JP2005042220A - Reinforced fiber, method for producing the same and fiber-reinforced resin composite material - Google Patents

Reinforced fiber, method for producing the same and fiber-reinforced resin composite material Download PDF

Info

Publication number
JP2005042220A
JP2005042220A JP2003200364A JP2003200364A JP2005042220A JP 2005042220 A JP2005042220 A JP 2005042220A JP 2003200364 A JP2003200364 A JP 2003200364A JP 2003200364 A JP2003200364 A JP 2003200364A JP 2005042220 A JP2005042220 A JP 2005042220A
Authority
JP
Japan
Prior art keywords
fiber
reinforced
fibers
resin
dicarboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003200364A
Other languages
Japanese (ja)
Inventor
Mikiya Hayashibara
幹也 林原
Satoshi Nago
聡 名合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2003200364A priority Critical patent/JP2005042220A/en
Publication of JP2005042220A publication Critical patent/JP2005042220A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide reinforced fibers which ensure strong adhesiveness between continuous fibers and a resin, do not lose flexibility, and can be applied to fiber-reinforced resin materials. <P>SOLUTION: This reinforced fibers for fiber-reinforced resin composite materials are characterized by imparting a polyester resin containing an aromatic dicarboxylic acid in an amount of ≥20% of the dicarboxylic acid component to inorganic or organic continuous fibers. This method for producing the reinforced fibers is characterized by immersing opened inorganic or organic continuous fibers in a treating solution containing a polyester resin containing an aromatic dicarboxylic acid in an amount of ≥20% of the dicarboxylic acid component and having a surface tension of ≤70×10<SP>-3</SP>N/m, removing the excessive treating solution from the continuous fibers, and then drying the dried continuous fibers. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、一般的な産業資材として好適な強化繊維及び繊維強化樹脂複合材に関するものであり、織物、振動や衝撃を吸収するための部材などへの適用が期待できる材料に関するものである。
【0002】
【従来の技術】
繊維強化樹脂複合材(以下、FRPと称す)はマトリックスと呼称される樹脂を炭素繊維やガラス繊維などの無機繊維やアラミド系繊維や高分子量ポリエチレン繊維などの有機繊維などの強化繊維で強化したものである。このFRPはマトリックスに適用する樹脂としてエポキシ樹脂、不飽和ポリエステル樹脂、メラミン樹脂、ユリア樹脂などの熱硬化性樹脂を適用した繊維強化熱硬化性樹脂複合材料(以下、FRTSと称す)とポリプロピレン、ポリエチレンなどのオレフィン系樹脂、ポリエチレンテレフタレートやポリブチレンテレフタレートなどのエステル系樹脂、それに、ポリカーボネート、ポリフェニレンスルフィルドなどの熱可塑性樹脂を適用した繊維強化熱可塑性樹脂複合材(FRTPと称す)に大別が可能である。
