JP2005042162A - Copper refining method - Google Patents

Copper refining method Download PDF

Info

Publication number
JP2005042162A
JP2005042162A JP2003277440A JP2003277440A JP2005042162A JP 2005042162 A JP2005042162 A JP 2005042162A JP 2003277440 A JP2003277440 A JP 2003277440A JP 2003277440 A JP2003277440 A JP 2003277440A JP 2005042162 A JP2005042162 A JP 2005042162A
Authority
JP
Japan
Prior art keywords
copper
slag
refining
molten metal
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003277440A
Other languages
Japanese (ja)
Other versions
JP4140471B2 (en
Inventor
Taichiro Nishikawa
太一郎 西川
Tadanori Sano
忠徳 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003277440A priority Critical patent/JP4140471B2/en
Publication of JP2005042162A publication Critical patent/JP2005042162A/en
Application granted granted Critical
Publication of JP4140471B2 publication Critical patent/JP4140471B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Continuous Casting (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for refining copper capable of satisfying characteristics required for a copper wire rod without performing electrolytic refining. <P>SOLUTION: The method has: a melting step for melting copper containing one or more metallic elements selected from the group consisting of Sn, Pb, Ni and Zn; and a refining step where, after slag containing SiO<SB>2</SB>and FeO is brought into contact with the resultant molten metal containing the molten copper, the slag is removed and the metallic elements are removed from the molten metal. In particular, when the slag is brought into contact with the molten metal, oxygen concentration in the molten metal is made to be 5,000 to 12,000 ppm by weight. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、銅の精錬方法、及びこの精錬方法により得られた溶銅を用いた銅荒引線の製造方法に関するものである。   The present invention relates to a copper refining method and a method for producing a copper roughing wire using molten copper obtained by the refining method.

従来、電線の導体などに使用される銅線は、主に連続鋳造圧延によって製造された銅荒引線に伸線加工などを施すことによって製造される。このとき、電気伝導度(導電率)の高い銅荒引線を得るべく、上記銅線に用いられる銅荒引線の銅原料には、電解によって精錬(精製)された電気銅が一般に使用されている。   Conventionally, the copper wire used for the conductor of an electric wire etc. is manufactured by performing a wire drawing etc. to the copper rough drawing wire mainly manufactured by continuous casting rolling. At this time, in order to obtain a copper rough drawn wire having a high electrical conductivity (conductivity), electrolytic copper refined (purified) by electrolysis is generally used as the copper raw material for the copper rough drawn wire used in the copper wire. .

銅荒引線に用いる銅原料中に不純物元素が多量に含有されている場合、銅荒引線に必要な特性である導電率が悪化したり、熱間圧延の際に割れなどが発生する原因となる。そこで、電解精錬により不純物を低減した、具体的には不純物の総量を重量比で100ppm以下にした電気銅を用いて、導電率の悪化や圧延時の割れなどの防止を図っている。   When a large amount of impurity elements are contained in the copper raw material used for the copper roughing wire, the electrical conductivity, which is a characteristic required for the copper roughing wire, may be deteriorated, or cracking may occur during hot rolling. . In view of this, the use of electrolytic copper in which impurities are reduced by electrolytic refining, specifically, the total amount of impurities is 100 ppm or less by weight, is used to prevent deterioration of conductivity and cracking during rolling.

一方、銅や銅合金は、一般に、鉄やアルミニウムなどと同様に需要の大きい金属である。そのため、市場より発生した銅を含有する銅スクラップを回収して再利用することは、資源保護の立場から重要なことである。しかし、市場から回収された銅線屑をはじめとする銅スクラップは、Sn、Pb、Ni、Znなどの不純物元素を多く含んでいるものが多い。このような不純物元素を多く含む銅スクラップ、いわゆる低品位銅スクラップは、反射炉などで溶解して酸化還元による精錬を行った後、更に電解精錬を行って電気銅を銅荒引線用の原料として再生させている。また、近年、銅スクラップの精錬において、スラグを用いた精錬方法が検討されている(非特許文献1参照)。   On the other hand, copper and copper alloys are generally metals in great demand like iron and aluminum. For this reason, it is important from the standpoint of resource protection to collect and reuse copper scrap containing copper generated from the market. However, many copper scraps including copper wire scraps collected from the market contain many impurity elements such as Sn, Pb, Ni and Zn. Copper scrap containing a large amount of impurity elements, so-called low-grade copper scrap, is melted in a reflection furnace and refined by oxidation-reduction, and then further electrolytically refined to use electrolytic copper as a raw material for copper roughing wire. You are playing. In recent years, a refining method using slag has been studied in refining copper scrap (see Non-Patent Document 1).

