JP2005042193A - Method for manufacturing metal- or ceramic-containing foamed sintered body - Google Patents

Method for manufacturing metal- or ceramic-containing foamed sintered body Download PDF

Info

Publication number
JP2005042193A
JP2005042193A JP2004076979A JP2004076979A JP2005042193A JP 2005042193 A JP2005042193 A JP 2005042193A JP 2004076979 A JP2004076979 A JP 2004076979A JP 2004076979 A JP2004076979 A JP 2004076979A JP 2005042193 A JP2005042193 A JP 2005042193A
Authority
JP
Japan
Prior art keywords
metal
foamed
ceramic
foaming
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004076979A
Other languages
Japanese (ja)
Other versions
JP3858096B2 (en
Inventor
Toru Shimizu
透 清水
Kanichi Hajikano
寛一 初鹿野
Kotaro Hanada
幸太郎 花田
Kunio Matsuzaki
邦男 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004076979A priority Critical patent/JP3858096B2/en
Publication of JP2005042193A publication Critical patent/JP2005042193A/en
Priority to US11/076,229 priority patent/US7481968B2/en
Application granted granted Critical
Publication of JP3858096B2 publication Critical patent/JP3858096B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an extremely industrially advantageous method for manufacturing a bulk closed-cell-type metal- or ceramic-containing foamed sintered body of high degree of foaming and high porosity by which the foamed sintered body can be manufactured even if hard-to-work materials, such as ceramics, as well as a wide range of metals are used as a raw material. <P>SOLUTION: A mixture containing a metal or ceramic powder, a water-soluble high polymer having gelation property and a foaming agent is gelatinized, foamed and then sintered. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、金属又はセラミックス含有発泡焼結体の製造方法に関する。   The present invention relates to a method for producing a metal or ceramic-containing foam sintered body.

従来、金属発泡焼結成形体の製造法としては、溶融した金属中にガスを吹き込む方法、中空のバルーンを混入する方法、TiHなどの発泡剤を投入して発泡させて凝固させる方法などが知られている。
しかし、これらの方法は金属種として、融点が比較的低く溶湯の取り扱いが容易である金属材料或いは発泡剤のガス放出温度域と溶湯の温度域とが一致する金属材料等に限られ、広範な金属種を対象とすることができず、また溶湯内の気泡が抜けていかないように粘度の調整を行う必要があり、実使用上はアルミニウム等の金属の発泡焼結成形体を得る方法に適用されているに過ぎなかった。
Conventionally, methods for producing a metal foam sintered compact include a method of blowing a gas into a molten metal, a method of mixing a hollow balloon, a method of injecting a foaming agent such as TiH 2 and foaming and solidifying. It has been.
However, these methods are limited to a metal material having a relatively low melting point and easy handling of the molten metal, or a metal material in which the gas releasing temperature range of the blowing agent and the molten metal temperature range coincide with each other. It is not possible to target metal species, and it is necessary to adjust the viscosity so that bubbles in the molten metal do not escape. In actual use, it is applied to a method for obtaining foamed sintered compacts of metals such as aluminum. It was only there.

また、これらの改良として、金属粉末に発泡材を混合したコンパウンドを、粉末鍛造法や押し出し法等の処理により個体化し、その後、発泡剤のガス発生温度付近で焼結することにより発泡させる方法が提案されている。
しかし、この方法も適用される金属種は発泡材の発泡温度と材料の溶融温度が対応する材料、例えばアルミニウムなどの金属材料に限られ、広範な金属種を対象とすることができないという欠点があった。
In addition, as an improvement to these, there is a method in which a compound obtained by mixing a metal powder with a foaming material is solidified by processing such as a powder forging method or an extrusion method, and then foamed by sintering near the gas generation temperature of the foaming agent. Proposed.
However, the metal species to which this method is also applied is limited to a material corresponding to the foaming temperature of the foaming material and the melting temperature of the material, for example, a metal material such as aluminum. there were.

また、金属粉体等を、バインダーと混ぜてコンパウンドあるいはスラリーとし、それに焼失部材を混入して焼結時に焼きとばす方法、コンパウンド・スラリーを直接発泡させる方法なども開発されているがそれぞれ問題を抱えている。
すなわち、焼失部材を混入する方法では気孔率に限界があり80%をこえる気孔率の発泡体を作製することは難しい。
In addition, methods such as mixing metal powders with binders into compounds or slurries, mixing burned-out members with them and burning them out during sintering, and directly foaming compound slurries have been developed, but each has its own problems. ing.
That is, the method of mixing the burned-out member has a limit in porosity and it is difficult to produce a foam having a porosity exceeding 80%.

一方、スラリーやコンパウンドを発泡させる方法では95%を超える気孔率の発泡体を作製することが可能であり、その一つの方法として発泡ポリウレタン作製の前駆体に粉体を混入し、発泡ポリウレタン作製と同様の手順で発泡前駆体を作製する方法が知られている。この手法では高い気孔率を持つ微細な発泡前駆体が得られるものの、発泡体の組織はオープンセルとなり、また焼結後に残留するポリウレタンに含まれ燒結後に金属中に残留するシリカやリンの成分などが問題となる。   On the other hand, in the method of foaming slurry or compound, it is possible to produce a foam having a porosity of more than 95%. As one of the methods, powder is mixed into the precursor for producing polyurethane foam, A method for producing a foam precursor by a similar procedure is known. Although this method produces a fine foam precursor with a high porosity, the foam structure becomes an open cell, and the components of silica and phosphorus that are contained in the polyurethane remaining after sintering and remain in the metal after sintering. Is a problem.

