JP2005042163A - Method for producing wear-resistant trolley wire - Google Patents

Method for producing wear-resistant trolley wire Download PDF

Info

Publication number
JP2005042163A
JP2005042163A JP2003277449A JP2003277449A JP2005042163A JP 2005042163 A JP2005042163 A JP 2005042163A JP 2003277449 A JP2003277449 A JP 2003277449A JP 2003277449 A JP2003277449 A JP 2003277449A JP 2005042163 A JP2005042163 A JP 2005042163A
Authority
JP
Japan
Prior art keywords
mass
trolley wire
wire
cold
cast material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003277449A
Other languages
Japanese (ja)
Inventor
Noriaki Kubo
範明 久保
Atsushi Yoshida
敦 吉田
Taichiro Nishikawa
太一郎 西川
Atsushi Sugawara
淳 菅原
Shinichi Katayama
信一 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Sumitomo Electric Industries Ltd
Original Assignee
Railway Technical Research Institute
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Sumitomo Electric Industries Ltd filed Critical Railway Technical Research Institute
Priority to JP2003277449A priority Critical patent/JP2005042163A/en
Publication of JP2005042163A publication Critical patent/JP2005042163A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a trolley wire with which the trolley wire excellent in wear resistance and electrical conductivity can be provided at a low cost. <P>SOLUTION: Molten metal constituted of 1.5-2.5 mass% Ni, 0.3-1.0 mass% Si, 0.2-1.5 mass% Ag, 0.02-0.1 mass% P and the balance Cu with inevitable impurities, is prepared. This molten metal is cooled in a mold at ≥8°C/sec cooling speed to obtain a cast material, and a cold wire drawing is applied to this cast material at ≥75% working ratio to obtain a drawn wire material, and a heat treatment is applied to this drawn wire material at 400-550°C for 0.5-60 hr to obtain a heat-treated material. Then, a cold-working is applied to this heat-treated material at ≥20% working ratio. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は耐摩耗性に優れるトロリ線の製造方法に関するものである。特に、耐摩耗性と導電率に優れたトロリ線を安価に提供できるトロリ線の製造方法に関するものである。   The present invention relates to a method for manufacturing a trolley wire having excellent wear resistance. In particular, the present invention relates to a method of manufacturing a trolley wire that can provide a trolley wire excellent in wear resistance and conductivity at low cost.

従来、電車のパンタグラフと接触し電車に電力を供給するためのトロリ線を構成する材料として、純銅または錫を0.3質量%含む銅合金が主に用いられてきた。   Conventionally, a copper alloy containing 0.3% by mass of pure copper or tin has been mainly used as a material constituting a trolley wire for contacting a pantograph of a train to supply electric power to the train.

しかし、近年、電車が高速化し、パンタグラフとトロリ線との摺動速度が大きくなり、パンタグラフとトロリ線との間でアークが発生しやすくなっている。このアークにより、トロリ線の摩耗速度が増大するという問題が発生している。また、トロリ線の保守の簡素化や張換え頻度を低減させるためにも、耐摩耗性に優れるトロリ線が必要となってきている。   However, in recent years, the speed of trains has increased, the sliding speed between the pantograph and the trolley line has increased, and an arc is likely to occur between the pantograph and the trolley line. This arc causes a problem that the trolley wire wear rate increases. Moreover, in order to simplify the maintenance of the trolley wire and reduce the frequency of redrawing, a trolley wire having excellent wear resistance has been required.

このような事情に鑑み、特許文献1には、耐摩耗性に優れた銅合金トロリ線が開示されている。この文献に記載されたトロリ線は、銅を主成分とし、Ni、Si、Agなどを添加元素として含む。これらの添加元素の作用により、導電性を低下させずに強度や耐摩耗性を向上させている。   In view of such circumstances, Patent Document 1 discloses a copper alloy trolley wire excellent in wear resistance. The trolley wire described in this document contains copper as a main component and Ni, Si, Ag, etc. as additive elements. By the action of these additive elements, the strength and wear resistance are improved without reducing the conductivity.