藤澤敏治、『銅のリサイクルプロセス』、「まてりあ」第35巻12月号(1996)、社団法人 日本金属学会、1294〜1297ページToshiharu Fujisawa, “Copper Recycling Process”, “Materia” Vol. 35, December (1996), Japan Institute of Metals, pp. 1294-1297

上記のように従来の技術では、不純物元素を多く含むいわゆる低品位銅スクラップを再生させる際、酸化還元による精錬に加えて、電解精錬をも行わなければ、銅荒引線用の銅原料の要求特性を満たすものが得られなかった。しかし、近年、リサイクル関連法の整備に伴って低品位銅スクラップが増大する傾向にあり、低品位銅スクラップの使用比率の拡大を図るべく、より簡便な精錬方法が望まれる。   As described above, in the conventional technology, when reclaiming so-called low-grade copper scrap containing a large amount of impurity elements, in addition to refining by oxidation reduction, if not performing electrolytic refining, the required characteristics of copper raw material for copper roughing wire The thing which satisfy | fills was not obtained. However, in recent years, there is a tendency for low-grade copper scrap to increase with the establishment of recycling-related laws, and a simpler refining method is desired in order to increase the usage ratio of low-grade copper scrap.

これに対し、非特許文献1に記載されるようにスラグを用いた精錬が考えられるが、Sn、Pb、Ni、Znといった不純物をいずれも除去可能なスラグについては検討されていない。   On the other hand, as described in Non-Patent Document 1, refining using slag can be considered, but slag capable of removing impurities such as Sn, Pb, Ni, and Zn has not been studied.

そこで、本発明の目的は、電解精製を行わなくても、銅荒引線の要求特性を満たすことができる銅の精錬方法を提供することにある。また、本発明の他の目的は、上記銅の精錬方法により得られた溶銅を用いて銅荒引線を製造する方法を提供することにある。   Then, the objective of this invention is providing the refining method of copper which can satisfy | fill the required characteristic of a copper rough drawing line, without performing electrolytic purification. Moreover, the other object of this invention is to provide the method of manufacturing a copper rough drawing wire using the molten copper obtained by the said copper refining method.

本発明は、特定の金属酸化物を含有するスラグを用いることで、上記目的を達成する。   The present invention achieves the above object by using a slag containing a specific metal oxide.

即ち、本発明銅の精錬方法は、Sn、Pb、Ni、及びZnからなる群から選択される1種以上の金属元素を含有する銅を溶解する溶解工程と、前記溶解された銅を含有する溶湯にSiO2及びFeOを含有するスラグを接触させた後、前記スラグを除滓して、前記金属元素を溶湯中から除去する精錬工程とを具えることを特徴とする。 That is, the copper refining method of the present invention includes a melting step of dissolving copper containing one or more metal elements selected from the group consisting of Sn, Pb, Ni, and Zn, and the dissolved copper. A slag containing SiO 2 and FeO is brought into contact with the molten metal, and then the slag is removed to refining the metal element from the molten metal.