また、スラリーに発泡剤を混入し、ドクターブレード法によりシート状にしながら同時に加熱して発泡,乾燥させて発泡前駆体を作製する方法も提案されている(特許文献1)。
この方法も95%を越える高気孔率の発泡材料の作製が可能であるが、スラリーをそのまま発泡させているため作製できる製品の厚さは自重と使用するバインダーの粘性などにより限界があり、厚さ1cmを超えるバルク状の発泡前駆体の製造は難しく、また、得られる発泡体の組織もオープンセルとなる。
以上のように、金属粉体等の焼結により95%を超える気孔率のクローズドセル型発泡材料のバルク素材を工業的に有利な作製技術は未だ確立していないのが現状である。
特開平9−87704号公報
There has also been proposed a method in which a foaming agent is mixed in a slurry, and simultaneously foamed and dried while being formed into a sheet by a doctor blade method to produce a foam precursor (Patent Document 1).
This method can also produce a foam material with a high porosity exceeding 95%, but the thickness of the product that can be produced is limited by its own weight and the viscosity of the binder used because the slurry is foamed as it is. Production of a bulk foam precursor exceeding 1 cm in length is difficult, and the resulting foam structure is also an open cell.
As described above, an industrially advantageous production technique for a bulk material of a closed cell type foam material having a porosity of more than 95% by sintering metal powder or the like has not been established yet.
JP-A-9-87704

本発明は、広範囲な金属は勿論のことセラミックスなどの難加工性材料を素材としても、高発泡、高気孔率のバルク状クローズドセル型の金属又はセラミックス含有発泡焼結成形体の作製を可能にする、工業的に極めて有利な該発泡焼結成形体の製造方法を提供することを目的とする。   The present invention makes it possible to produce high-foamed, high-porosity, bulk closed-cell metal or ceramic-containing foamed sintered compacts that are made of difficult-to-work materials such as ceramics as well as a wide range of metals. Another object of the present invention is to provide a method for producing the foamed sintered molded article which is extremely advantageous industrially.

本発明者は鋭意検討した結果、バインダー樹脂として、ゲル化能を有する高分子用いると共に該高分子と金属又はセラミックス粉末と発泡剤を含むスラリー混合物をそのまま発泡させるのではなく、ゲル化させ、形状を固定した後、発泡させると、高発泡、高気孔率のバルク状クローズドセル型の金属又はセラミックス含有発泡焼結成形体が得られることを見いだし本発明を完成するに至った。
すなわち、本発明によれば、以下の発明が提供される。
(1)金属又はセラミックス粉末とゲル化能を有する水溶性高分子と発泡剤を含む混合物をゲル化させた後、発泡させついで焼結することを特徴とする金属又はセラミックス含有発泡焼結体の製造方法。
(2)上記混合物が界面活性剤を含むものであることを特徴とする上記(1)に記載の金属又はセラミックス含有発泡焼結体の製造方法。
(3)ゲル化能を有する水溶性高分子がポリビニルアルコールであることを特徴とする上記(1)又は(2)に記載の金属又はセラミックス含有発泡焼結体の製造方法。
(4)ゲル化させた後、形状を固定化することを特徴とする上記(1)乃至(3)何れかに記載の金属又はセラミックス含有発泡焼結体の製造方法。
(5)金属又はセラミックス粉末とゲル化能を有する水溶性高分子と発泡剤を含む混合物のゲル化物からなる、上記(1)乃至(4)何れかに記載の製造方法に用いられる発泡前駆体。
As a result of intensive studies, the inventor has used a gelling ability polymer as a binder resin and does not foam the slurry mixture containing the polymer and a metal or ceramic powder and a foaming agent as it is, but gelates the shape. After fixing the foam, it was found that when foamed, a high-foamed, high-porosity bulk closed-cell metal or ceramic-containing foamed sintered compact was obtained, and the present invention was completed.
That is, according to the present invention, the following inventions are provided.
(1) A metal or ceramics-containing foamed sintered body obtained by gelling a mixture containing a metal or ceramic powder, a water-soluble polymer having gelling ability, and a foaming agent, followed by foaming and then sintering. Production method.
(2) The method for producing a metal- or ceramics-containing foamed sintered body according to (1) above, wherein the mixture contains a surfactant.
(3) The method for producing a metal- or ceramic-containing foamed sintered body as described in (1) or (2) above, wherein the water-soluble polymer having gelling ability is polyvinyl alcohol.
(4) The method for producing a metal- or ceramic-containing foam sintered body according to any one of (1) to (3) above, wherein the shape is fixed after gelation.
(5) A foam precursor used in the production method according to any one of (1) to (4) above, comprising a gelled product of a mixture containing a metal or ceramic powder, a water-soluble polymer having gelling ability, and a foaming agent. .