一般に、上記FRPの理論的特性値Xc は、強化繊維とベースとなる樹脂の特性値(Xf とXm )と強化繊維とマトリックスの体積含有率(Vf とVm )から、次式で求められる。
Xc = Xf Vf + Xm Vm
しかし、この理論的特性値は強化繊維と樹脂とが完全に一体化されてはじめて達成されるものであり、それを実現するために様々な手法が提案あるいは実施されている。
【0003】
その手段として各種の強化繊維に対して、表面を化学的に物理的にあるいは形態的に変化させる方法であるプラズマ処理またはオゾン処理、コロナ処理、更には、ケミカルエッチング処理などを施すものがある。
一方、表面を化学的に物理的にあるいは形態的に変化させない方法として、例えば樹脂で直接繊維を被覆する方法やエポキシ系、あるいは、シラン系などの処理剤を付与するものがある(例えば、特許文献1、2参照)。
【0004】
【特許文献1】
特開昭56−94640号公報
【特許文献2】
特開2002−194669号公報
【0005】
【発明が解決しようとする課題】
上記のように表面を化学的に物理的にあるいは形態的に変化させる方法では、過度の反応による繊維の劣化や表面改質基の経時退行が短期的に生じる問題がある。
一方、表面を化学的に物理的にあるいは形態的に変化させない方法は、強化繊維に損傷を与えることなく、しかも、強固な一体化を図れることから、優れた方法であるが、これまでの処理剤では強化繊維が固くなるため、織物などへ適用する際に織機のガイドやヘルドを通過させることが困難になるという課題が残されていた。
【0006】
【課題を解決するための手段】
本発明者は上記の問題に対して鋭意検討を行なった結果、連続繊維に対する損傷を与えることなく、連続繊維と樹脂との強固な接着性を確保するとともに、しなやかさを失わない強化繊維であり、繊維強化樹脂複合材に適用できる成形材料を見出したものである。すなわち、本発明は、以下のとおりである。
1.無機又は有機の連続繊維にジカルボン酸成分の20%以上が芳香族ジカルボン酸であるポリエステル樹脂が付与されなることを特徴とする繊維強化樹脂複合材用の強化繊維。
2.前記ポリエステル樹脂が結晶性であり、分子量が4000以上で、軟化点が50℃以上であることを特徴とする前記1に記載の強化繊維。
3.ジカルボン酸成分の20%以上が芳香族ジカルボン酸であるポリエステル樹脂を含み表面張力が70×10―N/m以下である処理剤溶液中に、開繊させた無機又は有機の連続繊維を浸漬させた後、該連続繊維から余剰の処理剤溶液を除去し乾燥することを特徴とする強化繊維の製造方法。
4.前記1に記載の強化繊維にマトリックス樹脂を含浸させたことを特徴とする繊維強化樹脂複合材。
【0007】
【発明の実施の形態】
本発明における連続繊維とは、、金属繊維、ガラス繊維、炭素繊維などの無機繊維やポリエチレンテレフタレート(PET)繊維、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)繊維、PEI繊維、PAI繊維などのスーパーエンプラを用いた繊維、高強度、高耐熱性、高弾性率の繊維として知られるポリパラフェニレンテレフタルアミド(パラアラミド)繊維、ポリパラフェニレンベンゾビスチアゾール、ポリパラフェニレンベンゾビスオキサゾール(PBO)等のポリベンザゾール(PBZ)繊維などの有機繊維が挙げられる。また、ポリノボルネン、シクロペンテン、シクロブテンなどのシクロオレフィン系樹脂に見られる新規な樹脂から得られた繊維を適用することも可能である。更に、竹などの植物から得られる繊維など、衝撃吸収材の設計が許される範囲で天然繊維なども適用は可能である。但し、強度と弾性率、ならびに軽量の観点から高強度、高弾性率で比較的、密度の低い繊維の適用が良く、好ましくは炭素繊維が、更にはエンプラやスーパーエンプラよりなる有機繊維が好適である。
【0008】
本発明の強化繊維は、上記連続繊維に特定の共重合ポリエステル樹脂が付与されてなるものである。
本発明における共重合ポリエステル樹脂は、ジカルボン酸成分の20%以上が芳香族ジカルボン酸であるポリエステル樹脂である。水分散が可能で連続繊維への濡れ性がよく振動減衰性が高い親水性基を持つ結晶性ポリエステル樹脂が好ましい。かかる樹脂は、強化繊維とマトリックス樹脂の弾性率の違いによるひずみや、応力を緩和する役割をなすものである。このような、ポリエステル樹脂は常温で粘着性があると取扱い性がよくないので数平均分子量は4000から100000、軟化点が50℃以上であることが望ましい。
【0009】
なお、使用する連続繊維によっては、市販のシランカップリング剤やエポキシ系処理剤、オレフィン系処理剤を併用することも出来る。また、繊維への損傷が許容される範囲でプラズマ処理またはオゾン処理、コロナ処理、更には、ケミカルエッチング処理なども併用することは可能である。
