in the air flow path.
(3) The step of returning the pressure in the air flow path to the original pressure (D) The air flow rate in the air flow path is controlled within a certain range by repeating the following steps (1) to (3). A method for controlling the air flow rate of a direct methanol fuel cell.
(1) A process of detecting clogging by measuring the air flow rate or pressure in the air flow path,
(2) when the air flow rate or pressure in the air flow path is out of the set range, increasing the number of rotations of the air supply pump and operating at this number of rotations for a certain period of time;
(3) Step of returning the rotation speed of the air supply pump to the original rotation speed (E) Rotation speed control for adjusting the rotation speed of at least the detection means for measuring the air flow rate or pressure in the air flow path and the air supply pump An apparatus for controlling the air flow rate of a direct methanol fuel cell having means for increasing the number of rotations of the air supply pump when the air flow rate or pressure is out of a certain range and holding the original for a predetermined time, An apparatus for controlling the air flow rate of a direct methanol fuel cell, characterized by having a mechanism for returning to the rotational speed.

図2および3は、本発明方法における運転状態を示す図であり、図2は、空気流路内の流量と圧力の関係を示し、図3は、経過時間と圧力および空気供給用ポンプの回転数との関係を示す。なお、図2および3において、「状態A」は正常な運転状態、「状態B」はつまりが発生した状態、「状態C」は圧力を上昇させた状態を意味する。   2 and 3 are diagrams showing the operating state in the method of the present invention. FIG. 2 shows the relationship between the flow rate and pressure in the air flow path. FIG. 3 shows the elapsed time, pressure and rotation of the air supply pump. Shows the relationship with numbers. 2 and 3, “state A” means a normal operating state, “state B” means a state where clogging occurs, and “state C” means a state where pressure is increased.

空気流路内のつまり検知方法について
本発明の直接メタノール型燃料電池の空気流量の制御方法では、例えば、空気供給用ポンプの回転数N1で燃料電池の運転が行われ、定期的に空気流路内の空気流量または圧力が測定される。これにより、空気流路内の水滴等の生成物のつまりを検知することができる。即ち、空気流量または圧力が状態Aにある場合には正常運転であると判断される。一方、空気流量が低下し、圧力が上昇して状態Aから状態Bに移行した場合には、空気流路内の水滴の付着量が増加してつまりが発生したものと判断される。
Method for detecting clogging in the air flow path In the method for controlling the air flow rate of the direct methanol fuel cell according to the present invention, for example, the fuel cell is operated at the rotational speed N1 of the air supply pump, and the air flow path is periodically The air flow or pressure inside is measured. Thereby, clogging of products such as water droplets in the air flow path can be detected. That is, when the air flow rate or pressure is in the state A, it is determined that the operation is normal. On the other hand, when the air flow rate decreases and the pressure rises to shift from the state A to the state B, it is determined that the amount of water droplet adhesion in the air flow path has increased and clogging has occurred.

なお、空気流路内のつまりの検知は、空気流路内の流量または圧力のいずれかの変化量を測定することにより行えばよいが、流量の測定は困難なため、特に、圧力の変化量(図2および3では、P0→P2の変化量)を測定するのが望ましい。空気流路内のつまりは、圧力測定器を空気供給用ポンプの排出口、または空気流路の吸入口もしくは排出口に設置し、その測定値を定期的にモニターすることにより検知できる。   The clogging in the air flow path may be detected by measuring the amount of change in either the flow rate or the pressure in the air flow path. However, since it is difficult to measure the flow rate, in particular, the amount of change in pressure. (In FIGS. 2 and 3, it is desirable to measure the amount of change from P0 to P2.) The clogging in the air flow path can be detected by installing a pressure measuring device at the discharge port of the air supply pump, or at the suction or discharge port of the air flow path, and periodically monitoring the measured value.

空気流路内のつまり除去方法について
そして、例えば、上記の測定値が状態A(圧力はP0)にあるときには、初期のポンプ回転数N1のままで運転を継続するが、予め定めた設定範囲を外れ(即ち、圧力がP1を超え)て、例えば、状態B(圧力はP2)となったときには、ポンプ回転数をN2に増加させ、この回転数で一定時間運転する。このとき、空気流量および圧力は状態Cに移行する。これにより、空気流路内の圧力が上昇するため、空気流路内に付着した水滴等の生成物は除去される。
About the clogging removal method in the air flow path And, for example, when the above measured value is in the state A (the pressure is P0), the operation is continued with the initial pump rotational speed N1, but a predetermined set range is set. When the pressure deviates (that is, the pressure exceeds P1) and becomes, for example, the state B (pressure is P2), the pump rotational speed is increased to N2, and operation is performed at this rotational speed for a certain period of time. At this time, the air flow rate and pressure shift to state C. As a result, the pressure in the air flow path rises, so that products such as water droplets adhering to the air flow path are removed.