このようなトロリ線は、所定の鋳造材に加工度50%以上の圧延加工または冷間スウェージング加工を施し、さらに所定の熱処理と冷間加工を施すことで得られている。   Such a trolley wire is obtained by subjecting a predetermined cast material to rolling or cold swaging with a workability of 50% or more, and further performing predetermined heat treatment and cold working.

特開2000-239766号公報JP 2000-239766

しかし、上記の従来技術では、トロリ線の加工設備が大規模になり、加工コストが高くなると言う問題があった。   However, the above-described conventional technique has a problem that the processing equipment for the trolley wire becomes large and the processing cost increases.

従来技術では、加工度50%以上の圧延加工または冷間スウェージング加工により、鋳造材の結晶粒界を破壊させ、熱処理後の結晶粒を均一化し、さらに偏析を抑制している。また、これらの加工は、鋳造材に圧縮応力をかけることにより後の熱処理工程で時効硬化を促進させて線材の耐摩耗性を向上させている。ところが、トロリ線の製造を前提とした冷間圧延設備およびスウェージング設備は大規模なものとなり初期投資が大きくなる上、加工コストも高くなる。   In the prior art, the grain boundaries of the cast material are broken by rolling or cold swaging with a workability of 50% or more, the crystal grains after heat treatment are made uniform, and segregation is further suppressed. In these processes, a compression stress is applied to the cast material to promote age hardening in a subsequent heat treatment step, thereby improving the wear resistance of the wire. However, the cold rolling equipment and swaging equipment premised on the manufacture of the trolley wire are large-scale, increasing the initial investment and increasing the processing cost.

従って、本発明の主目的は、耐摩耗性と導電率に優れたトロリ線を安価に提供できるトロリ線の製造方法を提供することにある。   Accordingly, a main object of the present invention is to provide a method for manufacturing a trolley wire that can provide a trolley wire excellent in wear resistance and conductivity at low cost.

本発明は、鋳造材の処理として圧延やスウェージングではなく所定の加工度の伸線加工とすることで上記の目的を達成する。   The present invention achieves the above object by treating the cast material with wire drawing with a predetermined degree of processing rather than rolling or swaging.

本発明トロリ線の製造方法は、Niが1.5〜2.5質量%、Siが0.3〜1.0質量%、Agが0.2〜1.5質量%、Pが0.02〜0.1質量%含まれ、残部がCuと不可避不純物で構成される溶湯を準備する工程と、この溶湯を8℃/sec以上の冷却速度にて鋳型内で冷却し鋳造材を得る工程と、この鋳造材に加工度75%以上で冷間伸線加工を施して伸線材を得る工程と、この伸線材に400〜550℃で0.5〜60Hの熱処理を実施して熱処理材を得る工程と、この熱処理材に加工度20%以上の冷間加工を実施する工程とを具えることを特徴とする。   The manufacturing method of the trolley wire of the present invention is as follows: Ni is 1.5 to 2.5% by mass, Si is 0.3 to 1.0% by mass, Ag is 0.2 to 1.5% by mass, P is 0.02 to 0.1% by mass, and the balance is Cu and inevitable impurities. A step of preparing the molten metal, a step of cooling the molten metal in a mold at a cooling rate of 8 ° C / sec or more to obtain a cast material, and cold drawing at a workability of 75% or more on the cast material To obtain a wire drawing material, to heat-treat the wire drawing material at a temperature of 400 to 550 ° C for 0.5 to 60H to obtain a heat-treated material, and to perform a cold working with a workability of 20% or more on the heat-treated material And a process of performing.