【0010】
本発明において、上記連続繊維に特定の共重合ポリエステル樹脂が付与するための処理剤としては、共重合ポリエステル樹脂の水分散体をさらに水やアルコール性有機溶剤などで希釈した処理剤溶液として適用することが、取扱い性、有害性などの観点から好ましい。また、該処理剤溶液は適用する繊維にもよるが、濡れ性、浸透性の点で、表面張力が70×10―N/m以下であることが望ましい。この値より大きくなると、繊維への迅速で、均一性の高い浸透が得られなくなり、効果的な界面を形成できないことがある。
【0011】
上記連続繊維に特定の共重合ポリエステル樹脂が付与する方法としては特に限定されるものではないが、以下の方法が推奨される。
処理剤溶液中に、無機又は有機の連続繊維を開繊させて浸漬させた後、該連続繊維から余剰の処理剤溶液を除去し乾燥する方法である。
連続繊維から余剰の処理剤溶液を除去する方法は、特に限定されないが、ニップローラーの間を通すなどの方法を採用することができる。
余剰の該処理剤溶液を除去した後、熱風、エアーなどを噴かすことで溶剤を取り除いて乾燥するなどして目的の強化繊維が得られる。なお、該処理剤溶液に浸漬する際、強化繊維を若干、弛ませた状態で行ない、その後に再び、張力を加えることで、効率的に余剰の該処理剤溶液の除去が可能である。
【0012】
得られた強化繊維は、未処理の強化繊維(長繊維)がしなやかさ、柔軟性を有する場合、その特性を損なうことがないため、織物などの形態への適用が可能であり、振動や衝撃を吸収するための部材などへの適用も可能である。
また、得られた強化繊維や織物は、マトリックス樹脂を含浸させることで、糸条、テープ状、板状などの繊維強化樹脂複合材とすることができ、該繊維強化樹脂複合材を用いて様々なの成形品を成形することができる。
【0013】
さらに、本発明の強化繊維を用いると、繊維強化樹脂複合材は、マトリックス樹脂との接着が優れているため、成形品の強度を向上させることができる。本発明の強化繊維と未処理の強化繊維を用いてそれぞれ繊維強化樹脂複合材や成形品を得た場合に、例えば、曲げ強度を比較すると、本発明の強化繊維を用いた場合は、未処理の強化繊維を用いた場合の1.1倍以上の強度を達成することができる。
【0014】
【実施例】
以下に本発明を実施例によって説明する。なお、実施例中の評価方法は以下のとおりである。
(1)複合材の繊維含有率、付着量、密度、空洞率
JIS K 7075「炭素繊維強化プラスチックの繊維含有率及び空洞率試験方法」、ならびに、JIS K 7052「ガラス繊維強化プラスチックの繊維含有率測定方法」に準拠して、繊維含有率、処理剤の付着量、密度、空洞率を求めた。
【0015】
(2)力学特性(曲げ試験物性)
JIS K 7074「炭素繊維強化プラスチックの曲げ試験方法」に準拠して、曲げ強度(最大曲げ応力)を求め、強化繊維に処理を施していない試料に於ける曲げ強度を基準に、各種の処理を施した試料の曲げ強度の比を曲げ強度比として求めた。
(3)表面張力
Du Nouyの輪環法による表面張力計を用いて表面張力を測定した。
【0016】
(実施例1〜2)
市販の炭素繊維(単糸本数24000本、繊度8100dtex、強度5700MPa、弾性率290GPa、処理剤なし)を開繊バーにて開繊した後、表面張力が67×10―N/mの処理剤溶液(東洋紡績社製「バイロナール」MD−1985)に浸漬させてから、数分間、風乾させて強化繊維を得た。樹脂の付着率は1.3質量%であった。次いで、この強化繊維にマトリックス熱可塑性樹脂[住友ダウ社製ポリカーボネート「カリバー」:301−30(実施例1)及び東洋紡績社製熱可塑性エラストマー「ペルプレン」:GP−100(実施例2)]をテープ状物製造装置で付与してテープ状物を得た。なお、テープ状物製造装置は、これらの樹脂がスリットから溶融吐出する曲面ダイと、溶融樹脂浴(直線ダイ)とを有し、強化繊維がこれらのダイを通過することによって、樹脂が付与されてテープ状物とするものである。
さらに、得られたテープ状物は、弛まないように一方向に並べたものをプレス成形機(成形温度280℃×圧力0.1MPa×1min)で圧縮成形し、実施例1及び実施例2の一方向強化複合材を得た。
【0017】
(比較例1〜2)
実施例1及び実施例2において、市販の炭素繊維(強度5700MPa、弾性率290GPa、処理剤なし)を処理剤溶液で処理しない以外は同様にして、強化繊維及びテープ状物を得た。また、該テープ状物は、実施例1及び実施例2と同様にして圧縮成形し、比較例1及び比較例2の一方向強化複合材を得た。
(比較例3〜4)
実施例1及び実施例2において、処理剤溶液の水分量を減らして表面張力を93×10―N/mの処理剤溶液に変更した以外は実施例1及び実施例2と同様にして、強化繊維及びテープ状物を得た。また、該テープ状物は、実施例1及び実施例2と同様にして圧縮成形し、比較例1及び比較例2の一方向強化複合材を得た。
【0018】
上記の実施例及び比較例の物性を表1に示す。
【表1】