本発明方法によれば、金属種として、融点が比較的低く溶湯の取り扱いが容易である金属材料或いは発泡剤のガス放出温度域と溶湯の温度域とが一致する金属材料等に限定されることなく、簡単な成形法で、広範囲な金属種あるいはセラミックスなどの難加工性材料を素材とした場合においても広範囲な金属は勿論のことセラミックスなどの難加工性材料を素材としても、高発泡、高気孔率のバルク状クローズドセル型の金属又はセラミックス含有発泡焼結成形体を有利に製造することが可能となる。また得られた発泡焼結成形体は、・航空宇宙材料、スポーツ用品素材、等の軽量かつ高比強度が要求される分野、断熱特性、耐熱性、吸振性の要求される分野、緩衝材料、梱包材料などの衝撃エネルギーの吸収が要求される分野、軽量化の要求される分野、フィルター材料、触媒担体材料、電極材料など広い表面積が要求される分野、あるいは生体適合性の要求される分野における素材として応用する可能である。   According to the method of the present invention, the metal species is limited to a metal material having a relatively low melting point and easy handling of the molten metal, or a metal material in which the gas releasing temperature range of the blowing agent coincides with the molten metal temperature range. In addition, even when a wide range of metal species or difficult-to-work materials such as ceramics are used as a raw material by a simple molding method, not only a wide range of metals but also difficult-to-work materials such as ceramics are used as a material. A porous closed-cell metal or ceramics-containing foam sintered compact having a porosity can be advantageously produced. In addition, the obtained foamed sintered compacts are used in fields that require lightweight and high specific strength, such as aerospace materials and sports equipment materials, fields that require heat insulation properties, heat resistance, and vibration absorption, buffer materials, and packaging. Materials in fields that require absorption of impact energy such as materials, fields that require weight reduction, fields that require a large surface area such as filter materials, catalyst carrier materials, electrode materials, or fields that require biocompatibility It is possible to apply as

本発明方法においては、バインダー樹脂としてゲル化能を有する高分子水溶液を用い、これに金属又はセラミックス粉末を混合し、スラリー化した後、発泡剤を添加し、このスラリー組成物まずゲル化させて形状を固定する。ついでこのゲル化物を加熱して、スポンジ状に発泡させ、ついで乾燥することによってその発泡した形状が固定される。この場合、気孔のセル壁は粉末を含んだままこわれないため、気孔の状態はクローズドセルとなる。したがって、本発明方法によれば、従来、製造できなかった素材での高気孔率クローズドセル型発泡材料のバルク素材の製造が可能となる。なお、本発明でいうクローズドセルとは、発泡した状態において泡のセル壁(セルフェイス)がふさがれている状態と定義される。すなわち、コルクなどに等に特徴的に見られる発泡形態であり、オープンセルに対して構造強度等が高いといわれる。また、オープンセルとは発泡した状態において泡のセル壁(セルフェイス)がふさがれておらず、泡の支柱(セルエッジ)が主要な構成要素となる状態と定義される。すなわち、スポンジ等に特徴的に見られる発泡形態であり、高い通気性を持つ発泡状態である、と定義される。しかし、クローズドセル型の気孔は発泡プロセス途中でのセルの破れ等によりかならずしも独立気泡ではなく、多くの場合、連通気泡となっており、また、高気孔率の発泡材料ではセル壁は粉末粒子がほぼ1層から2層に並んだ状態となるため、め、高気孔率材料では焼結後のセル壁の厚さは使用した粉末の粒子径程度となる。   In the method of the present invention, a polymer aqueous solution having a gelling ability is used as a binder resin, and a metal or ceramic powder is mixed and slurried, and then a foaming agent is added, and the slurry composition is first gelled. Fix the shape. The gelled product is then heated to foam into a sponge and then dried to fix the foamed shape. In this case, since the cell walls of the pores do not break while containing the powder, the state of the pores is a closed cell. Therefore, according to the method of the present invention, it is possible to manufacture a bulk material of a high-porosity closed-cell foam material using a material that could not be manufactured conventionally. In addition, the closed cell as used in the field of this invention is defined as the state where the cell wall (cell face) of the foam is blocked in the foamed state. That is, it is a foamed form characteristically found in cork and the like, and is said to have high structural strength and the like with respect to open cells. The open cell is defined as a state in which the foam cell wall (cell face) is not blocked in the foamed state, and the foam strut (cell edge) is the main component. That is, it is defined as a foamed form that is characteristic of a sponge or the like and in a foamed state having high air permeability. However, closed cell type pores are not always closed cells due to cell breakage during the foaming process, etc., and in many cases, they are open cells. In the high porosity material, the thickness of the cell wall after sintering is about the particle size of the powder used because it is in a state of being arranged in approximately one to two layers.

本発明で用いる、金属粉末としては、金、白金、パラジウム、銀等の貴金属粉末やそれらの合金粉末、ニッケル系合金、ステンレス鋼粉末、超硬合金粉末、工具鋼、高速度鋼、チタン系合金の他、水と接触させても急激に酸化しない金属粉末、などが挙げられる。
また、ステンレス鋼、一般鋼、チタン合金などの研磨スラッジの利用も可能であり、特にステンレス鋼からの研磨スラッジは高品位であることから特に好ましく使用される。
また、セラミックス粉末として、アルミナ、ジルコニア、PZT、その他のセラミックス粉末が挙げられる。
金属粉末およびセラミックス粉末の粒径に特別な制限はなく、平均粒径が100μmからサブミクロンの粉末が好ましく使用される。
The metal powder used in the present invention includes noble metal powders such as gold, platinum, palladium, and silver, and alloy powders thereof, nickel-based alloys, stainless steel powders, cemented carbide powders, tool steels, high-speed steels, titanium-based alloys. In addition, metal powder that does not oxidize rapidly even when brought into contact with water can be used.
In addition, polishing sludge such as stainless steel, general steel, and titanium alloy can be used. In particular, polishing sludge from stainless steel is particularly preferably used because of its high quality.
Examples of the ceramic powder include alumina, zirconia, PZT, and other ceramic powders.
There is no particular limitation on the particle diameter of the metal powder and the ceramic powder, and a powder having an average particle diameter of 100 μm to submicron is preferably used.