鋳造後の塑性加工を圧延やスウェージングではなく伸線加工にすれば、加工設備が小型にでき、製品の製造コストも安価にすることができる。また、鋳造材から熱処理前までの冷間伸線の加工度を大きくすることで、熱処理後の伸線加工における製品の表面性状を良好な状態とできる。即ち、上記鋳造後の冷間伸線加工における加工度を特定することにより、鋳造組織を十分に破壊して熱処理後の結晶粒を十分に均一化させることができる。そのため、不均一な結晶個所が起点となりって亀裂や剥離が生じることを抑制でき、健全な表面性状のトロリ線を得ることができる。さらに、時効硬化も促進して強度の十分なトロリ線を得ることができる。   If the plastic processing after casting is performed by wire drawing instead of rolling or swaging, the processing equipment can be reduced in size and the manufacturing cost of the product can be reduced. Moreover, the surface property of the product in the wire drawing after heat processing can be made into a favorable state by increasing the workability of the cold wire drawing from a cast material to before heat processing. That is, by specifying the degree of processing in the cold wire drawing after the casting, the cast structure can be sufficiently destroyed and the crystal grains after the heat treatment can be made sufficiently uniform. Therefore, it is possible to suppress the occurrence of cracks and peeling due to the non-uniform crystal location as a starting point, and to obtain a trolley wire having a sound surface property. Furthermore, age hardening can also be promoted to obtain a trolley wire having sufficient strength.

以下、本発明をより詳しく説明する。
(1)所定の化学成分の溶湯を準備する工程
<Ni:1.5〜2.5質量%、Si:0.3〜1.0質量%>
トロリ線の耐摩耗性を向上させるには、引張強度650N/mm2以上のトロリ線を得ることが必要である。この強度を得るためには、銅中にNiとSiを添加することが有効である。Niの含有量が1.5質量%未満またはSiの含有量が0.3質量%未満であれば、上述の強度を得ることができない。また、Niの含有量が2.5質量%を超える場合またはSiの含有量が1.0質量%を超える場合には、強度は飽和に達する一方で導電率が低下する。トロリ線として必要な導電率は、50%以上である。そのため、Niの含有量は1.5質量%以上2.5質量%以下とし、Siの含有量は0.3質量%以上1.0質量%以下とする必要がある。
Hereinafter, the present invention will be described in more detail.
(1) Step of preparing a molten metal having a predetermined chemical component <Ni: 1.5 to 2.5 mass%, Si: 0.3 to 1.0 mass%>
In order to improve the wear resistance of the trolley wire, it is necessary to obtain a trolley wire having a tensile strength of 650 N / mm 2 or more. In order to obtain this strength, it is effective to add Ni and Si into copper. If the Ni content is less than 1.5% by mass or the Si content is less than 0.3% by mass, the above strength cannot be obtained. Further, when the Ni content exceeds 2.5 mass% or the Si content exceeds 1.0 mass%, the electrical conductivity decreases while the strength reaches saturation. The electrical conductivity required for the trolley wire is 50% or more. Therefore, the Ni content needs to be 1.5 mass% or more and 2.5 mass% or less, and the Si content needs to be 0.3 mass% or more and 1.0 mass% or less.

このNiの含有量とSiの含有量の成分比「Ni質量%/Si質量%」は3〜6が好ましい。この成分比の範囲内であれば、トロリ線の強度を向上させやすく、かつ導電率も上昇させやすい。   The component ratio “Ni mass% / Si mass%” of the Ni content and the Si content is preferably 3 to 6. Within the range of this component ratio, the strength of the trolley wire is easily improved and the conductivity is easily increased.

<Ag:0.2〜1.5質量%>
銅中に銀を添加することにより銅合金の強度を向上させ、さらにパンタグラフとトロリ線との間のアークによって熱が発生しても銅合金が軟化せず、耐熱性を向上することができる。
<Ag: 0.2-1.5% by mass>
By adding silver to the copper, the strength of the copper alloy can be improved, and even if heat is generated by the arc between the pantograph and the trolley wire, the copper alloy is not softened and heat resistance can be improved.