本発明者らは、電解精錬を行わない銅スクラップの精錬方法として、まず、酸化還元による精錬において酸素濃度を調整することを試みた。不純物元素を含む銅を酸化させる際、溶湯中の不純物元素が優先的に酸化されると、不純物元素の酸化物が銅との比重差により溶湯表面に浮上する。従って、浮上した酸化物を除去することで溶湯中の不純物濃度を低下させることができる。この現象を利用して、酸素濃度を変化させた際の不純物濃度を測定したところ、Snについては銅荒引線の製造に適した濃度まで除去することができたが、Pb、Ni、Znについては銅荒引線の要求特性を満足できる濃度まで除去することが困難であった。   As a method for refining copper scrap without electrolytic refining, the present inventors first tried to adjust the oxygen concentration in refining by oxidation-reduction. When copper containing an impurity element is oxidized, if the impurity element in the molten metal is preferentially oxidized, the oxide of the impurity element floats on the surface of the molten metal due to a difference in specific gravity from copper. Therefore, the impurity concentration in the molten metal can be reduced by removing the floating oxide. Using this phenomenon, the impurity concentration when the oxygen concentration was changed was measured. As a result, Sn was able to be removed to a concentration suitable for copper roughing wire production, but Pb, Ni and Zn were removed. It was difficult to remove to a concentration that could satisfy the required characteristics of copper rough wire.

そこで、本発明者らは、金属の精錬方法の一つであるスラグを用いた除去について検討したところ、SiO2-FeO系スラグを用いることで、Sn、Pb、Ni、Znのいずれをも効果的に除去できることを見出した。本発明は、この知見に基づき、規定するものである。 Therefore, the present inventors examined removal using slag, which is one of the metal refining methods, and by using SiO 2 —FeO slag, any of Sn, Pb, Ni, Zn was effective. It was found that it can be removed. The present invention is defined based on this finding.

以下、本発明をより詳しく説明する。
本発明精錬方法は、一度利用された銅材、即ち、銅スクラップを溶解原料の少なくとも一部に使用する場合に適する。もちろん、溶解原料の全部が銅スクラップの場合でも本発明精錬方法を利用することができる。また、いわゆる低品位銅スクラップの精錬にも利用することができる。本発明では、溶解材料としてSn、Pb、Ni、及びZnからなる群から選択される1種以上の金属が含まれる銅を対象とし、上記Sn、Pb、Ni、Znを銅からスラグ精錬により除去するものとする。スラグ精錬とは、溶湯中にスラグを接触させると、溶湯中の不純物がある固有の分配比に従って溶湯又はスラグ中に存在しようとすることを利用した精錬であり、溶湯からスラグに移動した不純物をスラグと共に取り除くことで、溶湯中の不純物濃度を低減させる手法である。
Hereinafter, the present invention will be described in more detail.
The refining method of the present invention is suitable when the copper material once used, that is, copper scrap is used as at least a part of the melting raw material. Of course, the refining method of the present invention can be used even when the entire melting raw material is copper scrap. It can also be used for refining so-called low-grade copper scrap. In the present invention, copper containing at least one metal selected from the group consisting of Sn, Pb, Ni, and Zn as a melting material is targeted, and the above Sn, Pb, Ni, Zn is removed from copper by slag refining It shall be. Slag refining is a refining process that utilizes the presence of impurities in the molten metal in the molten metal or slag according to a specific distribution ratio when the slag is brought into contact with the molten metal. This is a technique for reducing the impurity concentration in the molten metal by removing it together with the slag.

本発明で用いるスラグは、SiO2及びFeOを含有するものとする。特に、Sn、Pb、Ni、Znといった不純物のいずれに対しても、効率的な除去が見込まれるSiO2及びFeOを主成分とするスラグが好ましい。具体的には、SiO2及びFeOを75重量%以上含有するスラグが適する。より好ましくは、80重量%以上である。SiO2及びFeOの含有量が75重量%未満であると、上記不純物の除去が不十分となる恐れがある。SiO2、FeO以外のスラグの含有物としては、例えば、CaO、Al2O3、MgOなどが挙げられる。 The slag used in the present invention contains SiO 2 and FeO. In particular, a slag mainly composed of SiO 2 and FeO that is expected to be efficiently removed with respect to any of impurities such as Sn, Pb, Ni, and Zn is preferable. Specifically, slag containing 75% by weight or more of SiO 2 and FeO is suitable. More preferably, it is 80% by weight or more. If the content of SiO 2 and FeO is less than 75% by weight, the removal of the impurities may be insufficient. Examples of inclusions of slag other than SiO 2 and FeO include CaO, Al 2 O 3 , and MgO.

