JP2005044707A - Circulation structure of heating medium for storage tank - Google Patents

Circulation structure of heating medium for storage tank Download PDF

Info

Publication number
JP2005044707A
JP2005044707A JP2003279727A JP2003279727A JP2005044707A JP 2005044707 A JP2005044707 A JP 2005044707A JP 2003279727 A JP2003279727 A JP 2003279727A JP 2003279727 A JP2003279727 A JP 2003279727A JP 2005044707 A JP2005044707 A JP 2005044707A
Authority
JP
Japan
Prior art keywords
heat medium
storage tank
medium
storage
distribution structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003279727A
Other languages
Japanese (ja)
Inventor
Hiroshi Tanaka
広志 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003279727A priority Critical patent/JP2005044707A/en
Publication of JP2005044707A publication Critical patent/JP2005044707A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circulation structure of a heating medium for a storage tank capable of responding to a complex system using the heating medium at every site, through lowering of pressure loss at a normal operation. <P>SOLUTION: In the circulation structure 1 of the heating medium for the storage tank provided with a storage tank part 3 storing a storage medium (purified water) 2, and a heating medium circulation channel 6 formed at least either an outside or an inside of a wall face 4 of the storage tank part 3 where a heating medium exchanging heat with the storage medium 2 is circulated, the heating medium is made circulated at the normal operation in a bypass channel 7 with a smaller circulation resistance than the heating medium circulation channel 6, and is made circulated at an abnormal operation in the heating medium circulation channel 6. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、熱媒体を流通させることによって凍結した貯蔵媒体を解凍する機能を備えた貯蔵タンク用熱媒体の流通構造に関する。   The present invention relates to a distribution structure of a storage tank heat medium having a function of thawing a frozen storage medium by circulating the heat medium.

燃料電池は、その反応膜が湿潤状態で機能を発揮するため、供給する水素や酸素を充分に加湿しなければならない。このため、水素貯蔵タイプの燃料電池システムを搭載した車両には、水素や酸素を加湿するための純水を貯留する貯蔵タンクを備える必要がある。また、この燃料電池システムを寒冷地で使用する際には、貯蔵タンク中の純水が凍結する恐れがあるため、凍結した純水を解凍する解凍融解機能を備えた貯蔵タンクを使用する必要がある(例えば、特許文献1参照。)。   Since the fuel cell functions in a wet state, the fuel cell must sufficiently humidify the supplied hydrogen and oxygen. For this reason, a vehicle equipped with a hydrogen storage type fuel cell system needs to have a storage tank for storing pure water for humidifying hydrogen and oxygen. In addition, when using this fuel cell system in a cold region, the pure water in the storage tank may freeze, so it is necessary to use a storage tank with a thawing and thawing function for thawing the frozen pure water. (For example, refer to Patent Document 1).

この貯蔵タンクは、貯蔵物を収容する中空部と、中空部内に等間隔にかつ容器の長手軸芯に平行に配置された熱媒体の流れる流路と、流路と連通した熱媒体供給口と熱媒体排出口と、熱媒体の流れる流路により貯蔵物を凍結、融解する複数の二重壁構造体とを備える構成である。また、伝熱性能を向上するために、熱媒体の流れる流路は3本以上の流路系統に区画されるよう設定されている。
特開平5−154467号公報(第3頁、図1)
The storage tank includes a hollow portion for storing a stored item, a flow path for a heat medium disposed in the hollow portion at equal intervals and parallel to the longitudinal axis of the container, and a heat medium supply port communicating with the flow path. The heat medium discharge port and a plurality of double-wall structures that freeze and thaw the stored material through the flow path through which the heat medium flows. Moreover, in order to improve heat transfer performance, the flow path through which the heat medium flows is set to be divided into three or more flow path systems.
JP-A-5-154467 (page 3, FIG. 1)