銀の含有量が0.2質量%未満であれば、強度や耐熱性の上昇が望めない。また、銀は、金属形態として存在する場合には銅よりも高い導電率を有するが、銅合金中に銀が固溶すると銅合金の導電率は低下する。そのため、この導電率の低下を防止するために銀の含有量は1.5質量%以下とする必要がある。そのため、銀の含有量は0.2質量%以上1.5質量%以下である必要がある。   If the silver content is less than 0.2% by mass, an increase in strength and heat resistance cannot be expected. Moreover, when silver exists in a metal form, it has a higher electrical conductivity than copper, but when silver is dissolved in a copper alloy, the electrical conductivity of the copper alloy is lowered. Therefore, in order to prevent this decrease in conductivity, the silver content needs to be 1.5% by mass or less. Therefore, the silver content needs to be 0.2% by mass or more and 1.5% by mass or less.

<P:0.02〜0.1質量%>
さらに、Pを銅中に含有することで、トロリ線の表面性状を良好とできると共に、トロリ線として要求される導電率を満足することができる。Pの含有量が0.02質量%未満ではトロリ線に加工する際に良好な表面性状を得ることが難しい。逆に0.1質量%を超えるとトロリ線として要求される導電率を満足することが難しい。
<P: 0.02 to 0.1% by mass>
Furthermore, by containing P in copper, the surface property of the trolley wire can be improved and the electrical conductivity required for the trolley wire can be satisfied. When the P content is less than 0.02% by mass, it is difficult to obtain good surface properties when processing into a trolley wire. On the other hand, if it exceeds 0.1% by mass, it is difficult to satisfy the electrical conductivity required for the trolley wire.

(2)鋳造材を得る工程
上記の溶湯は鋳型に導入されて8℃/秒以上の冷却速度で冷却する。このような冷却速度とすることにより、健全な(均質な)過飽和固溶体を鋳造材中に作ることができる。その結果、トロリ線の耐摩耗性を向上させることができる。冷却速度が8℃/秒未満であれば、健全な過飽和固溶体を得ることができない。さらに、冷却速度が8℃/秒未満では、鋳造材の部位による凝固速度のばらつきが大きくなり健全な鋳塊も得られない。この冷却速度は、(鋳込温度−鋳造材表面温度)/鋳造時間で表される。なお、8℃/秒以上の冷却速度を得るためには、たとえば鋳型を水冷すれば良い。
(2) Step of obtaining cast material The molten metal is introduced into a mold and cooled at a cooling rate of 8 ° C./second or more. By setting such a cooling rate, a sound (homogeneous) supersaturated solid solution can be produced in the cast material. As a result, the wear resistance of the trolley wire can be improved. If the cooling rate is less than 8 ° C / second, a sound supersaturated solid solution cannot be obtained. Furthermore, if the cooling rate is less than 8 ° C./sec, the solidification rate varies greatly depending on the portion of the cast material, and a sound ingot cannot be obtained. This cooling rate is expressed by (casting temperature−cast material surface temperature) / casting time. In order to obtain a cooling rate of 8 ° C./second or more, for example, the mold may be water-cooled.

鋳造材を得る工程は、溶湯を内面が円柱状(管状)の鋳型内で冷却して連続鋳造により鋳造材を得ることが好ましい。この場合、内面が円柱状の鋳型を使用すれば、その後の冷間加工が容易となる。内面が円柱状の鋳型でなく、たとえば矩形状の鋳型を用いて矩形の鋳造材を製造してもよい。その場合、矩形の鋳造材に次工程で冷間伸線加工を施して所定の形状、例えば円形、溝付き円形、溝付き梯形に伸線することになる。   In the step of obtaining the cast material, it is preferable to cool the molten metal in a cylindrical mold (tubular) and obtain the cast material by continuous casting. In this case, if a mold having a cylindrical inner surface is used, the subsequent cold working becomes easy. For example, a rectangular casting material may be manufactured using a rectangular mold instead of a cylindrical mold. In that case, a cold casting process is performed on the rectangular casting material in the next step to draw into a predetermined shape, for example, a circle, a grooved circle, or a grooved trapezoid.