本発明で用いる、ゲル化能を有する高分子としては、使用する水溶性高分子としてはポリビニールアルコール、アルギン酸ナトリウム、寒天、マンノース、クアーガム、ペクチン,キサンタンガム、メチルセルロース、エチルセルロース、などの水溶性でゲル化能のあるものを選択する。本発明で好ましく使用される水溶性高分子はポリビニルアルコールである。   As the polymer having gelation ability used in the present invention, the water-soluble polymer to be used is a water-soluble gel such as polyvinyl alcohol, sodium alginate, agar, mannose, guar gum, pectin, xanthan gum, methylcellulose, ethylcellulose, etc. Select the one with the ability. The water-soluble polymer preferably used in the present invention is polyvinyl alcohol.

金属又はセラミックス粉末と水溶液の混合割合は体積比で2:1から1:20まで広く選択することが可能であるが1:1から1:9程度の割合が推奨され、1:2から1:5程度が発泡操作が容易となる。   The mixing ratio of the metal or ceramic powder and the aqueous solution can be widely selected from a volume ratio of 2: 1 to 1:20, but a ratio of 1: 1 to 1: 9 is recommended, and 1: 2 to 1: About 5 makes the foaming operation easy.

本発明で用いる、発泡剤としては、ガスを発生して気泡を形成するものであれば、従来公知の発泡剤の何れもが使用できる。このような発泡剤としては、炭素数5〜8の炭化水素系有機溶剤のような有機発泡剤や炭酸水素ナトリウム等の無機発泡剤を挙げることができる。この場合、発泡剤としての有機溶剤は水より沸点が低いものの中から発泡特性を考慮しながら適宜選択するのが好ましく、このような有機溶剤としては、ペンタン類、ヘキサン類、ヘプタン類、ベンゼン類、トルエン類などが挙げられる。発泡剤の配合量は、スラリー全体の体積に対して0〜50%程度であり、希望する発泡率に対して適宜に調節する。   As the foaming agent used in the present invention, any conventionally known foaming agent can be used as long as it generates gas and forms bubbles. Examples of such foaming agents include organic foaming agents such as hydrocarbon organic solvents having 5 to 8 carbon atoms and inorganic foaming agents such as sodium hydrogen carbonate. In this case, the organic solvent as the blowing agent is preferably selected from those having a boiling point lower than that of water in consideration of the foaming characteristics. Examples of such organic solvents include pentanes, hexanes, heptanes, and benzenes. And toluene. The blending amount of the foaming agent is about 0 to 50% with respect to the volume of the entire slurry, and is adjusted as appropriate for the desired foaming rate.

本発明で用いる発泡前駆体混合物は、前記、金属又はセラミックス粉末とゲル化能を有する水溶性高分子及び発泡剤を必須成分とするが、発泡剤を均質に分散し、また発泡状態を安定化させるために界面活性剤を使用することが望ましい。このような界面活性剤としては、従来公知の何れもが使用でき、例えばアルキルベンゼンスルホン酸塩、α−オレフィンスルホン酸塩、アルキル硫酸エステル塩、アルキルエーテル硫酸エステル塩、アルカンスルホン酸塩等のアニオン系界面活性剤、ポリエチレングリコール誘導体、多価アルコール誘導体等の非イオン系界面活性剤等が挙げられる。界面活性剤の使用量は、発泡剤の使用量に応じて適宜定められるが、通常 発泡剤の体積を100%とすれば1〜200%、好ましくは5〜100%程度である。この体積割合は使用する界面活性剤の種類、発泡剤の分散状態により大幅に変動する。
更に、本発明においては、界面活性剤と共に、気孔率調整、分散効果の向上の目的で適宜、グリセリン、エチレングリコール,その他の可塑剤を添加することもできる。
The foam precursor mixture used in the present invention contains the above-mentioned metal or ceramic powder, water-soluble polymer having gelling ability and a foaming agent as essential components, but the foaming agent is uniformly dispersed and the foamed state is stabilized. It is desirable to use a surfactant for this purpose. As such a surfactant, any conventionally known surfactant can be used, for example, anionic series such as alkylbenzene sulfonate, α-olefin sulfonate, alkyl sulfate ester salt, alkyl ether sulfate ester, alkane sulfonate, etc. Nonionic surfactants such as surfactants, polyethylene glycol derivatives, polyhydric alcohol derivatives and the like can be mentioned. The amount of the surfactant used is appropriately determined according to the amount of the foaming agent, but is usually about 1 to 200%, preferably about 5 to 100% if the volume of the foaming agent is 100%. This volume ratio varies greatly depending on the type of surfactant used and the state of dispersion of the foaming agent.
Furthermore, in the present invention, glycerin, ethylene glycol, and other plasticizers can be appropriately added together with the surfactant for the purpose of adjusting the porosity and improving the dispersion effect.