スラグ中においてSiO2とFeOとの含有割合は、重量比で1:9〜9:1の任意の比率のものが適用できるが、SiO2の比率が高い場合、スラグの粘性が大きくなる傾向にあり、逆にFeOの比率が高い場合、FeOと溶湯との分離性が低下する傾向にある。これらいずれの場合においても、不純物元素の除去が難しくなるばかりでなく、溶湯からのスラグの除去が困難となる恐れがある。従って、スラグ中のSiO2とFeOとの含有割合は、重量比で1:0.5〜1:2であることが好ましい。 The content ratio of SiO 2 and FeO in the slag can be any ratio of 1: 9 to 9: 1 by weight, but when the SiO 2 ratio is high, the viscosity of the slag tends to increase On the other hand, when the ratio of FeO is high, the separability between FeO and molten metal tends to decrease. In any of these cases, it is difficult not only to remove the impurity elements but also to remove slag from the molten metal. Therefore, the content ratio of SiO 2 and FeO in the slag is preferably 1: 0.5 to 1: 2 by weight.

スラグのSiO2成分には、例えば、ケイ石を用いることが挙げられる。また、FeO成分は、Feを含有する金属を用い、精錬中にFeを酸化させることで得てもよい。即ち、Feを含有する金属のFe成分が精錬中に酸化されて酸化鉄となることを利用してもよい。Feを含有する金属としては、鉄スクラップや、鉄含有銅などを用いることができる。このようなスラグは、溶解原料を溶解する前、溶解中、溶解後のいずれに添加してもよい。 Examples of the SiO 2 component of slag include using silica. Further, the FeO component may be obtained by oxidizing Fe during refining using a metal containing Fe. That is, it may be used that the Fe component of the metal containing Fe is oxidized during refining to become iron oxide. As the metal containing Fe, iron scrap, iron-containing copper, or the like can be used. Such slag may be added before, during or after melting the melting raw material.

本発明においてスラグを溶湯に接触させる際、即ち、スラグ精錬を実施する際は、溶湯の温度を1100℃以上1300℃未満にしておくことが望ましい。ここで、溶湯温度を下げると、不純物の除去限界を低くすることができる。即ち、例えば、ある不純物濃度に対し、ある成分のスラグをある量用いることである濃度レベルになる場合、上記と同一の不純物濃度に対し、同成分のスラグを同量用いるとき、溶湯温度を下げると、不純物の濃度レベルを先の濃度レベルよりも低下させることができる。従って、溶湯温度を1100℃未満とする場合、不純物の除去限界を低くすることができるが、スラグの粘性が大きくなり易く、溶湯からスラグを除去し難くなる。一方、溶湯温度が1300℃以上の場合、上記スラグを用いても不純物の除去限界が高くなるため、溶湯中に含まれる不純物量が最終的に多くなってしまう恐れがある。特に好ましくは、1130℃以上1250℃以下である。   In the present invention, when the slag is brought into contact with the molten metal, that is, when slag refining is performed, the temperature of the molten metal is preferably set to 1100 ° C. or higher and lower than 1300 ° C. Here, when the molten metal temperature is lowered, the removal limit of impurities can be lowered. That is, for example, when a certain level of slag of a certain component is used for a certain impurity concentration, the molten metal temperature is lowered when the same amount of slag of the same component is used for the same impurity concentration as above. Then, the impurity concentration level can be lowered from the previous concentration level. Therefore, when the molten metal temperature is less than 1100 ° C., the impurity removal limit can be lowered, but the viscosity of the slag tends to increase and it is difficult to remove the slag from the molten metal. On the other hand, when the molten metal temperature is 1300 ° C. or higher, the removal limit of impurities is increased even if the slag is used, and the amount of impurities contained in the molten metal may eventually increase. Particularly preferably, it is 1130 ° C. or higher and 1250 ° C. or lower.