なお、空気流路内の圧力の調整は、上記のように空気供給用ポンプの回転数を変更して行うが、実際には、空気供給用ポンプの駆動電圧を調整することにより行うことができる。また、空気供給用ポンプは、その回転数を調整する回転数制御手段を内蔵しているものが望ましいが、別途、回転数制御手段を設けてもよい。   The pressure in the air flow path is adjusted by changing the rotation speed of the air supply pump as described above, but in practice, it can be adjusted by adjusting the drive voltage of the air supply pump. . Further, the air supply pump preferably has a built-in rotation speed control means for adjusting the rotation speed, but a rotation speed control means may be provided separately.

その後、空気供給用ポンプの回転数は、元の回転数N1に戻され、空気流路内の圧力も元の圧力に戻される。この圧力(回転数N1)での運転中に、再び空気流路内の空気流量または圧力が測定される。そして、その測定の結果、状態Cから状態B(圧力はP1)に移行していた場合には、再びつまりの除去を実施し、状態Cから状態A(圧力はP0)に移行していた場合には、この圧力(ポンプ回転数N1)での運転が継続される。このとき、ポンプ回転数を元の回転数N1に戻した直後には空気流量および圧力が安定しないため、測定結果にばらつきが生じる。このため、ポンプ回転数を元の回転数N1に戻し、一定時間保持した後に、空気流路内の空気流量または圧力を測定することが望ましい。   Thereafter, the rotation speed of the air supply pump is returned to the original rotation speed N1, and the pressure in the air flow path is also returned to the original pressure. During operation at this pressure (rotation speed N1), the air flow rate or pressure in the air flow path is again measured. As a result of the measurement, if the state C has shifted to the state B (pressure is P1), the clogging is removed again, and the state C has shifted to the state A (pressure is P0). The operation at this pressure (pump speed N1) is continued. At this time, immediately after the pump rotational speed is returned to the original rotational speed N1, the air flow rate and pressure are not stable, so that the measurement results vary. For this reason, it is desirable to measure the air flow rate or pressure in the air flow path after returning the pump rotational speed to the original rotational speed N1 and holding it for a certain period of time.

このような工程を繰り返すことにより、空気流路内の空気流量を一定の範囲内に制御することができる。   By repeating such steps, the air flow rate in the air flow path can be controlled within a certain range.

なお、図3は、空気供給用ポンプの回転数を元の回転数N1に戻した後、再び圧力を測定したところ、空気流量または圧力が設定値を外れていたため、再び、回転数をN2に増加し、一定時間経過した後、元の回転数N1に戻した例である。この例では、本発明方法を2回繰り返した結果、空気流路内の空気流量を正常値に戻すことができた。ここで、二回目に回転数を増加させた後には、つまりが除去されると実際の圧力は低下するが、どのような経路で圧力が低下したのかを把握するのが困難であるため、図3ではこれを点線で表している。   Note that FIG. 3 shows that when the pressure was measured again after returning the rotation speed of the air supply pump to the original rotation speed N1, the air flow rate or pressure was out of the set value. This is an example in which the rotation speed is increased and after returning to the original rotational speed N1 after a certain time has elapsed. In this example, as a result of repeating the method of the present invention twice, the air flow rate in the air flow path could be returned to the normal value. Here, after increasing the number of revolutions for the second time, that is, if the clog is removed, the actual pressure will drop, but it is difficult to figure out in what path the pressure has dropped. In FIG. 3, this is indicated by a dotted line.

本発明によれば、空気流路内に発生した水滴等の生成物を効果的に除去することができるので、空気流路内に供給する酸素の流量を均一化して、燃料電池の電気的特性を安定化することができる。   According to the present invention, products such as water droplets generated in the air flow path can be effectively removed, so that the flow rate of oxygen supplied into the air flow path is made uniform, and the electric characteristics of the fuel cell Can be stabilized.

直接メタノール型燃料電池の作動状態を示す模式図である。It is a schematic diagram which shows the operating state of a direct methanol type fuel cell. 空気流路内の流量と圧力との関係を示す図である。It is a figure which shows the relationship between the flow volume in an air flow path, and a pressure. 本発明方法の操業例を示す図である。It is a figure which shows the example of operation of this invention method.