本発明においては、前記した、金属又はセラミックス粉末、ゲル化能を有する水溶性高分子、発泡剤及び必要に応じて添加される界面活性剤、他の添加剤からなるスラリー混合物をさらに高い粘性状態とするためにゲル化させることが必要である。ゲル化させないで、スラリーのまま加熱により発泡させると、気泡が乾燥して固定化する以前に結合・消泡を開始し十分な厚みのあるバルク状の発泡体を得ることが困難となる。
前記混合物をゲル化させる手段は、用いる水溶性高分子の種類によって異なるが、たとえば、ポリビニールアルコールは凍結保持することにより、あるいは硼砂等のゲル化剤を添加することにより簡単にゲル化する。また、寒天、ペクチン、キサンタンガムは室温以下に冷却することにより、アルギン酸ナトリウム、マンノース等はゲル化イオンを混入させることにより、また、メチルセルロース,エチルセルロースは加熱によりゲル化する。このようなゲル化により、金属又はセラミックス粉末とゲル化能を有する水溶性高分子と発泡剤を含む混合物のゲル化物からなる、発泡前駆体が得られる。
In the present invention, the above-described slurry mixture comprising a metal or ceramic powder, a water-soluble polymer having gelling ability, a foaming agent and a surfactant added as necessary, and other additives is further in a highly viscous state. In order to achieve this, it is necessary to make it gel. When foaming is carried out by heating while the slurry is not gelled, it becomes difficult to obtain a bulk foam having a sufficient thickness by starting binding and defoaming before the bubbles are dried and fixed.
The means for gelling the mixture varies depending on the type of water-soluble polymer to be used. For example, polyvinyl alcohol is easily gelled by freezing or adding a gelling agent such as borax. In addition, agar, pectin and xanthan gum are cooled to room temperature or lower, sodium alginate, mannose and the like are mixed with gelling ions, and methylcellulose and ethylcellulose are gelated by heating. By such gelation, a foam precursor composed of a gel product of a mixture containing a metal or ceramic powder, a water-soluble polymer having gelling ability, and a foaming agent is obtained.

本発明方法において、かかる発泡前駆体を加熱し、発泡させた後、乾燥し、ついで焼結させる。発泡温度、乾燥温度及び焼結温度は、原料である金属やセラミックス、ゲル化能を有する水溶性高分子の再軟化温度、発泡剤などの種類によって適宜選定すればよい。通常、発泡温度は 40℃〜90℃の間であり使用する高分子、発泡剤、想定する気孔率に応じて適宜に選択する。また、乾燥は発泡と同時に進行させる。焼結温度は使用する素材粉の種類と粒径、想定する密度等に応じて大幅に変化する。このような処理により、本発明方法においては、気孔のセル壁は金属又はセラミックス粉末を含んだまま壊れないため、気孔の状態はクローズドセルとなるため、従来、製造できなかった素材での高気孔率クローズドセル形発泡材料のバルク素材の製造が可能となる。   In the method of the present invention, the foam precursor is heated, foamed, dried, and then sintered. The foaming temperature, the drying temperature, and the sintering temperature may be appropriately selected depending on the kind of the raw material such as metal or ceramic, the resoftening temperature of the water-soluble polymer having gelling ability, and the foaming agent. Usually, the foaming temperature is between 40 ° C. and 90 ° C., and is appropriately selected according to the polymer used, the foaming agent, and the assumed porosity. Moreover, drying is advanced simultaneously with foaming. The sintering temperature varies greatly depending on the type and particle size of the raw material powder used, the assumed density, and the like. By such treatment, in the method of the present invention, since the pore cell wall does not break while containing the metal or ceramic powder, the pore state becomes a closed cell. It is possible to manufacture a bulk material of a closed cell type foam material.

従って、本発明方法によれば、金属種として、融点が比較的低く溶湯の取り扱いが容易である金属材料或いは発泡剤のガス放出温度域と溶湯の温度域とが一致する金属材料等に限定されることなく、簡単な成形法で、広範囲な金属種あるいはセラミックスなどの難加工性材料を素材とした場合においても広範囲な金属は勿論のことセラミックスなどの難加工性材料を素材としても、高発泡、高気孔率のバルク状クローズドセル型の金属又はセラミックス含有発泡焼結成形体を有利に製造することが可能となる。また得られた発泡焼結成形体は、・航空宇宙材料、スポーツ用品素材、等の軽量かつ高比強度が要求される分野、断熱特性、耐熱性、吸振性の要求される分野、緩衝材料、梱包材料などの衝撃エネルギーの吸収が要求される分野、軽量化の要求される分野、フィルター材料、触媒担体材料、電極材料など広い表面積が要求される分野、あるいは生体適合性の要求される分野における素材として応用する可能である。   Therefore, according to the method of the present invention, the metal species is limited to a metal material having a relatively low melting point and easy handling of the molten metal, or a metal material in which the gas releasing temperature range of the blowing agent and the molten metal temperature range coincide. Even when a wide range of metal species or difficult-to-work materials such as ceramics are used as a raw material, a simple foaming method can be used. Thus, it becomes possible to advantageously produce a metal-ceramics-containing foam sintered compact having a high porosity and a bulk closed cell type. In addition, the obtained foamed sintered compacts are used in fields that require lightweight and high specific strength, such as aerospace materials and sports equipment materials, fields that require heat insulation properties, heat resistance, and vibration absorption, buffer materials, and packaging. Materials in fields that require absorption of impact energy such as materials, fields that require weight reduction, fields that require a large surface area such as filter materials, catalyst carrier materials, electrode materials, or fields that require biocompatibility It is possible to apply as

以下、本発明を実施例により更に詳細に説明する。
実施例1
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1