ところが、上記した構成では、熱媒体の流れる流路は3本以上の流路系統に区画されるよう設定されているため、貯蔵部内では熱媒体の流路は何度も分岐や合流を繰り返す複雑な構造になっている。このため、熱媒体の循環システムにおいて、全体として均一な熱媒体の流れが損なわれ、熱交換能力が低下し、更に、熱媒体の流路の圧力損失要素となるという問題があった。また、貯蔵媒体の解凍運転時(非定常運転時)や定常運転時であってもこの複雑な流路を熱媒が通過することになるために、上記した構成では、熱媒体をあらゆる部位に使用する複合的なシステムをなすものには不向きであるという問題があった。   However, in the configuration described above, the flow path through which the heat medium flows is set to be divided into three or more flow path systems, so that the heat medium flow path is complicated to repeat branching and merging many times in the storage unit. It has a simple structure. For this reason, in the circulation system of the heat medium, there is a problem that the flow of the uniform heat medium is impaired as a whole, the heat exchange capacity is lowered, and further, it becomes a pressure loss element of the flow path of the heat medium. In addition, since the heat medium passes through this complicated flow path even during the thawing operation (unsteady operation) or the steady operation of the storage medium, in the above-described configuration, the heat medium is distributed to every part. There was a problem that it was unsuitable for what constitutes a complex system to be used.

また、熱媒体の流れる流路を複数に分岐、あるいは折り曲げ回数を増やす等によって流路の長さを増やした場合、増やした部分の圧力損失が増加して熱媒体を流すポンプの負荷が大きくなるため、システムの燃費が悪化するという問題があった。   Also, if the length of the flow path is increased by branching the flow path through which the heat medium flows or by increasing the number of bendings, etc., the pressure loss of the increased portion increases and the load on the pump that flows the heat medium increases. Therefore, there was a problem that the fuel consumption of the system deteriorated.

さらに、流通抵抗は、流速の増加だけでなく、内径が小さくなることによっても大きくなるため、細い管を多数利用するとどうしても流通抵抗が大きく圧力損失は大きくなるが、熱伝達に関しては表面積が大きいほうが有利であるため、一概に細い管を使うのが良くないとは言えず、問題となっていた。   Furthermore, since the flow resistance increases not only by increasing the flow velocity but also by reducing the inner diameter, the use of a large number of thin tubes inevitably increases the flow resistance and increases the pressure loss, but the heat transfer requires a larger surface area. Because it is advantageous, it cannot be said that it is generally good to use a thin tube, which has been a problem.

本発明は、上記課題を解決するためになされたものであり、貯蔵媒体が貯留された貯蔵タンク部と、該貯蔵タンク部の壁面の外側又は内側の少なくとも一方に形成されて、前記貯蔵媒体と熱交換する熱媒体が流通する熱媒体流通路とを有する貯蔵タンク用熱媒体の流通構造であって、定常運転時には前記熱媒体を前記熱媒体流通路よりも流通抵抗の少ない状態で流通させ、非定常運転時には前記熱媒体を前記熱媒体流通路に流通させる流通機構を備えることを要旨とする。   The present invention has been made to solve the above problems, and is formed on a storage tank portion in which a storage medium is stored, and at least one of an outer side or an inner side of a wall surface of the storage tank unit, and the storage medium A storage tank heat medium distribution structure having a heat medium flow path through which a heat medium to exchange heat flows, and during steady operation, the heat medium is circulated in a state of less flow resistance than the heat medium flow path; The gist of the present invention is to provide a distribution mechanism for distributing the heat medium to the heat medium flow passage during the unsteady operation.

本発明によれば、熱媒体の流入が容易で、流通抵抗が小さく、かつポンプ動力損失が低減し、熱交換器の伝熱効率が向上する。このように、定常運転時の圧力損失が低減するため、熱媒体を循環させる循環装置の負荷を抑制させることができる。また、熱媒体をあらゆる部位に使用する複合的なシステムに対応できる貯蔵タンク用熱媒体の流通構造を提供することができる。   According to the present invention, inflow of the heat medium is easy, flow resistance is small, pump power loss is reduced, and heat transfer efficiency of the heat exchanger is improved. Thus, since the pressure loss at the time of steady operation reduces, the load of the circulation apparatus which circulates a heat medium can be suppressed. In addition, it is possible to provide a heat transfer medium distribution structure for a storage tank that can be applied to a complex system in which the heat transfer medium is used in all parts.