更に、本発明者らが検討した結果、上記スラグを添加するだけでなく、スラグと溶湯とを反応させる際に酸素濃度をも制御すると、より効率よく不純物を除去できるとの知見を得た。具体的には、スラグ精錬の際、溶湯の酸素濃度を重量比で5000ppm以上12000ppm以下に調整することである。酸素濃度が5000ppm以上になると、上記SiO2及びFeOを含むスラグは、Si−Fe−Cu−0系の複合酸化物となり、急激に融点が低下して、不純物の除去効率が向上すると共に、溶湯からスラグの除去を容易に行うことができる。酸素濃度が高いほど、上記不純物の除去効果も高くなるが、12000ppm超になると、上記スラグ中のCu成分の比率が大きくなり、溶湯からスラグを除滓する際の銅ロスが大きくなる恐れがあるため、12000ppm以下とすることが好ましい。 Furthermore, as a result of investigations by the present inventors, it has been found that not only the slag is added but also impurities can be removed more efficiently by controlling the oxygen concentration when the slag and molten metal are reacted. Specifically, during slag refining, the oxygen concentration of the molten metal is adjusted to 5000 ppm or more and 12000 ppm or less by weight. When the oxygen concentration is 5000 ppm or more, the slag containing SiO 2 and FeO becomes a complex oxide of Si-Fe-Cu-0 system, the melting point is rapidly lowered, the impurity removal efficiency is improved, and the molten metal The slag can be easily removed from. The higher the oxygen concentration, the higher the effect of removing the impurities. However, if it exceeds 12000 ppm, the ratio of the Cu component in the slag increases, and there is a risk that the copper loss when removing the slag from the molten metal increases. Therefore, it is preferable to set it to 12000 ppm or less.

なお、銅荒引線の酸素濃度は、通常、重量比で100〜500ppm程度である。上記のようにスラグ精錬の際に酸素濃度を調整した場合、スラグ除滓後の溶湯は、酸素濃度が高くなっている。従って、銅荒引線に適した酸素濃度となるように、除滓後、還元剤などを用いて還元し、酸素濃度を重量比で100〜500ppm程度にすることが好ましい。還元剤としては、重油などが挙げられる。なお、後述する第二精錬を行った場合も同様である。   Note that the oxygen concentration of the copper rough wire is usually about 100 to 500 ppm by weight. When the oxygen concentration is adjusted during slag refining as described above, the molten metal after slag removal has a high oxygen concentration. Therefore, it is preferable to reduce the oxygen concentration to about 100 to 500 ppm in terms of weight ratio after stripping and reducing with a reducing agent or the like so that the oxygen concentration is suitable for copper roughing. Examples of the reducing agent include heavy oil. The same applies to the second refining described later.

本発明精錬方法では、スラグとしてFeを含有するものを用いる。そのため、スラグ除滓後の溶湯中には20重量ppm以上のFe、或いはFeを含有する酸化物が残存する恐れがある。そこで、更に、スラグを除滓した溶湯の酸素濃度を重量比で1000ppm以上3000ppm以下に調整して、Feを溶湯中から除去する第二精錬工程を具えることが好ましい。本発明者らが検討した結果、酸素を含む溶湯中におけるFeの挙動は、溶湯中の酸素濃度が重量比で1000ppm〜3000ppmのとき最低となる、即ち、Feが安定に存在できる濃度の最低値は、重量比で1000ppm〜3000ppmであるとの知見を得た。そこで、本発明では、Sn、Pb、Ni、Znといった不純物の除去に用いたスラグにより生じたFeを効果的に除去するべく、スラグ除滓後、酸素濃度を特定の範囲に調整することを提案する。酸素濃度が1000重量ppm未満及び3000重量ppm超では、Feの除去が不十分で溶湯中のFe濃度が20重量ppm超となる恐れがある。より好ましくは、重量比で1500ppm以上2500ppm以下とすることである。   In the refining method of the present invention, a slag containing Fe is used. Therefore, there is a possibility that 20 ppm by weight or more of Fe or an oxide containing Fe may remain in the molten metal after slag removal. Therefore, it is preferable to further include a second refining step of removing Fe from the molten metal by adjusting the oxygen concentration of the molten metal from which slag has been removed to 1000 ppm to 3000 ppm by weight. As a result of the study by the present inventors, the behavior of Fe in the molten metal containing oxygen becomes the lowest when the oxygen concentration in the molten metal is 1000 ppm to 3000 ppm by weight, that is, the lowest value of the concentration at which Fe can stably exist. Obtained the knowledge that the weight ratio is 1000 ppm to 3000 ppm. Therefore, the present invention proposes to adjust the oxygen concentration to a specific range after slag removal in order to effectively remove Fe generated by slag used for removing impurities such as Sn, Pb, Ni, and Zn. To do. If the oxygen concentration is less than 1000 ppm by weight or more than 3000 ppm by weight, the removal of Fe may be insufficient and the Fe concentration in the molten metal may exceed 20 ppm by weight. More preferably, the weight ratio is 1500 ppm or more and 2500 ppm or less.