金属粉として、平均粒径3μmのSUS316Lステンレス粉(アトミックス社、PF-3)を用いた。高分子水溶液にはポリビニールアルコール水溶液を用いた。ポリビニールアルコールには平均分子量115000、鹸化度99%以上のものを用い、8mass%水溶液とした。さらに水溶液80vol%に対して10vol%のノルマルヘキサン、10vol%の中性洗剤(主成分:アルキルエーテル硫酸エステルナトリウム)を混合した。この水溶液と金属分を堆積比で5:2で混合してスラリーとした。スラリーはそのまま凍結させ24−48時間凍結保持してゲル化させた。解凍後、このゲル化物を、80℃に保持した恒温槽で10時間程保持する事により発泡・乾燥させる。この様に作製した発泡前駆体を真空炉により1000℃で焼結する。これらの操作により、厚み100mm、密度0.4g/cm、気孔率95%以上のクローズドセル形発泡材料が得られた。得られた発泡材料がクローズドセル形発泡材料であることは、電子顕微鏡観察により確認された。またこの場合の気孔のセル厚さは電子顕微鏡観察から5μm程度となっていることが観察された。
実施例2
As the metal powder, SUS316L stainless steel powder (Atomic Co., PF-3) having an average particle diameter of 3 μm was used. A polyvinyl alcohol aqueous solution was used as the polymer aqueous solution. Polyvinyl alcohol having an average molecular weight of 115000 and a saponification degree of 99% or more was used as an 8 mass% aqueous solution. Furthermore, 10 vol% normal hexane and 10 vol% neutral detergent (main component: sodium alkyl ether sulfate) were mixed with 80 vol% of the aqueous solution. This aqueous solution and metal component were mixed at a deposition ratio of 5: 2 to form a slurry. The slurry was frozen as it was and kept frozen for 24-48 hours to gel. After thawing, the gelled product is foamed and dried by holding for about 10 hours in a thermostatic bath maintained at 80 ° C. The foam precursor thus produced is sintered at 1000 ° C. in a vacuum furnace. By these operations, a closed cell foam material having a thickness of 100 mm, a density of 0.4 g / cm, and a porosity of 95% or more was obtained. It was confirmed by electron microscope observation that the obtained foamed material was a closed-cell foamed material. In this case, the cell thickness of the pores was observed to be about 5 μm from observation with an electron microscope.
Example 2

セラミックス粉として、平均粒径μmのアルミナ粉(大明化学工業株式会社)を用いた。高分子水溶液にはポリビニールアルコール水溶液を用いた。ポリビニールアルコールには平均分子量115000、鹸化度99%以上のものを用い、8mass%水溶液とした。さらに水溶液80vol%に対して10vol%のノルマルヘキサン、10%の中性洗剤(主成分:アルキルエーテル硫酸エステルナトリウム)を混合した。この水溶液と金属分を堆積比で5:2で混合してスラリーとした。スラリーはそのまま凍結させ24−48時間凍結保持してゲル化させた。解凍後、このゲル化物を、80℃に保持した恒温槽で10時間程保持する事により発泡・乾燥させる。この様に作製した発泡前駆体を大気炉により1500℃で焼結する。これらの操作により、厚み、密度0.20g/cm以下、気孔率95%以上のクローズドセル形アルミナ発泡材料を作製した。得られた発泡材料がクローズドセル形発泡材料であることは、電子顕微鏡観察により確認された。またこの場合の気孔のセル厚さは電子顕微鏡観察から1μm程度となっていることが観察された。
実施例3
As ceramic powder, alumina powder (Daimei Chemical Co., Ltd.) having an average particle diameter of μm was used. A polyvinyl alcohol aqueous solution was used as the polymer aqueous solution. Polyvinyl alcohol having an average molecular weight of 115000 and a saponification degree of 99% or more was used as an 8 mass% aqueous solution. Further, 10 vol% normal hexane and 10% neutral detergent (main component: sodium alkyl ether sulfate) were mixed with 80 vol% of the aqueous solution. This aqueous solution and metal component were mixed at a deposition ratio of 5: 2 to form a slurry. The slurry was frozen as it was and kept frozen for 24-48 hours to gel. After thawing, the gelled product is foamed and dried by holding for about 10 hours in a thermostatic bath maintained at 80 ° C. The foam precursor thus produced is sintered at 1500 ° C. in an atmospheric furnace. By these operations, a closed cell type alumina foam material having a thickness, a density of 0.20 g / cm or less and a porosity of 95% or more was produced. It was confirmed by electron microscope observation that the obtained foamed material was a closed-cell foamed material. In this case, the cell thickness of the pores was observed to be about 1 μm from observation with an electron microscope.
Example 3