Figure 2005042220
【0019】
実施例1に対して比較例1は強化繊維に処理剤を付与しなかったものである。また、比較例3は表面張力が高い状態で強化繊維に処理剤を付与したものである。
実施例1が比較例1に対して曲げ強度が向上しており、処理剤の表面張力が高い比較例3に対しても、曲げ強度が高いことが分かる。なお、実施例1、ならびに、比較例1と比較例3における曲げ試験後の試料の破断面を観察すると実施例1の強化繊維表面にマトリックスが均一に付着しているのに対して、比較例3の強化繊維表面にマトリックスが付着していない部位が多く認められた。
実施例2、ならびに、比較例2と比較例4は上記の実施例1、ならびに、比較例1と比較例3に対して、マトリックスのみが変わったものであるが、基本的には同様の結果が得られたが、曲げ強度比が1.1未満であり、本発明ほどの物性向上効果は認められない。本発明では、強化繊維とマトリックス樹脂との一体化が向上し、強度に代表される物性が著しく向上する。
また、強化繊維自体は、粘着性がなく、更に、柔軟性も損なわれておらず、取扱い性に優れており、製織工程での問題発生が少なく織物への形態化が容易である。
【0020】
【発明の効果】
本発明によれば、強化繊維はマトリックス樹脂との強固な接着性を確保でき、強度に優れた繊維強化樹脂複合材や成形品を得ることができるのみならず、強化繊維がしなやかさを失わないため、織物などの形態にすることが容易であり、また、振動や衝撃を吸収するための部材への適用も可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reinforced fiber and a fiber reinforced resin composite material suitable as general industrial materials, and relates to a material that can be expected to be applied to fabrics, members for absorbing vibration and impact, and the like.
[0002]
[Prior art]
A fiber-reinforced resin composite (hereinafter referred to as FRP) is a resin called matrix that is reinforced with inorganic fibers such as carbon fibers or glass fibers, or reinforcing fibers such as organic fibers such as aramid fibers or high molecular weight polyethylene fibers. It is. This FRP is a fiber reinforced thermosetting resin composite material (hereinafter referred to as FRTS), polypropylene, polyethylene, and a thermosetting resin such as epoxy resin, unsaturated polyester resin, melamine resin, urea resin, etc., as the resin applied to the matrix. Can be broadly classified into fiber reinforced thermoplastic resin composites (referred to as FRTP) that apply thermoplastic resins such as olefin resins such as polyethylene terephthalate and polybutylene terephthalate, and polycarbonates and polyphenylene sulfide. It is.
In general, the theoretical characteristic value Xc of the FRP is obtained by the following equation from the characteristic values (Xf and Xm) of the reinforcing fiber and the base resin and the volume content (Vf and Vm) of the reinforcing fiber and the matrix.
Xc = Xf Vf + Xm Vm
However, this theoretical characteristic value is achieved only when the reinforcing fiber and the resin are completely integrated, and various methods have been proposed or implemented in order to realize this.
[0003]
As such means, various reinforcing fibers are subjected to plasma treatment, ozone treatment, corona treatment, chemical etching treatment, or the like, which is a method for chemically or physically changing the surface.
On the other hand, as a method that does not change the surface chemically or physically, for example, there are a method in which a fiber is directly coated with a resin and a treatment agent such as an epoxy type or a silane type is added (for example, a patent) References 1 and 2).
[0004]
[Patent Document 1]
JP 56-94640 A [Patent Document 2]
Japanese Patent Laid-Open No. 2002-194669
[Problems to be solved by the invention]
As described above, the method in which the surface is chemically or physically changed has a problem that the deterioration of the fiber due to an excessive reaction or the deterioration of the surface modifying group with time is caused in the short term.
On the other hand, the method that does not change the surface chemically or physically does not damage the reinforcing fibers and can be firmly integrated, so it is an excellent method. Since the reinforcing fiber is hardened with the agent, there remains a problem that it becomes difficult to pass through the guide and heald of the loom when applied to a woven fabric or the like.
[0006]
[Means for Solving the Problems]
As a result of intensive studies on the above problems, the present inventor is a reinforcing fiber that secures strong adhesion between the continuous fiber and the resin without damaging the continuous fiber, and does not lose flexibility. The present inventors have found a molding material that can be applied to a fiber-reinforced resin composite material. That is, the present invention is as follows.
1. A reinforcing fiber for a fiber-reinforced resin composite material, characterized in that a polyester resin in which 20% or more of the dicarboxylic acid component is an aromatic dicarboxylic acid is added to an inorganic or organic continuous fiber.
2. 2. The reinforcing fiber as described in 1 above, wherein the polyester resin is crystalline, has a molecular weight of 4000 or more, and a softening point of 50 ° C. or more.
3. Immerse the opened inorganic or organic continuous fibers in a treatment solution containing a polyester resin in which 20% or more of the dicarboxylic acid component is an aromatic dicarboxylic acid and having a surface tension of 70 × 10 −3 N / m or less. Then, after removing the surplus treating agent solution from the continuous fiber, the fiber is dried and dried.