以下、本発明の実施の形態を図1〜図3を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は、本発明に係る貯蔵タンク用熱媒体の流通構造の実施の形態を説明する断面図である。   FIG. 1 is a cross-sectional view for explaining an embodiment of a storage tank heat medium flow structure according to the present invention.

上記した貯蔵タンク用熱媒体の流通構造1は、純水(貯蔵媒体)2が貯留された貯蔵タンク部3と、純水2と熱交換される熱媒体が流通する熱媒体流通路6と、定常運転時には熱媒体を熱媒体流通路6よりも流通抵抗の少ない状態で流通させ、非定常運転時には熱媒体を熱媒体流通路に流通させる流通機構とを備えている。貯蔵タンク部3の上面は、蓋部3aとなっている。また、外壁部5には、熱媒体が流通する熱媒体流通路6の流入口6aと流出口6bが接続されており、貯蔵タンク部3の壁面4とによって形成された通路が熱媒体流通路6と連通している。この通路には、循環装置(不図示)から循環される熱媒体が矢印で示す方向に流通している。また、熱媒体流通路6の流入口6aより、熱媒体はバイパス流路7側にも分配される。バイパス流路7は、流入口6aと流出口6b側とを連通するように設けられている。バイパス流路7には、熱媒体の流量を調整する調整弁9が配置されており、バイパス経路7に流入した熱媒体は、図2に示す調整弁流入口6cより調整弁9を経由し、調整弁流入口6dから流出口6bを経て熱媒体流通路6に戻る。   The storage tank heat medium distribution structure 1 described above includes a storage tank section 3 in which pure water (storage medium) 2 is stored, a heat medium flow passage 6 in which a heat medium that exchanges heat with the pure water 2 flows, A circulation mechanism is provided that causes the heat medium to flow with less flow resistance than the heat medium flow passage 6 during steady operation, and causes the heat medium to flow through the heat medium flow passage during non-steady operation. The upper surface of the storage tank portion 3 is a lid portion 3a. In addition, an inlet 6a and an outlet 6b of a heat medium flow passage 6 through which a heat medium flows are connected to the outer wall portion 5, and a passage formed by the wall surface 4 of the storage tank portion 3 is a heat medium flow passage. 6 communicates. In this passage, a heat medium circulated from a circulation device (not shown) circulates in a direction indicated by an arrow. Further, the heat medium is also distributed to the bypass flow path 7 side from the inlet 6 a of the heat medium flow path 6. The bypass flow path 7 is provided so that the inflow port 6a and the outflow port 6b side may be connected. An adjustment valve 9 for adjusting the flow rate of the heat medium is disposed in the bypass flow path 7, and the heat medium flowing into the bypass path 7 passes through the adjustment valve 9 from the adjustment valve inlet 6 c shown in FIG. The adjustment valve inlet 6d returns to the heat medium passage 6 through the outlet 6b.