チタン粉として、平均粒径30μmの純チタン粉(タイロップ-45)を用いた。高分子水溶液にはポリビニールアルコール水溶液を用いた。ポリビニールアルコールには平均分子量115000、鹸化度99%以上のものを用い、8mass%水溶液とした。さらに水溶液80vol%に対して10vol%のノルマルヘキサン、10%の中性洗剤(主成分:アルキルエーテル硫酸エステルナトリウム)を混合した。この水溶液と金属分を堆積比で5:2で混合してスラリーとした。スラリーはそのまま凍結させ24−48時間凍結保持してゲル化させた。解凍後、ゲル化物を、80℃に保持した恒温槽で10時間程保持する事により発泡・乾燥させる。この様に作製した発泡前駆体を真空炉により1150℃で焼結する。これらの操作により、厚み30mm、密度0.8g/cm、気孔率90%以上のクローズドセル形チタン発泡材料が得られた。得られた発泡材料がクローズドセル形発泡材料であることは、電子顕微鏡観察により確認された。
実施例4
As titanium powder, pure titanium powder (Tylop-45) having an average particle size of 30 μm was used. A polyvinyl alcohol aqueous solution was used as the polymer aqueous solution. Polyvinyl alcohol having an average molecular weight of 115000 and a saponification degree of 99% or more was used as an 8 mass% aqueous solution. Further, 10 vol% normal hexane and 10% neutral detergent (main component: sodium alkyl ether sulfate) were mixed with 80 vol% of the aqueous solution. This aqueous solution and metal component were mixed at a deposition ratio of 5: 2 to form a slurry. The slurry was frozen as it was and kept frozen for 24-48 hours to gel. After thawing, the gelled product is foamed and dried by holding for about 10 hours in a thermostatic bath maintained at 80 ° C. The foam precursor thus produced is sintered at 1150 ° C. in a vacuum furnace. By these operations, a closed cell type titanium foam material having a thickness of 30 mm, a density of 0.8 g / cm, and a porosity of 90% or more was obtained. It was confirmed by electron microscope observation that the obtained foamed material was a closed-cell foamed material.
Example 4

金属粉として研磨スラッジ(SUS304相当)を用いた。研磨スラッジは発泡性向上のためMIM用一般ステンレス粉(アトミックス、PF20,平均粒径10μm)と混合した。混合した割合は表1のとおりである。高分子水溶液にはポリビニールアルコール水溶液を用いた。ポリビニールアルコールには平均分子量115000、鹸化度99%以上のものを用い、8mass%水溶液とした。さらに水溶液80vol%に対して10vol%のノルマルヘキサン、10vol%の中性洗剤(主成分:アルキルエーテル硫酸エステルナトリウム)を混合した。この水溶液と金属粉を体積比で4:1で混合してスラリーとした。スラリーはそのまま凍結させ24−48時間凍結保持してゲル化させた。解凍後、ゲル化したスラリーを80℃に保持した恒温槽で10時間程保持する事により発泡・乾燥させた。ついで得られた発泡前駆体を真空炉により1050℃で焼結した。これらの操作により比重0.88以下、気孔率89%以上のクローズドセル形発泡材料が得られた。その結果を表1に示す。   Polishing sludge (equivalent to SUS304) was used as the metal powder. The polishing sludge was mixed with general MIM stainless steel powder (Atmix, PF20, average particle size 10 μm) for improving foamability. The mixing ratio is shown in Table 1. A polyvinyl alcohol aqueous solution was used as the polymer aqueous solution. Polyvinyl alcohol having an average molecular weight of 115000 and a saponification degree of 99% or more was used as an 8 mass% aqueous solution. Furthermore, 10 vol% normal hexane and 10 vol% neutral detergent (main component: sodium alkyl ether sulfate) were mixed with 80 vol% of the aqueous solution. This aqueous solution and metal powder were mixed at a volume ratio of 4: 1 to form a slurry. The slurry was frozen as it was and kept frozen for 24-48 hours to gel. After thawing, the gelled slurry was foamed and dried by holding for about 10 hours in a thermostatic bath maintained at 80 ° C. The resulting foam precursor was then sintered at 1050 ° C. in a vacuum furnace. By these operations, a closed cell foam material having a specific gravity of 0.88 or less and a porosity of 89% or more was obtained. The results are shown in Table 1.

Figure 2005042193
Figure 2005042193

Claims (5)

金属又はセラミックス粉末とゲル化能を有する水溶性高分子と発泡剤を含む混合物をゲル化させた後、発泡させついで焼結することを特徴とする金属又はセラミックス含有発泡焼結体の製造方法。 A method for producing a metal or ceramics-containing foamed sintered body comprising gelling a mixture comprising a metal or ceramic powder, a water-soluble polymer having gelling ability, and a foaming agent, followed by foaming and then sintering. 上記混合物が界面活性剤を含むものであることを特徴とする請求項1に記載の金属又はセラミックス含有発泡焼結体の製造方法。 2. The method for producing a metal- or ceramic-containing foam sintered body according to claim 1, wherein the mixture contains a surfactant. ゲル化能を有する水溶性高分子がポリビニルアルコールであることを特徴とする請求項1又は2に記載の金属又はセラミックス含有発泡焼結体の製造方法。 The method for producing a metal- or ceramic-containing foam sintered body according to claim 1 or 2, wherein the water-soluble polymer having gelling ability is polyvinyl alcohol. ゲル化させた後、形状を固定化することを特徴とする請求項1乃至3何れかに記載の金属又はセラミックス含有発泡焼結体の製造方法。 The method for producing a metal- or ceramic-containing foam sintered body according to any one of claims 1 to 3, wherein the shape is fixed after gelation. 金属又はセラミックス粉末とゲル化能を有する水溶性高分子と発泡剤を含む混合物のゲル化物からなる、請求項1乃至4何れかに記載の製造方法に用いられる発泡前駆体。 The foaming precursor used for the manufacturing method in any one of Claims 1 thru | or 4 which consists of a gelled thing of the mixture containing the water-soluble polymer which has a metal or ceramic powder, and gelatinization ability, and a foaming agent.
JP2004076979A 2003-07-09 2004-03-17 Method for producing foam sintered body containing metal or ceramics Expired - Lifetime JP3858096B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004076979A JP3858096B2 (en) 2003-07-09 2004-03-17 Method for producing foam sintered body containing metal or ceramics
US11/076,229 US7481968B2 (en) 2004-03-17 2005-03-10 Method for preparing a sintered porous body of metal or ceramic