4). 2. A fiber-reinforced resin composite material, wherein the reinforcing fiber according to 1 is impregnated with a matrix resin.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The continuous fibers in the present invention are inorganic fibers such as metal fibers, glass fibers and carbon fibers, polyethylene terephthalate (PET) fibers, polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT) fibers, PEI fibers, and PAI fibers. Fibers using super engineering plastics such as polyparaphenylene terephthalamide (paraaramid) fiber, polyparaphenylene benzobisthiazole, polyparaphenylene benzobisoxazole (PBO), known as high strength, high heat resistance, and high modulus fiber And organic fibers such as polybenzazole (PBZ) fibers. It is also possible to apply fibers obtained from a novel resin found in cycloolefin resins such as polynobornene, cyclopentene, and cyclobutene. Furthermore, natural fibers can be applied as long as the design of the shock absorbing material is allowed, such as fibers obtained from plants such as bamboo. However, from the viewpoints of strength and elastic modulus, and light weight, it is preferable to use a fiber having a high strength, a high elastic modulus and a relatively low density, preferably carbon fiber, and more preferably organic fiber made of engineering plastic or super engineering plastic. is there.
[0008]
The reinforcing fiber of the present invention is obtained by adding a specific copolymer polyester resin to the continuous fiber.
The copolyester resin in the present invention is a polyester resin in which 20% or more of the dicarboxylic acid component is an aromatic dicarboxylic acid. A crystalline polyester resin having a hydrophilic group that can be dispersed in water, has good wettability to continuous fibers, and has high vibration damping properties is preferable. Such a resin serves to relieve strain and stress due to the difference in elastic modulus between the reinforcing fiber and the matrix resin. Such a polyester resin is not easy to handle if it is sticky at room temperature, so the number average molecular weight is preferably 4000 to 100,000 and the softening point is preferably 50 ° C. or higher.
[0009]
In addition, depending on the continuous fiber to be used, a commercially available silane coupling agent, an epoxy-type processing agent, and an olefin type processing agent can also be used together. Further, plasma treatment, ozone treatment, corona treatment, chemical etching treatment or the like can be used in combination as long as damage to the fiber is allowed.
[0010]
In the present invention, as a treating agent for imparting a specific copolyester resin to the continuous fiber, an aqueous dispersion of the copolyester resin is further applied as a treating agent solution diluted with water or an alcoholic organic solvent. Is preferable from the viewpoints of handleability and harmfulness. Moreover, although this processing agent solution is based on the fiber to apply, it is desirable that surface tension is 70 * 10 < -3 > N / m or less from the point of wettability and permeability. If it is larger than this value, rapid and highly uniform penetration into the fiber cannot be obtained, and an effective interface may not be formed.
[0011]
The method for imparting the specific copolyester resin to the continuous fiber is not particularly limited, but the following method is recommended.
In this method, the inorganic or organic continuous fiber is spread and immersed in the treatment agent solution, and then the excess treatment agent solution is removed from the continuous fiber and dried.
The method for removing the excess treating agent solution from the continuous fiber is not particularly limited, but a method such as passing between nip rollers can be employed.
After removing the excess treating agent solution, the target reinforcing fiber is obtained by removing the solvent by blowing hot air, air or the like and drying. In addition, when immersing in this processing agent solution, it carries out in the state which made the reinforcement fiber slightly loosened, and it can remove an excess of this processing agent solution efficiently by applying tension again after that.
[0012]
When the untreated reinforcing fibers (long fibers) have flexibility and flexibility, the obtained reinforcing fibers can be applied to a form such as a woven fabric because they do not impair the characteristics. It is also possible to apply to a member for absorbing water.
Further, the obtained reinforcing fiber or woven fabric can be made into a fiber reinforced resin composite material such as a yarn, a tape shape, or a plate shape by impregnating with a matrix resin. A molded product can be formed.
[0013]
Furthermore, when the reinforcing fiber of the present invention is used, since the fiber-reinforced resin composite has excellent adhesion to the matrix resin, the strength of the molded product can be improved. When fiber reinforced resin composites and molded articles are obtained using the reinforcing fibers and untreated reinforcing fibers of the present invention, respectively, for example, when comparing the bending strength, when using the reinforcing fibers of the present invention, untreated It is possible to achieve a strength of 1.1 times or more when the above reinforcing fiber is used.
[0014]
【Example】
Hereinafter, the present invention will be described by way of examples. In addition, the evaluation method in an Example is as follows.