貯蔵タンク部3内部には、図2に示す感温部8が配されている。感温部8は、内部が中空になっている筒体8aと、この筒体8aの内部に封入されて温度によって体積が変化する封入物8bと、調整弁9と連通する細管10とを備えている。この細管10によって感温部8内部の圧力の変化が調整弁9に伝通される。調整弁9は、圧力室9aを有し、バイパス流路7とはダイヤフラム9bによって区切られた構造となっている。また、ダイヤフラム9bにはニードルやスプールなどのいわゆる弁部9cが取り付けられており、弁部9cはばね9dによって圧力室9a側に固定されている。弁部9cの位置は、圧力室9aの内圧と熱媒体との圧力、及びばね9dの力の釣り合いから決定されている。本実施例では、純水2の温度の凝固点温度を、この力の釣り合いが変化する点に設定している。なお、圧力室9aの圧力が変化することにより、その圧力9aがダイヤフラム9bを介し、弁部9cの位置を変化させている。この弁部9cの位置の変化が開度である。   Inside the storage tank unit 3, a temperature sensing unit 8 shown in FIG. The temperature sensing unit 8 includes a cylindrical body 8 a that is hollow inside, an inclusion 8 b that is enclosed in the cylindrical body 8 a and whose volume changes according to temperature, and a narrow tube 10 that communicates with the regulating valve 9. ing. A change in pressure inside the temperature sensing unit 8 is transmitted to the regulating valve 9 by the thin tube 10. The regulating valve 9 has a pressure chamber 9a, and has a structure separated from the bypass channel 7 by a diaphragm 9b. Also, a so-called valve portion 9c such as a needle or a spool is attached to the diaphragm 9b, and the valve portion 9c is fixed to the pressure chamber 9a side by a spring 9d. The position of the valve portion 9c is determined from the balance between the internal pressure of the pressure chamber 9a and the pressure of the heat medium, and the force of the spring 9d. In this embodiment, the freezing point temperature of the pure water 2 is set to a point where the balance of the force changes. In addition, when the pressure of the pressure chamber 9a changes, the pressure 9a changes the position of the valve part 9c via the diaphragm 9b. The change in the position of the valve portion 9c is the opening degree.

筒体8aの内部の封入物8bには、例えばHCFC(ハイドロクロロフルオロカーボン)ガスなどを充填している。このガスは温度と圧力によって蒸発温度を決めることができる特性を有するため、純水2の凝固点温度にて蒸発するように設定すれば、この温度が調整弁9の作動点となり、調整弁9の作動力を発生する事ができる。   The enclosure 8b inside the cylindrical body 8a is filled with, for example, HCFC (hydrochlorofluorocarbon) gas. Since this gas has a characteristic that the evaporation temperature can be determined by temperature and pressure, if it is set to evaporate at the freezing point temperature of the pure water 2, this temperature becomes the operating point of the adjusting valve 9. Acting force can be generated.

この貯蔵タンク用熱媒体の流通構造1は、図3に示すような燃料電池システム11に使用される。この場合、上記熱媒体として燃料電池スタックの冷却用の冷媒(クーラント)が用いられており、クーラント用ポンプ12によって熱媒体流通路6内を循環している。また、貯蔵タンク部3に貯蔵された純水2は、純水ポンプ14によって管15を介して燃料電池13に循環供給されている。燃料電池13に供給した純水2は、発電に必要な水素や酸素の加湿に用いられている。なお、純水2は、燃料電池7の加湿用の水として、絶縁性の観点から使用されている。   This storage tank heat medium distribution structure 1 is used in a fuel cell system 11 as shown in FIG. In this case, a coolant (coolant) for cooling the fuel cell stack is used as the heat medium, and is circulated in the heat medium flow passage 6 by the coolant pump 12. The pure water 2 stored in the storage tank unit 3 is circulated and supplied to the fuel cell 13 via the pipe 15 by the pure water pump 14. The pure water 2 supplied to the fuel cell 13 is used for humidifying hydrogen and oxygen necessary for power generation. The pure water 2 is used as humidifying water for the fuel cell 7 from the viewpoint of insulation.

次に、上記構成による貯蔵タンク用熱媒体の流通構造1の動作について説明する。   Next, the operation of the storage tank heat medium distribution structure 1 configured as described above will be described.

貯蔵タンク用熱媒体の流通構造1周辺の雰囲気温度が低下し、純水2が貯留された貯蔵タンク部3内の純水2の温度が摂氏0度以下になると純水2が凍結を開始する。純水2が凍結するとタンク部3内は氷塊で満たされる。   When the ambient temperature around the storage tank heat medium distribution structure 1 decreases and the temperature of the pure water 2 in the storage tank section 3 in which the pure water 2 is stored falls below 0 degrees Celsius, the pure water 2 starts to freeze. . When the pure water 2 is frozen, the tank 3 is filled with ice blocks.