精錬工程において、酸素濃度の調整(5000ppm以上12000ppm以下)を行い、その後、上記第二精錬を行う場合、酸素濃度を上記1000ppm以上3000ppm以下に調整するには、還元剤を用いて還元することにより行うことが挙げられる。還元剤は、例えば、重油などが挙げられる。   In the refining process, the oxygen concentration is adjusted (5000 ppm or more and 12000 ppm or less), and then the second refining is performed by reducing with a reducing agent to adjust the oxygen concentration to the above 1000 ppm or more and 3000 ppm or less. To do. Examples of the reducing agent include heavy oil.

上記本発明精錬方法により得られた溶銅は、銅荒引線の製造に利用することが最適である。特に、連続鋳造圧延により銅荒引線を製造する際にも利用することができる。本発明精錬方法により溶銅中の不純物の濃度が低減されているため、圧延時に割れが発生することがほとんどない、或いは全くない。また、得られた銅荒引線は、優れた導電性を具える。   The molten copper obtained by the above-described refining method of the present invention is optimally used for producing a copper roughing wire. In particular, it can also be used when producing a copper roughing wire by continuous casting and rolling. Since the concentration of impurities in the molten copper is reduced by the refining method of the present invention, there is little or no cracking during rolling. Moreover, the obtained copper rough wire has excellent conductivity.

上記構成を具える本発明精錬方法は、特定組成のスラグを用いて精錬を行うことで、電解精錬を行うことなく、溶湯中からSn、Pb、Ni、Znといった不純物を除去することができるという優れた効果を奏し得る。また、スラグを用いた精錬は、溶解を行う反射炉などの溶解炉を用いて行うことができるため、溶解から精錬への作業を連続的に行うことができ、作業効率を向上させることもできる。更に、スラグ精錬は、上記のように溶解炉において行うことができることから、従来の設備をそのまま利用することができ、更なる設備の増加が不要であると共に、電解精錬の設備も不要とすることができる。   The refining method of the present invention having the above configuration can remove impurities such as Sn, Pb, Ni, Zn from the molten metal without performing electrolytic refining by refining using slag having a specific composition. An excellent effect can be achieved. In addition, since refining using slag can be performed using a melting furnace such as a reflecting furnace that performs melting, work from melting to refining can be performed continuously, and work efficiency can be improved. . Furthermore, since slag refining can be performed in a melting furnace as described above, conventional equipment can be used as it is, and further increase in equipment is unnecessary and electrolytic refining equipment is also unnecessary. Can do.

特に、上記スラグ精錬中の酸素濃度を調整することで、より効果的に不純物の除去を行うことができる。また、上記スラグによる精錬に加えて、スラグ除滓後、酸素濃度を特定範囲に調整することで、スラグの使用により混入された不純物も効果的に低減することができる。そのため、本発明精錬方法を適用すれば、Sn、Pb、Ni、Znといった不純物を多く含む銅材を溶解原料の一部又は全部に使用しても、連続鋳造圧延にて製造される銅荒引線の導電率の悪化や、熱間圧延時の割れの発生などが生じることがなく、良好な製品を製造することが可能である。   In particular, impurities can be more effectively removed by adjusting the oxygen concentration during the slag refining. Moreover, in addition to the refining by the slag, the impurities mixed in by using the slag can be effectively reduced by adjusting the oxygen concentration to a specific range after removing the slag. Therefore, if the refining method of the present invention is applied, even if a copper material containing a large amount of impurities such as Sn, Pb, Ni, Zn is used for a part or all of the melting raw material, the copper rough drawn wire produced by continuous casting rolling It is possible to produce a good product without causing deterioration of the electrical conductivity and occurrence of cracks during hot rolling.