Claims (5)

下記の工程(1)および(2)を繰り返すことにより空気流路内の空気流量を一定の範囲に制御することを特徴とする直接メタノール型燃料電池の空気流量の制御方法。
(1)空気流路内の空気流量または圧力を測定してつまりを検知する工程、
(2)空気流路内のつまりを除去する工程
An air flow rate control method for a direct methanol fuel cell, characterized in that the air flow rate in the air flow path is controlled within a certain range by repeating the following steps (1) and (2).
(1) A process of detecting clogging by measuring the air flow rate or pressure in the air flow path,
(2) The process of removing clogs in the air flow path
下記の工程(1)〜(3)を繰り返すことにより空気流路内の空気流量を一定の範囲に制御することを特徴とする直接メタノール型燃料電池の空気流量の制御方法。
(1)空気流路内のつまりを検知する工程、
(2)空気流路内のつまりを検知した場合に、空気流路内の圧力を上昇させ、この圧力で一定時間運転し、空気流路内のつまりを除去する工程
(3)空気流路内の圧力を元の圧力に戻す工程
A method for controlling the air flow rate of a direct methanol fuel cell, wherein the air flow rate in the air flow path is controlled within a certain range by repeating the following steps (1) to (3).
(1) a process for detecting clogging in the air flow path;
(2) When the clogging in the air flow path is detected, the pressure in the air flow path is increased, and the clogging in the air flow path is removed by operating at this pressure for a certain period of time.
(3) Step of returning the pressure in the air flow path to the original pressure
下記の工程(1)〜(3)を繰り返すことにより空気流路内の空気流量を一定の範囲に制御することを特徴とする直接メタノール型燃料電池の空気流量の制御方法。
(1)空気流路内の空気流量または圧力を測定してつまりを検知する工程、
(2)空気流路内の空気流量または圧力が設定範囲を外れた場合に、空気流路内の圧力を上昇させ、この圧力で一定時間運転し、空気流路内のつまりを除去する工程
(3)空気流路内の圧力を元の圧力に戻す工程
A method for controlling the air flow rate of a direct methanol fuel cell, wherein the air flow rate in the air flow path is controlled within a certain range by repeating the following steps (1) to (3).
(1) A process for detecting clogging by measuring the air flow rate or pressure in the air flow path,
(2) When the air flow rate or pressure in the air flow path is out of the set range, the pressure in the air flow path is increased, and this pressure is operated for a certain period of time to remove the blockage in the air flow path.
(3) Returning the pressure in the air flow path to the original pressure
下記の工程(1)〜(3)を繰り返すことにより空気流路内の空気流量を一定の範囲に制御することを特徴とする直接メタノール型燃料電池の空気流量の制御方法。
(1)空気流路内の空気流量または圧力を測定してつまりを検知する工程、
(2)空気流路内の空気流量または圧力が設定範囲を外れた場合に、空気供給用ポンプの回転数を増加させ、この回転数で一定時間運転する工程、
(3)空気供給用ポンプの回転数を元の回転数に戻す工程
A method for controlling the air flow rate of a direct methanol fuel cell, wherein the air flow rate in the air flow path is controlled within a certain range by repeating the following steps (1) to (3).
(1) A process of detecting clogging by measuring the air flow rate or pressure in the air flow path,
(2) when the air flow rate or pressure in the air flow path is out of the set range, increasing the number of rotations of the air supply pump and operating at this number of rotations for a certain period of time;
(3) Step of returning the rotation speed of the air supply pump to the original rotation speed
少なくとも空気流路内の空気流量または圧力を測定する検知手段および空気供給用ポンプの回転数を調整する回転数制御手段を有する直接メタノール型燃料電池の空気流量の制御装置であって、空気流量または圧力が一定の範囲を外れる場合に、空気供給用ポンプの回転数を増加させ、一定時間保持した後、元の回転数に戻す機構を有することを特徴とする直接メタノール型燃料電池の空気流量の制御装置。
An apparatus for controlling the air flow rate of a direct methanol fuel cell having at least a detection means for measuring an air flow rate or pressure in an air flow path and a rotation speed control means for adjusting the rotation speed of a pump for supplying air. When the pressure is out of a certain range, the rotational speed of the air supply pump is increased, and after holding for a certain period of time, the mechanism returns to the original rotational speed. Control device.
JP2003280111A 2003-07-25 2003-07-25 Control method and control device of air mass flow of direct methanol type fuel cell Pending JP2005044737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003280111A JP2005044737A (en) 2003-07-25 2003-07-25 Control method and control device of air mass flow of direct methanol type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003280111A JP2005044737A (en) 2003-07-25 2003-07-25 Control method and control device of air mass flow of direct methanol type fuel cell