ここで、貯蔵媒体が純水2であるため、摂氏0度以上で弁部9cが開くように設定すると、純水2の凍結時(非定常運転時)には、感温部8の筒体8a内部の封入物8bの体積が減少して筒体8a内部の圧力が低下する。この圧力が細管10を通じ、調整弁9の圧力室9aに伝えられて、圧力室9aの圧力が低下するように作用する。このようにして調整弁9が閉じるため、バイパス経路7には熱媒体が流れず、貯蔵タンク部3の壁面4とによって形成された通路に熱媒体の全量が流れ、純水2の解凍を促進する方向に作用する。   Here, since the storage medium is pure water 2, if the valve portion 9c is set to open at 0 degrees Celsius or more, the cylinder of the temperature sensing portion 8 when the pure water 2 is frozen (during unsteady operation). The volume of the enclosure 8b inside 8a decreases and the pressure inside the cylinder 8a falls. This pressure is transmitted to the pressure chamber 9a of the regulating valve 9 through the thin tube 10, and acts so that the pressure in the pressure chamber 9a decreases. Since the regulating valve 9 is closed in this way, the heat medium does not flow through the bypass path 7, and the entire amount of the heat medium flows through the passage formed by the wall surface 4 of the storage tank unit 3, thereby promoting the thawing of the pure water 2. Acting in the direction of

また、定常運転時には、感温部8の筒体8a内部の封入物8bの体積が増加して筒体8a内部の圧力が上昇する。この圧力が細管10を通じ、調整弁9の圧力室9aに伝えられる。そして、調整弁9が開くため、バイパス経路7に熱媒体が流れる。このため、貯蔵タンク部3側に流れる熱媒体は減少し、熱媒体の圧力損失は減少する方向に作用する。   Further, during steady operation, the volume of the enclosure 8b inside the cylinder 8a of the temperature sensing unit 8 increases and the pressure inside the cylinder 8a rises. This pressure is transmitted to the pressure chamber 9 a of the regulating valve 9 through the thin tube 10. And since the regulating valve 9 opens, a heat medium flows into the bypass path 7. For this reason, the heat medium which flows to the storage tank part 3 side decreases, and the pressure loss of the heat medium acts in the direction of decreasing.

本実施例によれば、非定常運転時である純水2の凍結時以外はクーラントを循環させる必要はないため、定常運転時にはクーラントはバイパス路7も通ることで圧力損失が低下し、システムの燃費が向上する。   According to the present embodiment, since it is not necessary to circulate the coolant except when the pure water 2 is frozen during the unsteady operation, the coolant also passes through the bypass path 7 during the steady operation, so that the pressure loss is reduced. Fuel consumption is improved.

また、従来の方法では、熱媒体流通路6を複数に分岐、あるいは折り曲げ回数を増やす等により、熱媒体流通路6の長さを増やした場合にはこの部分の圧力損失が増加するためクーラントポンプの負荷が大きくなり、燃料電池システムの燃費が悪化した。しかし、本実施例では、凍結時以外はクーラントはバイパス路7を通ることで圧力損失が低下するため、ポンプ負荷の増大は必要最小限の時間におさえることが可能となる。このため、解凍性能が向上し、解凍時間を短縮させることができる。したがって、凍結時であっても起動時間が短縮するため、燃費の悪化を最小限に抑制した燃料電池システムを提供することができる。   Further, in the conventional method, when the length of the heat medium flow path 6 is increased by branching the heat medium flow path 6 into a plurality of parts or increasing the number of bendings, the pressure loss in this portion increases, so the coolant pump The fuel consumption of the fuel cell system deteriorated. However, in this embodiment, the pressure loss is reduced by the coolant passing through the bypass path 7 except during freezing, so that the pump load can be increased in the minimum necessary time. For this reason, the defrosting performance is improved and the defrosting time can be shortened. Therefore, since the start-up time is shortened even during freezing, a fuel cell system in which deterioration of fuel consumption is minimized can be provided.