(1) Fiber content, adhesion amount, density, void ratio of composite material JIS K 7075 “Fiber content ratio and void ratio test method of carbon fiber reinforced plastic” and JIS K 7052 “Fiber content ratio of glass fiber reinforced plastic” Based on the “measurement method”, the fiber content, the amount of treatment agent attached, the density, and the void ratio were determined.
[0015]
(2) Mechanical properties (bending test properties)
In accordance with JIS K 7074 “Bending test method for carbon fiber reinforced plastics”, the bending strength (maximum bending stress) is obtained, and various treatments are performed based on the bending strength in the sample that has not been subjected to the treatment of the reinforcing fiber. The bending strength ratio of the applied samples was determined as the bending strength ratio.
(3) Surface tension The surface tension was measured using a surface tension meter by the ring method of Du Nouy.
[0016]
(Examples 1-2)
A commercially available carbon fiber (24,000 single yarns, fineness of 8100 dtex, strength of 5700 MPa, elastic modulus of 290 GPa, no treatment agent) is opened using a spread bar, and then a treatment agent with a surface tension of 67 × 10 −3 N / m After dipping in a solution (“Vainal” MD-1985, manufactured by Toyobo Co., Ltd.), the fiber was air-dried for several minutes to obtain reinforcing fibers. The adhesion rate of the resin was 1.3% by mass. Next, a matrix thermoplastic resin [polycarbonate “Caliver” manufactured by Sumitomo Dow Co., Ltd .: 301-30 (Example 1) and a thermoplastic elastomer “Perprene” manufactured by Toyobo Co., Ltd .: GP-100 (Example 2)]] was applied to the reinforcing fibers. A tape-like product was obtained by applying with a tape-like product manufacturing apparatus. The tape-like product manufacturing apparatus has a curved die in which these resins are melted and discharged from the slits and a molten resin bath (straight die), and the reinforcing fibers pass through these dies so that the resin is applied. Tape.
Further, the obtained tape-like material was compression-molded with a press molding machine (molding temperature 280 ° C. × pressure 0.1 MPa × 1 min) so as not to loosen. A unidirectional reinforced composite was obtained.
[0017]
(Comparative Examples 1-2)
In Example 1 and Example 2, a reinforced fiber and a tape-like product were obtained in the same manner except that the commercially available carbon fiber (strength 5700 MPa, elastic modulus 290 GPa, no treatment agent) was not treated with the treatment agent solution. The tape-like material was compression-molded in the same manner as in Example 1 and Example 2 to obtain unidirectionally reinforced composite materials of Comparative Example 1 and Comparative Example 2.
(Comparative Examples 3-4)
In Example 1 and Example 2, except that the moisture content of the treatment solution was reduced and the surface tension was changed to a treatment solution of 93 × 10 −3 N / m, the same as Example 1 and Example 2, Reinforcing fibers and tapes were obtained. The tape-like material was compression-molded in the same manner as in Example 1 and Example 2 to obtain unidirectionally reinforced composite materials of Comparative Example 1 and Comparative Example 2.
[0018]
Table 1 shows the physical properties of the above Examples and Comparative Examples.
[Table 1]
Figure 2005042220
[0019]
In contrast to Example 1, Comparative Example 1 is one in which no treating agent was applied to the reinforcing fibers. In Comparative Example 3, a treatment agent is applied to the reinforcing fiber with a high surface tension.
It can be seen that the bending strength of Example 1 is higher than that of Comparative Example 1, and the bending strength is higher than that of Comparative Example 3 in which the surface tension of the treatment agent is high. In addition, when the fracture surface of the sample after the bending test in Example 1 and Comparative Example 1 and Comparative Example 3 is observed, the matrix is uniformly attached to the reinforcing fiber surface of Example 1, whereas Comparative Example Many sites where no matrix adhered to the surface of the reinforcing fiber 3 were observed.
Example 2 and Comparative Example 2 and Comparative Example 4 differ from Example 1 and Comparative Example 1 and Comparative Example 3 only in the matrix, but basically the same results. However, the bending strength ratio is less than 1.1, and the physical property improvement effect as in the present invention is not recognized. In the present invention, the integration of the reinforcing fiber and the matrix resin is improved, and the physical properties represented by the strength are remarkably improved.
Further, the reinforcing fiber itself is not sticky, further has no flexibility, is easy to handle, has few problems in the weaving process, and can be easily formed into a woven fabric.
[0020]
【The invention's effect】
According to the present invention, the reinforcing fiber can ensure a strong adhesiveness with the matrix resin and not only can obtain a fiber-reinforced resin composite material or a molded product having excellent strength, but the reinforcing fiber does not lose its flexibility. Therefore, it can be easily formed into a woven fabric or the like, and can also be applied to a member for absorbing vibration and impact.