Publications (1)

Publication Number Publication Date
JP2005044737A true JP2005044737A (en) 2005-02-17

Family

ID=34266038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003280111A Pending JP2005044737A (en) 2003-07-25 2003-07-25 Control method and control device of air mass flow of direct methanol type fuel cell

Country Status (1)

Country Link
JP (1) JP2005044737A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278264A (en) * 2005-03-30 2006-10-12 Toshiba Corp Fuel cell system
EP1753062A1 (en) 2005-08-03 2007-02-14 Deutsches Zentrum für Luft- und Raumfahrt e.V. Fuel cell system and method of determining/controlling the flow rate of oxidant in the fuel cell system
JP2008098163A (en) * 2006-10-16 2008-04-24 Kiko Kagi Kofun Yugenkoshi Fuel cell device equipped with signal pin
JP2012059449A (en) * 2010-09-07 2012-03-22 Nissan Motor Co Ltd Fuel cell system
WO2012157184A1 (en) * 2011-05-13 2012-11-22 パナソニック株式会社 Fuel cell system
WO2013080410A1 (en) * 2011-11-30 2013-06-06 パナソニック株式会社 Direct oxidation-type fuel cell system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278264A (en) * 2005-03-30 2006-10-12 Toshiba Corp Fuel cell system
EP1753062A1 (en) 2005-08-03 2007-02-14 Deutsches Zentrum für Luft- und Raumfahrt e.V. Fuel cell system and method of determining/controlling the flow rate of oxidant in the fuel cell system
JP2008098163A (en) * 2006-10-16 2008-04-24 Kiko Kagi Kofun Yugenkoshi Fuel cell device equipped with signal pin
JP2012059449A (en) * 2010-09-07 2012-03-22 Nissan Motor Co Ltd Fuel cell system
WO2012157184A1 (en) * 2011-05-13 2012-11-22 パナソニック株式会社 Fuel cell system
WO2013080410A1 (en) * 2011-11-30 2013-06-06 パナソニック株式会社 Direct oxidation-type fuel cell system
JPWO2013080410A1 (en) * 2011-11-30 2015-04-27 パナソニックIpマネジメント株式会社 Direct oxidation fuel cell system

Similar Documents

Publication Publication Date Title
US20110115440A1 (en) Secondary battery charge method and battery charger
WO2011070746A1 (en) Fuel cell system, and electronic device
JPWO2011158614A1 (en) FUEL CELL DEVICE AND FUEL CELL SYSTEM INCLUDING THE SAME
JP5158398B2 (en) Operation method of fuel cell
JP2006294619A (en) Operation stop method of fuel cell, and fuel cell system
JP2005044737A (en) Control method and control device of air mass flow of direct methanol type fuel cell
JP2006325331A (en) Discharging circuit for secondary battery and secondary battery pack equipped with the same, and electronic equipment
JP2008243657A (en) Method of manufacturing secondary battery, and device of manufacturing the same
JP2011216483A (en) Method of operating fuel cell system, and fuel cell system
JP2010067434A (en) Operation control device and operation control method for fuel cell
JP4969018B2 (en) Power supply
JP4843898B2 (en) Fuel cell device and control method thereof
JP4781619B2 (en) Power supply
JP2006148997A (en) Charging apparatus and charging method
JPH09178827A (en) Remainder detecting device for battery capacity
JP2005108491A (en) Electronic apparatus
JP3430439B2 (en) Secondary battery charging method and secondary battery charging device
US20060110635A1 (en) Fuel cell system, gas replacement method for fuel cell system, and device for fuel cell system
JP2006252812A (en) Fuel cell and electrical apparatus
JP2005039875A (en) Method for charging secondary battery and apparatus for charging using the same
JP2008053221A (en) Electric device and battery pack
US10686233B2 (en) Metal-air battery and method of operating the metal-air battery
JP2004152604A (en) Device for controlling power generation amount of fuel cell
JP2004171945A (en) Remaining capacity detecting method for fuel cell, and remaining capacity detector for fuel cell
CN100470906C (en) Fuel battery device and method for controlling fuel battery