以下、本発明の実施の形態を説明する。
(試験例1)
重量比でSn:約110ppm、Pb:約100ppm、Ni:約50ppm、Zn:約100ppmを含有させた銅材1kgを溶解し、溶湯にSiO2及びFeOを含有するスラグを添加して溶湯に接触させた後、スラグを除滓した。そして、このときの溶湯中のSn、Pb、Ni、及びZnの濃度を測定してみた。
Embodiments of the present invention will be described below.
(Test Example 1)
1kg of copper material containing Sn: about 110ppm, Pb: about 100ppm, Ni: about 50ppm, Zn: about 100ppm by weight ratio is melted, and slag containing SiO 2 and FeO is added to the molten metal and brought into contact with the molten metal Then, the slag was removed. Then, the concentrations of Sn, Pb, Ni, and Zn in the molten metal at this time were measured.

本例では、スラグとして、重量%でFeO:55%、SiO2:35%、CaO:7%、Al2O3:3%、及び不可避的不純物からなるスラグ100g(SiO2及びFeOの含有量:90重量%、SiO2とFeOとの含有割合SiO2:FeO=1:1.57)を用いた。このスラグは、銅材を溶解中に投入した。そして、スラグを投入してからスラグを除滓するまでの溶湯の温度は、1150℃に保持した。 In this example, as slag, by weight percent FeO: 55%, SiO 2 : 35%, CaO: 7%, Al 2 O 3 : 3%, and slag 100g (content of SiO 2 and FeO) : 90 wt%, SiO 2 : FeO content ratio SiO 2 : FeO = 1: 1.57). This slag was thrown into the copper material during melting. And the temperature of the molten metal after throwing in slag until it removes slag was kept at 1150 degreeC.

更に、本例では、溶湯にスラグを投入すると共に、ノズルを溶湯に浸漬させて、空気を200〜400cm3/minの流量で溶湯に吹き込み、種々の酸素濃度とした状態でスラグを除滓して、スラグ除滓後の溶湯中の不純物:Sn、Pb、Ni、及びZnの濃度(重量ppm)を測定してみた。その結果を図1のグラフに示す。 Furthermore, in this example, slag is introduced into the molten metal, the nozzle is immersed in the molten metal, air is blown into the molten metal at a flow rate of 200 to 400 cm 3 / min, and the slag is removed in various oxygen concentrations. Then, the concentration (weight ppm) of impurities: Sn, Pb, Ni, and Zn in the molten metal after slag removal was measured. The results are shown in the graph of FIG.

図1に示すようにSiO2及びFeOを含有するスラグを用いることで、Sn、Pb、Ni、及びZnを除去できることがわかる。また、スラグによる精錬中に酸素濃度を高めていく、具体的には、重量比で5000ppm以上に調整すると、より効果的に不純物の除去が行えることがわかる。具体的には、Sn、Pb、Znを10重量ppm以下、Niを25重量ppm程度にすることができた。 As can be seen from FIG. 1, Sn, Pb, Ni, and Zn can be removed by using slag containing SiO 2 and FeO. It can also be seen that impurities can be removed more effectively by increasing the oxygen concentration during refining with slag, specifically by adjusting the weight ratio to 5000 ppm or more. Specifically, Sn, Pb, and Zn could be reduced to 10 ppm by weight or less, and Ni to approximately 25 ppm by weight.

また、溶湯の温度を変化させて同様の試験を行ってみた。その結果、溶湯温度を1300℃以上とすると、温度の上昇に伴って、上記試験の場合よりも不純物量が増加する傾向にあった。一方、溶湯温度を1100℃未満とすると、温度の低下に伴ってスラグの粘性が大きくなり、このため、不純物の除去を行いにくく、不純物量が増加する傾向にあった。従って、より効果的に不純物の除去を行うには、溶湯温度が1100℃以上1300℃未満、特に1130℃以上1250℃以下が好ましいことがわかった。   In addition, the same test was performed by changing the temperature of the molten metal. As a result, when the molten metal temperature was 1300 ° C. or higher, the amount of impurities tended to increase as the temperature increased compared to the case of the above test. On the other hand, when the molten metal temperature is less than 1100 ° C., the viscosity of the slag increases as the temperature decreases. For this reason, it is difficult to remove impurities and the amount of impurities tends to increase. Therefore, it was found that the molten metal temperature is preferably 1100 ° C. or higher and lower than 1300 ° C., particularly 1130 ° C. or higher and 1250 ° C. or lower in order to remove impurities more effectively.