Claims (4)

無機又は有機の連続繊維にジカルボン酸成分の20%以上が芳香族ジカルボン酸であるポリエステル樹脂が付与されなることを特徴とする繊維強化樹脂複合材用の強化繊維。A reinforcing fiber for a fiber-reinforced resin composite material, wherein a polyester resin in which 20% or more of a dicarboxylic acid component is an aromatic dicarboxylic acid is added to an inorganic or organic continuous fiber. 前記ポリエステル樹脂が結晶性であり、分子量が4000以上で、軟化点が50℃以上であることを特徴とする請求項1に記載の強化繊維。The reinforcing fiber according to claim 1, wherein the polyester resin is crystalline, has a molecular weight of 4000 or more, and a softening point of 50 ° C or more. ジカルボン酸成分の20%以上が芳香族ジカルボン酸であるポリエステル樹脂を含み表面張力が70×10−3N/m以下である処理剤溶液中に、開繊させた無機又は有機の連続繊維を浸漬させた後、該連続繊維から余剰の処理剤溶液を除去し乾燥することを特徴とする強化繊維の製造方法。Immerse the opened inorganic or organic continuous fibers in a treatment solution containing a polyester resin in which 20% or more of the dicarboxylic acid component is an aromatic dicarboxylic acid and having a surface tension of 70 × 10 −3 N / m or less. Then, after removing the surplus treating agent solution from the continuous fiber, the fiber is dried and dried. 請求項1に記載の強化繊維にマトリックス樹脂を含浸させたことを特徴とする繊維強化樹脂複合材。A fiber-reinforced resin composite material, wherein the reinforcing fiber according to claim 1 is impregnated with a matrix resin.
JP2003200364A 2003-07-23 2003-07-23 Reinforced fiber, method for producing the same and fiber-reinforced resin composite material Pending JP2005042220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003200364A JP2005042220A (en) 2003-07-23 2003-07-23 Reinforced fiber, method for producing the same and fiber-reinforced resin composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003200364A JP2005042220A (en) 2003-07-23 2003-07-23 Reinforced fiber, method for producing the same and fiber-reinforced resin composite material