なお、上記したように貯蔵タンク用熱媒体の流通構造1を燃料電池システムに用いる場合には、特に純水の電気伝導度を低く保たなければならない。このため、貯蔵タンク部3の壁面4及び感温部8には、純水の貯蔵時に電気伝導度に影響をきたさない材料を使用することが好ましい。このような材料としては、例えばステンレス材、中でも特にSUS316LやSUS310Sを使用することが好ましい。また、ステンレス材を用いない場合には、接液面に樹脂のコーティングを施すことによっても同様な効果が得ることができる。   As described above, when the storage tank heat medium flow structure 1 is used in a fuel cell system, the electrical conductivity of pure water must be kept low. For this reason, it is preferable to use a material that does not affect the electrical conductivity during storage of pure water for the wall surface 4 and the temperature sensing unit 8 of the storage tank unit 3. As such a material, it is preferable to use, for example, a stainless material, especially SUS316L or SUS310S. Further, when a stainless steel material is not used, the same effect can be obtained by applying a resin coating to the liquid contact surface.

また、本実施例では、貯蔵タンク部3の外側に熱媒体流通路6を設けたが、貯蔵タンク部3内に設ける構成としても良い。   Further, in the present embodiment, the heat medium flow passage 6 is provided outside the storage tank unit 3, but it may be configured to be provided in the storage tank unit 3.

更に、感温部8のかわりに電気的に温度を検知するサーミスタ等を、また調整弁9のかわりに電磁ソレノイド弁を用いて温度を電気信号により検知し、温度の変化が設定値以上になったときに電気信号にて電磁ソレノイド弁に通電させて弁を開閉するようにしても良い。   Furthermore, the temperature is detected by an electrical signal using a thermistor or the like that electrically detects the temperature instead of the temperature sensing unit 8 and an electromagnetic solenoid valve instead of the adjusting valve 9, and the temperature change becomes a set value or more. In this case, the electromagnetic solenoid valve may be energized with an electric signal to open and close the valve.

本発明に係る貯蔵タンク用熱媒体の流通構造の実施の形態を説明する断面図である。It is sectional drawing explaining embodiment of the distribution structure of the thermal medium for storage tanks concerning this invention. 感温部と調整弁を示す断面図である。It is sectional drawing which shows a temperature sensing part and an adjustment valve. 伝熱部に燃料電池冷却用の冷媒流路を設けた純水タンクの例を示す構成図である。It is a block diagram which shows the example of the pure water tank which provided the refrigerant | coolant flow path for fuel cell cooling in the heat-transfer part.

符号の説明Explanation of symbols

1 貯蔵タンク用熱媒体の流通構造
2 純水(貯蔵媒体)
3 貯蔵タンク部
4 壁面
5 外壁部
6 熱媒体流通路
6a流入口
6b流出口
7バイパス流路
8 感温部
9 制御弁
10 細管
1 Distribution structure of storage tank heat medium 2 Pure water (storage medium)
DESCRIPTION OF SYMBOLS 3 Storage tank part 4 Wall surface 5 Outer wall part 6 Heat-medium flow path 6a inflow port 6b outflow port 7 Bypass flow path 8 Temperature sensing part 9 Control valve 10 Narrow tube

Claims (11)