また、鋳造材を得る工程は、横型連続鋳造機を用いて鋳造材を得ることが好ましい。この場合、横型連続鋳造機は細径鋳造が可能なため冷却速度を8℃/秒以上とすることが容易となる。さらに、横型連続鋳造機は縦型連続鋳造機に比べ設備コストが安く経済的である。   Moreover, it is preferable that the process of obtaining a cast material obtains a cast material using a horizontal continuous casting machine. In this case, since the horizontal continuous casting machine is capable of small diameter casting, it becomes easy to set the cooling rate to 8 ° C./second or more. Further, the horizontal continuous casting machine is economical and cheaper than the vertical continuous casting machine.

(3)伸線材を得る工程
この工程では、加工度75%以上の冷間伸線加工を鋳造材に施すことにより、鋳造材の結晶粒を破壊して熱処理後の結晶粒を均一化し、さらに偏析をなくすことができる。その結果、鋳造粒界や偏析部位を起点とする金属の破断を防止できるため、次の熱処理工程での線材の脆化を抑制できる。これにより、線材の耐摩耗性が向上する。また、このような加工度の冷間伸線加工は、線材に圧縮応力を与えるため、後の熱処理工程において線材の時効硬化を促進する。そのため線材の耐摩耗性が向上する。この加工度は、(加工前の断面積−加工後の断面積)/加工前の断面積で表される。
(3) Step of obtaining a wire drawing material In this step, a cold wire drawing process with a workability of 75% or more is applied to the cast material, thereby destroying the crystal grains of the cast material and homogenizing the crystal grains after the heat treatment. Segregation can be eliminated. As a result, it is possible to prevent breakage of the metal starting from the casting grain boundary or segregation site, so that embrittlement of the wire in the next heat treatment step can be suppressed. Thereby, the abrasion resistance of a wire improves. In addition, the cold wire drawing with such a degree of work imparts compressive stress to the wire, and therefore promotes age hardening of the wire in a subsequent heat treatment step. Therefore, the wear resistance of the wire is improved. This degree of processing is expressed by (cross-sectional area before processing−cross-sectional area after processing) / cross-sectional area before processing.

加工度が75%未満であれば、鋳造材の結晶粒界の破壊が不十分となるため、後の熱処理工程で線材の脆化が顕著になる。また、加工度が75%未満であれば、線材に与えられる圧縮応力の大きさが小さいため、後の加熱工程において時効硬化を促進できず耐摩耗性が向上しない。   If the degree of work is less than 75%, the fracture of the crystal grain boundaries of the cast material becomes insufficient, so that the embrittlement of the wire becomes remarkable in the subsequent heat treatment step. Further, if the degree of work is less than 75%, the magnitude of the compressive stress applied to the wire is small, so that age hardening cannot be promoted in the subsequent heating step, and the wear resistance is not improved.