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003272560 2003-07-09
JP2004076979A JP3858096B2 (en) 2003-07-09 2004-03-17 Method for producing foam sintered body containing metal or ceramics

Publications (2)

Publication Number Publication Date
JP2005042193A true JP2005042193A (en) 2005-02-17
JP3858096B2 JP3858096B2 (en) 2006-12-13

Family

ID=34277447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004076979A Expired - Lifetime JP3858096B2 (en) 2003-07-09 2004-03-17 Method for producing foam sintered body containing metal or ceramics

Country Status (1)

Country Link
JP (1) JP3858096B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046089A (en) * 2005-08-09 2007-02-22 Mitsubishi Materials Corp Method for producing high strength foamed titanium sintered compact
JP2008174812A (en) * 2007-01-19 2008-07-31 Nippon Valqua Ind Ltd Porous molded body, its manufacturing method and its application
JP2008201636A (en) * 2007-02-21 2008-09-04 National Institute Of Advanced Industrial & Technology Porous ceramic body having macro-porous communicating pore and method of manufacturing the same
JP2008542547A (en) * 2005-06-07 2008-11-27 ヴラームス インステリング ヴール テクノロギシュ オンデルゾーク (ヴイアイティーオー) Titanium, titanium alloy and NiTi foam with high ductility
JP2013194739A (en) * 2012-03-19 2013-09-30 General Electric Co <Ge> Connecting system for metal component and cmc component, turbine blade retaining system, and rotating component retaining system
JP2014062018A (en) * 2012-09-24 2014-04-10 National Institute Of Advanced Industrial & Technology Production method of brick having high refractory and high heat insulation property, and brick having high refractory and high heat insulation property
KR20180125903A (en) * 2017-05-16 2018-11-26 주식회사 엘지화학 Preparation method for metal foam

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5246875B2 (en) * 2009-05-26 2013-07-24 独立行政法人産業技術総合研究所 Method for producing polyvinyl alcohol foam using freeze-gelation of polyvinyl alcohol

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008542547A (en) * 2005-06-07 2008-11-27 ヴラームス インステリング ヴール テクノロギシュ オンデルゾーク (ヴイアイティーオー) Titanium, titanium alloy and NiTi foam with high ductility
JP2007046089A (en) * 2005-08-09 2007-02-22 Mitsubishi Materials Corp Method for producing high strength foamed titanium sintered compact
JP4535281B2 (en) * 2005-08-09 2010-09-01 三菱マテリアル株式会社 Method for producing high-strength titanium sintered body
JP2008174812A (en) * 2007-01-19 2008-07-31 Nippon Valqua Ind Ltd Porous molded body, its manufacturing method and its application
JP2008201636A (en) * 2007-02-21 2008-09-04 National Institute Of Advanced Industrial & Technology Porous ceramic body having macro-porous communicating pore and method of manufacturing the same
JP2013194739A (en) * 2012-03-19 2013-09-30 General Electric Co <Ge> Connecting system for metal component and cmc component, turbine blade retaining system, and rotating component retaining system
JP2014062018A (en) * 2012-09-24 2014-04-10 National Institute Of Advanced Industrial & Technology Production method of brick having high refractory and high heat insulation property, and brick having high refractory and high heat insulation property
KR20180125903A (en) * 2017-05-16 2018-11-26 주식회사 엘지화학 Preparation method for metal foam
KR102113483B1 (en) 2017-05-16 2020-05-22 주식회사 엘지화학 Preparation method for metal foam

Also Published As

Publication number Publication date
JP3858096B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
JP4178246B2 (en) Method for producing high porosity foam sintered body
Kennedy Porous metals and metal foams made from powders
EP1755809A2 (en) Porous metallic materials and method of production thereof
JP5088342B2 (en) Method for producing porous sintered body
JP2006307295A (en) Clay composition for porous metal or porous ceramic, and method for producing porous metal or porous ceramic using it
EP2050527A1 (en) Method of producing open-cell inorganic foam
JP4182223B2 (en) Manufacturing method of foam sintered body
WO2018019201A1 (en) Ceramic foam filter and manufacturing method thereof
Wu et al. Processing, microstructures and mechanical properties of aqueous gelcasted and solid-state-sintered porous SiC ceramics
JP3858096B2 (en) Method for producing foam sintered body containing metal or ceramics
US7481968B2 (en) Method for preparing a sintered porous body of metal or ceramic
Zhu et al. Improvement in the strength of reticulated porous ceramics by vacuum degassing
KR101367591B1 (en) Fabrication method of blistered ceramic
CN104671751B (en) The preparation method of the closed pore alumina-based ceramic that a kind of aperture is controlled
JP2011214047A (en) Method for producing aluminum porous sintered body
WO2008050773A1 (en) Raw-material mixture with high expansion rate for producing porous metallic sinter
JP3837555B2 (en) Method for producing foam sintered body containing metal or ceramics
Shen et al. Study on preparation and property of porous tungsten via tape-casting
Zhu et al. Reaction bonding of open cell SiC-Al2O3 composites
JP5299015B2 (en) Method for producing porous sintered body
JP2010132487A (en) Method for producing ceramic porous body
JP7090942B2 (en) Composite material
Guo et al. Novel polymer–metal based method for open cell metal foams production
JP2007083146A (en) Method for preparing photocatalyst using ceramic foam, and photocatalyst
Pandey et al. Alumina dissolution process to fabricate bimodal pore architecture alumina with superior green and sintered properties

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350