貯蔵媒体が貯留された貯蔵タンク部と、
該貯蔵タンク部の壁面の外側又は内側の少なくとも一方に形成されて、前記貯蔵媒体と熱交換する熱媒体が流通する熱媒体流通路とを有する貯蔵タンク用熱媒体の流通構造であって、
定常運転時には前記熱媒体を前記熱媒体流通路よりも流通抵抗の少ない状態で流通させ、非定常運転時には前記熱媒体を前記熱媒体流通路に流通させる流通機構を備えることを特徴とする貯蔵タンク用熱媒体の流通構造。
A storage tank section in which a storage medium is stored;
A storage tank heat medium flow structure having a heat medium flow passage formed on at least one of the outer side or the inner side of the wall surface of the storage tank part and through which the heat medium that exchanges heat with the storage medium flows,
A storage tank comprising: a circulation mechanism that causes the heat medium to flow with less flow resistance than the heat medium flow path during steady operation, and causes the heat medium to flow to the heat medium flow path during non-steady operation. Distribution structure for industrial heat medium.
前記流通機構は、前記熱媒体流通路の流入口側と流出口側とを連通し前記貯蔵媒体の温度が高いほど前記熱媒体がより多く流入するバイパス流路を備えることを特徴とする請求項1に記載の貯蔵タンク用熱媒体の流通構造。   The flow mechanism includes a bypass flow path that connects an inlet side and an outlet side of the heat medium flow passage so that the heat medium flows more as the temperature of the storage medium is higher. 2. The distribution structure of the heat medium for the storage tank according to 1. 前記流通機構により、前記貯蔵タンク部の前記貯蔵媒体が凍結したときに前記熱媒体流通路に前記熱媒体の全てを流入させ、前記貯蔵タンク部の前記貯蔵媒体の解凍が終了するとともに少なくとも前記熱媒体の一部を前記バイパス流路に流入させることを特徴とする請求項2に記載の貯蔵タンク用熱媒体の流通構造。   When the storage medium in the storage tank unit is frozen by the circulation mechanism, all of the heat medium is caused to flow into the heat medium flow path, and the thawing of the storage medium in the storage tank unit is completed and at least the heat 3. The storage tank heat medium flow structure according to claim 2, wherein a part of the medium flows into the bypass flow path. 前記バイパス制御機構は、
前記貯蔵媒体の温度を検知する感温部と、
前記バイパス流路上に配置されて前記感温部の検知結果に基づいて開度が変化することにより前記バイパス流路を流れる前記熱媒体の流量を調整する調整弁と、を備えることを特徴とする請求項2又は請求項3に記載の貯蔵タンク用熱媒体の流通構造。
The bypass control mechanism includes:
A temperature sensing part for detecting the temperature of the storage medium;
An adjustment valve arranged on the bypass flow path to adjust the flow rate of the heat medium flowing through the bypass flow path by changing an opening degree based on a detection result of the temperature sensing unit. The distribution structure of the heat medium for a storage tank according to claim 2 or claim 3.
前記感温部は、
内部が中空になっている筒体と、
この筒体の内部に封入されて温度で体積変化する気体又は気体と液体の混合物と、
前記調整弁と連通する細管と、を備えており、
この細管によって前記感温部内部の圧力の変化を前記調整弁に伝通させて前記調整弁の開度を変化させること特徴とする請求項4に記載の貯蔵タンク用熱媒体の流通構造。
The temperature sensing part is
A cylindrical body having a hollow inside;
A gas or a mixture of a gas and a liquid that is sealed inside the cylinder and changes in volume with temperature,
A narrow tube communicating with the regulating valve,
The distribution structure of the heat medium for the storage tank according to claim 4, wherein a change in pressure inside the temperature sensing unit is transmitted to the adjustment valve by the thin tube to change the opening of the adjustment valve.
前記感温部は前記貯蔵媒体の温度を電気信号により検知し、前記貯蔵媒体の温度が設定値以上になったときに検知した電気信号によって前記調整弁が開閉されることを特徴とする請求項4に記載の貯蔵タンク用熱媒体の流通構造。   The temperature sensing unit detects the temperature of the storage medium by an electric signal, and the adjustment valve is opened and closed by the electric signal detected when the temperature of the storage medium becomes a set value or more. 5. A distribution structure of the heat medium for the storage tank according to 4. 前記貯蔵タンク部は、燃料電池システム用の純水を貯蔵することを特徴とする請求項1乃至請求項6の何れか一項に記載の貯蔵タンク用熱媒体の流通構造。   The distribution structure of the storage tank heat medium according to any one of claims 1 to 6, wherein the storage tank section stores pure water for a fuel cell system. 前記熱媒体は、燃料電池の冷却媒体の役目を兼ねることを特徴とする請求項7に記載の貯蔵タンク用熱媒体の流通構造。   8. The storage tank heat medium distribution structure according to claim 7, wherein the heat medium also serves as a cooling medium of the fuel cell. 前記貯蔵タンク部の壁面及び前記感温部は、純水の電気伝導度に変化を来さない材料により構成されていることを特徴とする請求項7又は請求項8に記載の貯蔵タンク用熱媒体の流通構造。   The storage tank heat according to claim 7 or 8, wherein the wall surface of the storage tank section and the temperature sensing section are made of a material that does not change the electrical conductivity of pure water. Medium distribution structure. 前記貯蔵タンク部の壁面及び前記感温部にステンレス材料を用いたことを特徴とする請求項9記載の貯蔵タンク用熱媒体の流通構造。   The distribution structure of the heat medium for the storage tank according to claim 9, wherein a stainless material is used for the wall surface of the storage tank section and the temperature sensing section. 前記貯蔵タンク部の壁面及び前記感温部に樹脂のコーティングを施したことを特徴とする請求項9又は請求項10に記載の貯蔵タンク用熱媒体の流通構造。   The distribution structure of the heat medium for the storage tank according to claim 9 or 10, wherein a resin coating is applied to a wall surface of the storage tank section and the temperature sensing section.
JP2003279727A 2003-07-25 2003-07-25 Circulation structure of heating medium for storage tank Pending JP2005044707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003279727A JP2005044707A (en) 2003-07-25 2003-07-25 Circulation structure of heating medium for storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003279727A JP2005044707A (en) 2003-07-25 2003-07-25 Circulation structure of heating medium for storage tank