(4)伸線材に所定の熱処理を施す工程
この工程では、400〜550℃で0.5〜60H(時間)の熱処理を実施する。この熱処理により、時効硬化により線材の強度を上昇させ耐摩耗性を向上させる。加熱温度が400℃未満では時効硬化が十分進行せず、550℃を超えれば過時効となり強度が低下する。同様に、加熱時間が0.5時間未満でも、強度を向上させることが難しい。逆に、加熱時間が60時間を超えると時効が進行し過ぎて耐摩耗性が低下すると共に製造コストが上昇する。そのため、加熱温度は400℃以上550℃以下とし、加熱時間は0.5時間以上60時間以下とする必要がある。
(4) Step of applying predetermined heat treatment to wire drawing material In this step, heat treatment is carried out at 400 to 550 ° C. for 0.5 to 60 H (hours). By this heat treatment, the strength of the wire is increased by age hardening and the wear resistance is improved. When the heating temperature is less than 400 ° C, age hardening does not proceed sufficiently, and when it exceeds 550 ° C, it becomes over-aged and the strength decreases. Similarly, it is difficult to improve the strength even when the heating time is less than 0.5 hour. On the other hand, when the heating time exceeds 60 hours, aging progresses too much, resulting in a decrease in wear resistance and an increase in manufacturing cost. Therefore, the heating temperature needs to be 400 ° C. or higher and 550 ° C. or lower, and the heating time needs to be 0.5 hour or longer and 60 hours or shorter.

(5)熱処理材に所定の冷間加工を施す工程
上記熱処理を施した熱処理材に加工度20%以上の冷間加工を施す。20%未満の加工度では、所定の最終製品への加工が困難である。この工程では冷間加工と皮剥を行なう。冷間加工により耐摩耗性と成形性を向上させることができ、皮剥を行なうことで表面傷や熱処理時に生成した酸化膜を除去できる。さらに、冷間加工後、表面に残留した潤滑油により製品の酸化防止を図ることができる。
(5) A step of subjecting the heat-treated material to a predetermined cold working The heat-treated material subjected to the heat treatment is subjected to a cold working with a working degree of 20% or more. When the degree of processing is less than 20%, it is difficult to process into a predetermined final product. In this process, cold working and peeling are performed. By cold working, wear resistance and formability can be improved, and by removing the surface, it is possible to remove surface scratches and oxide films generated during heat treatment. Furthermore, the product can be prevented from being oxidized by the lubricating oil remaining on the surface after cold working.

以下、本発明の実施の形態を説明する。
連続鋳造(横型鋳造)→冷間伸線→熱処理→冷間伸線の工程でトロリ線を作製した。まず、表1で示す合金組成を含有する溶湯を準備した。この溶湯を8℃/秒以上の冷却速度で連続鋳造し、溶湯と同一組成の鋳造材を得た。この鋳造材に表1に示す加工度の冷間伸線加工を施して断面が円形の伸線材を得た。この伸線材に表1で示す条件の熱処理を施した後室温まで冷却した。冷却後の線材に、表1に示す各加工度の冷間伸線と表面を約0.2mm除去する皮剥工程とを行ない、断面形状が溝付き円形、断面積が110mm2のトロリ線(サンプルNo.1〜10)を得た。
Embodiments of the present invention will be described below.
A trolley wire was produced in the process of continuous casting (horizontal casting) → cold drawing → heat treatment → cold drawing. First, a molten metal containing the alloy composition shown in Table 1 was prepared. This molten metal was continuously cast at a cooling rate of 8 ° C./second or more to obtain a cast material having the same composition as the molten metal. The cast material was subjected to cold wire drawing at a working degree shown in Table 1 to obtain a wire drawing material having a circular cross section. The wire rod was heat-treated under the conditions shown in Table 1 and then cooled to room temperature. The wire after cooling is subjected to cold drawing at each degree of processing shown in Table 1 and a stripping process to remove the surface by about 0.2 mm. The trolley wire with a cross-sectional shape of a grooved circle and a cross-sectional area of 110 mm 2 (sample no. .1-10) were obtained.