Publications (1)

Publication Number Publication Date
JP2005042220A true JP2005042220A (en) 2005-02-17

Family

ID=34260794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003200364A Pending JP2005042220A (en) 2003-07-23 2003-07-23 Reinforced fiber, method for producing the same and fiber-reinforced resin composite material

Country Status (1)

Country Link
JP (1) JP2005042220A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140079849A (en) 2011-10-21 2014-06-27 마쓰모토유시세이야쿠 가부시키가이샤 Sizing agent for carbon fibers, carbon fiber strand, and fiber-reinforced composite material
JP2017110064A (en) * 2015-12-15 2017-06-22 三菱エンジニアリングプラスチックス株式会社 Manufacturing method of resin covered metal long fiber pellet and manufacturing method of molded article
JPWO2018079448A1 (en) * 2016-10-26 2019-09-19 ヤマハ株式会社 Instrument board and stringed instrument

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140079849A (en) 2011-10-21 2014-06-27 마쓰모토유시세이야쿠 가부시키가이샤 Sizing agent for carbon fibers, carbon fiber strand, and fiber-reinforced composite material
US9932703B2 (en) 2011-10-21 2018-04-03 Matsumoto Yushi-Seiyaku Co., Ltd. Carbon fiber sizing agent, carbon fiber strand, and fiber-reinforced composite
JP2017110064A (en) * 2015-12-15 2017-06-22 三菱エンジニアリングプラスチックス株式会社 Manufacturing method of resin covered metal long fiber pellet and manufacturing method of molded article
JPWO2018079448A1 (en) * 2016-10-26 2019-09-19 ヤマハ株式会社 Instrument board and stringed instrument
JP7234633B2 (en) 2016-10-26 2023-03-08 ヤマハ株式会社 guitar soundboard

Similar Documents

Publication Publication Date Title
US8399064B2 (en) Process for improving the adhesion of carbon fibres with regard to an organic matrix
Ma et al. Effect of polyurethane dispersion as surface treatment for carbon fabrics on mechanical properties of carbon/Nylon composites
JPH0320423B2 (en)
JP2012207326A (en) Poly-para-phenylene terephthalamide fiber composite and method for producing the same
Bessa et al. Influence of surface treatments on the mechanical properties of fibre reinforced thermoplastic composites
Kumar et al. Effects of abaca fiber reinforcement on the dynamic mechanical behavior of vinyl ester composites
JP2016176168A (en) Cord for rubber reinforcement
CN111183019B (en) Aramid fabric, aramid fabric preparation method, aramid fabric prepreg and aramid fabric/thermoplastic polyurethane matrix resin composite
Islam et al. Experimental investigation of mechanical properties of jute/hemp fibers reinforced hybrid polyester composites
Loh et al. Natural silkworm silk-epoxy resin composite for high performance application
JP2005042220A (en) Reinforced fiber, method for producing the same and fiber-reinforced resin composite material
JP2009242964A (en) Carbon fiber and method for producing the same
Paglicawan et al. Water uptake and tensile properties of plasma treated abaca fiber reinforced epoxy composite
Rong et al. Effect of stitching on in-plane and interlaminar properties of sisal/epoxy laminates
CN111801450A (en) Carbon fiber and method for producing same
JP2021105243A (en) Rubber-reinforcing cord and rubber product using the same
Arju et al. Role of reactive dye and chemicals on mechanical properties of jute fabrics polypropylene composites
JPH03185139A (en) Carbon yarn cord and production thereof
WO2022114217A1 (en) Composite material, method for producing same, and method for producing reinforcing fiber base material
JPH0726415A (en) Polybenzobisoxazole fiber having improved adhesiveness and its production
JP2006322083A (en) Method for producing polyester fibrous material for tire cap ply cord
CN114667310A (en) Fiber-reinforced thermoplastic resin molded article
Partuti et al. Effect of fibre volume fraction and sodium hydroxide treatment on mechanical properties of palm fibre/unsaturated polyester composite
Chaishome et al. The influence of alkaline treatment of plant fibres on tensile properties of single fibres and composites
Varada Rajulu et al. Tensile properties of ligno-cellulosic fabrics coated with styrenated polyester resin