Publications (1)

Publication Number Publication Date
JP2005044707A true JP2005044707A (en) 2005-02-17

Family

ID=34265752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003279727A Pending JP2005044707A (en) 2003-07-25 2003-07-25 Circulation structure of heating medium for storage tank

Country Status (1)

Country Link
JP (1) JP2005044707A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227268A (en) * 2006-02-24 2007-09-06 Seiko Instruments Inc Control valve and fuel cell system using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227268A (en) * 2006-02-24 2007-09-06 Seiko Instruments Inc Control valve and fuel cell system using the same

Similar Documents

Publication Publication Date Title
US6907923B2 (en) Storage tank for hot water systems
EP1826051B1 (en) Hydrogen tank cooling device and cooling method in hydrogen fuel automobile, and hydrogen fuel automobile
CN109888332B (en) Fuel cell thermal management system and thermal management method
TW522214B (en) Temperature adjusting device for thermal fluid medium
JP2008039108A (en) Hydrogen storage device
US20060230771A1 (en) Heat-storage type heat supplying apparatus and heat-storage type heat supplying system
US7481375B2 (en) Apparatuses and methods for controlling the temperature of a process fluid
JP2007247797A (en) Lng vaporizer
JPH0678871B2 (en) Water heater
JP2005044707A (en) Circulation structure of heating medium for storage tank
JP2010156315A (en) Engine waste heat utilizing device
JP2008040657A (en) Cup type beverage automatic vending machine
JP2008045650A (en) Hydrogen storage device
JP2001173899A (en) Hydrogen supplying device
CN115597302A (en) Constant-temperature circulation waterway system and constant-temperature circulation water tank
JP3839915B2 (en) Refrigerant cooling device
JP2010142196A (en) Cell culture apparatus and cell culture cassette
JP2007293756A (en) Cup-type vending machine
US5355846A (en) Cooling device for use in engine
CN112229105A (en) Liquid storage device, temperature control device and pump-driven two-phase fluid loop system
KR100726431B1 (en) Heat storage tank for fuel cell cogeneration system
JPH0518261A (en) Control method for temperature of hydrogen storage alloy in hydrogen storage alloy containing container
JP2002071095A (en) Liquefied gas feeder
JP4115079B2 (en) Water heater
CN112414186A (en) Cooling heat exchange system