また、Pを含有しない化学成分の溶湯を用いて、鋳造→鋳造後の冷間伸線加工→熱処理→熱処理後の冷間伸線加工を行って、断面積が110mm2のトロリ線(従来例)を得た。 Also, using a molten chemical component that does not contain P, casting → cold wire drawing after casting → heat treatment → cold wire drawing after heat treatment, trolley wire with a cross-sectional area of 110mm 2 (conventional example) )

これらのトロリ線について引張強さと導電率を測定し、併せて表面性状も評価した。引張強さの閾値は650N/mm2以上であり、導電率の閾値は50%以上である。表面性状の評価はトロリ線の割れの有無で判断し、トロリ線表面に割れが生じたものを「不良」、割れの生じなかったものを「良好」とした。その結果も表1に示す。 The tensile strength and conductivity of these trolley wires were measured, and the surface properties were also evaluated. The tensile strength threshold is 650 N / mm 2 or more, and the conductivity threshold is 50% or more. The evaluation of the surface property was judged based on the presence or absence of cracks on the trolley wire, and those having cracks on the surface of the trolley wire were judged as “bad”, and those having no cracks were judged as “good”. The results are also shown in Table 1.

Figure 2005042163
Figure 2005042163

表1から明らかなように、いずれの実施例もトロリ線の特性評価が好ましい結果であることがわかる。中でも、NiとSiは質量比で3〜6の範囲にある実施例1、3は高強度で高導電率となっている。これに対し、Ni<1.5質量%又はSi<0.3質量%では引張強さが不足している。また、Ni>2.5質量%、Si>1.0質量%では導電率が閾値を満たさない。Ag<0.2質量%では引張強度が不足している。さらに、P<0.02質量%ではトロリ線への加工時に良好な表面性状が得られず、P>0.1質量%では導電率を満足しない。そして、鋳造後の加工度が75%以上でないとトロリ線に加工時に良好な表面性状が得られないことがわかる。   As is apparent from Table 1, it can be seen that the trolley wire characteristic evaluation is a preferable result in any of the examples. Among them, Examples 1 and 3 in which Ni and Si are in a mass ratio of 3 to 6 have high strength and high conductivity. On the other hand, when Ni <1.5 mass% or Si <0.3 mass%, the tensile strength is insufficient. In addition, when Ni> 2.5 mass% and Si> 1.0 mass%, the conductivity does not satisfy the threshold value. When Ag <0.2% by mass, the tensile strength is insufficient. Further, when P <0.02% by mass, good surface properties cannot be obtained when processing into a trolley wire, and when P> 0.1% by mass, the electrical conductivity is not satisfied. It can be seen that if the degree of processing after casting is not more than 75%, good surface properties cannot be obtained on the trolley wire during processing.

本発明は、電車のパンタグラフと接触して電車に電力を供給するためのトロリ線を製造する際に適用できる。   The present invention can be applied when manufacturing a trolley wire for supplying electric power to a train in contact with a pantograph of the train.

Claims (2)

Niが1.5〜2.5質量%、Siが0.3〜1.0質量%、Agが0.2〜1.5質量%、Pが0.02〜0.1質量%含まれ、残部がCuと不可避不純物で構成される溶湯を準備する工程と、
この溶湯を8℃/sec以上の冷却速度にて鋳型内で冷却し鋳造材を得る工程と、
この鋳造材に加工度75%以上で冷間伸線加工を施して伸線材を得る工程と、
この伸線材に400〜550℃で0.5〜60時間の熱処理を実施して熱処理材を得る工程と、
この熱処理材に加工度20%以上の冷間加工を実施する工程とを具えることを特徴とする耐摩耗性トロリ線の製造方法。
Preparing a molten metal containing 1.5 to 2.5% by mass of Ni, 0.3 to 1.0% by mass of Si, 0.2 to 1.5% by mass of Ag, 0.02 to 0.1% by mass of P, and the balance of Cu and inevitable impurities; ,
Cooling the molten metal in a mold at a cooling rate of 8 ° C./sec or more to obtain a cast material;
A process of obtaining a drawn wire by subjecting this cast material to cold drawing at a workability of 75% or more,
A step of performing a heat treatment for 0.5 to 60 hours at 400 to 550 ° C. to obtain a heat treated material;
A method for producing a wear-resistant trolley wire, comprising the step of performing cold working on the heat treated material with a workability of 20% or more.
Niの含有量とSiの含有量の成分比「Ni/Si」が3〜6であることを特徴とする請求項1に記載の耐摩耗性トロリ線の製造方法。   2. The method for producing a wear-resistant trolley wire according to claim 1, wherein the component ratio “Ni / Si” of the Ni content and the Si content is 3 to 6. 3.
JP2003277449A 2003-07-22 2003-07-22 Method for producing wear-resistant trolley wire Pending JP2005042163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003277449A JP2005042163A (en) 2003-07-22 2003-07-22 Method for producing wear-resistant trolley wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003277449A JP2005042163A (en) 2003-07-22 2003-07-22 Method for producing wear-resistant trolley wire

Publications (1)

Publication Number Publication Date
JP2005042163A true JP2005042163A (en) 2005-02-17

Family

ID=34264172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003277449A Pending JP2005042163A (en) 2003-07-22 2003-07-22 Method for producing wear-resistant trolley wire

Country Status (1)

Country Link
JP (1) JP2005042163A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172174A (en) * 2011-02-18 2012-09-10 Sumitomo Electric Ind Ltd Method for manufacturing high-conductivity and high-strength trolley wire, and high-conductivity and high-strength trolley wire
JP2014095151A (en) * 2012-11-09 2014-05-22 Poongsan Corp Copper alloy material for electric and electronic component and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172174A (en) * 2011-02-18 2012-09-10 Sumitomo Electric Ind Ltd Method for manufacturing high-conductivity and high-strength trolley wire, and high-conductivity and high-strength trolley wire
JP2014095151A (en) * 2012-11-09 2014-05-22 Poongsan Corp Copper alloy material for electric and electronic component and its manufacturing method

Similar Documents

Publication Publication Date Title
JP5147040B2 (en) Method for producing copper alloy conductor
JP4479510B2 (en) Copper alloy conductor, trolley wire / cable using the same, and method for producing copper alloy conductor
JP4311277B2 (en) Manufacturing method of extra fine copper alloy wire
KR102009755B1 (en) Copper alloy wire material and manufacturing method thereof
JP2006193807A5 (en)
JP4279203B2 (en) Aluminum alloy for conductive wire of automobile
JP2008255417A (en) Method for producing copper material, and copper material
JP2010212164A (en) Method of manufacturing wire conductor, wire conductor, insulated wire, and wire harness
JP2009280860A (en) Cu-Ag ALLOY WIRE AND METHOD FOR PRODUCING THE SAME
JP5652741B2 (en) Copper wire and method for producing the same
JP2018003159A (en) Copper alloy trolley wire and method of manufacturing copper alloy trolley wire
JP4380441B2 (en) Trolley wire manufacturing method
JP4497164B2 (en) Copper alloy conductor and cable using the same
JP3903899B2 (en) Method for producing copper alloy conductor for train line and copper alloy conductor for train line
JP3948451B2 (en) Copper alloy material, method for producing copper alloy conductor using the same, copper alloy conductor obtained by the method, and cable using the same
JPH11293365A (en) Super-fine conductor for winding, and its manufacture
JP2010285688A (en) Al ALLOY AND Al ALLOY CONDUCTIVE WIRE
JP2005042163A (en) Method for producing wear-resistant trolley wire
JP6635732B2 (en) Method for manufacturing aluminum alloy conductive wire, aluminum alloy conductive wire, electric wire and wire harness using the same
JP5510879B2 (en) Wire conductor and wire
JP5896185B2 (en) Conductor for electric wire
JP6853872B2 (en) Manufacturing method of aluminum alloy conductive wire, aluminum alloy conductive wire, electric wire and wire harness using this
JP2018154916A (en) Production method of aluminum alloy wire, production method of wire therewith and production method of wire harness
JP2008264823A (en) Method for manufacturing copper rough-drawing wire and copper wire
JP7022320B2 (en) Copper alloy wire