上記試験結果から、本発明精錬方法を行うことで、従来のように電解精錬を行うことなく、Sn、Pb、Ni、及びZnといった不純物を除去できることが確認された。特に、スラグ精錬中に酸素濃度を調整することで、銅荒引線用の銅原料の要求特性を十分に満たすものが得られることが確認された。また、スラグを接触させる際の溶湯の温度を特定の範囲にすることで、より効果的に上記不純物を除去できることが確認された。   From the above test results, it was confirmed that by performing the refining method of the present invention, impurities such as Sn, Pb, Ni, and Zn can be removed without performing the conventional electrolytic refining. In particular, it was confirmed that by adjusting the oxygen concentration during slag refining, a material that sufficiently satisfies the required characteristics of the copper raw material for copper roughing wire can be obtained. Moreover, it was confirmed that the said impurity can be removed more effectively by making the temperature of the molten metal at the time of contacting slag into a specific range.

(試験例2)
重量比でSn:約550ppm、Pb:約30ppm、Ni:約45ppm、Zn:約1100ppmを含有させた銅材100tonを溶解し、酸素濃度を変化させると共にSiO2及びFeOを含有するスラグによる精錬を行ってみた。そして、各酸素濃度において、溶湯中のSn、Pb、Ni、及びZnの濃度を測定してみた。
(Test Example 2)
Refining by slag containing SiO 2 and FeO while melting 100 ton of copper material containing Sn: about 550ppm by weight, Pb: about 30ppm, Ni: about 45ppm, Zn: about 1100ppm, changing oxygen concentration I went there. Then, the concentration of Sn, Pb, Ni, and Zn in the molten metal was measured at each oxygen concentration.

本例では、試験開始から徐々に酸素濃度を高めていき、特定の酸素濃度(5000重量ppm)になったとき(時間t1)に、溶湯にスラグを投入した(銅材を溶解後に投入)。また、スラグによる精錬中も徐々に酸素濃度を高めていき、特定の酸素濃度(9000重量ppm)になったとき(時間t2)に、スラグの除滓を行った。そして、スラグの除滓後は、酸素濃度を徐々に低めていった。 In this example, the oxygen concentration was gradually increased from the start of the test, and when a specific oxygen concentration (5000 ppm by weight) was reached (time t 1 ), slag was introduced into the molten metal (added after the copper material was dissolved). . In addition, the oxygen concentration was gradually increased during the slag refining, and when the specific oxygen concentration (9000 ppm by weight) was reached (time t 2 ), the slag was removed. And after removing the slag, the oxygen concentration gradually decreased.

本例では、重量%でFeO:53%、SiO2:39%、CaO:2%、Al2O3:6%、及び不可避的不純物からなるスラグを500kg(SiO2及びFeOの含有量:88重量%、SiO2とFeOとの含有割合SiO2:FeO=1:1.36)用いた。また、スラグを投入してからスラグを除滓するまでの溶湯の温度は、1200℃に保持した。 In this example, 500 kg of slag composed of FeO: 53%, SiO 2 : 39%, CaO: 2%, Al 2 O 3 : 6%, and unavoidable impurities by weight% (content of SiO 2 and FeO: 88) % By weight, SiO 2 : FeO content ratio SiO 2 : FeO = 1: 1.36). Moreover, the temperature of the molten metal after throwing in slag until it removes slag was kept at 1200 degreeC.

更に、本例では、銅材の溶解後、ノズルを溶湯に浸漬させて、空気を8〜20m3/minの流量で溶湯に吹き込み、時間t2までは酸素濃度を高めていき、それ以後、重油を用いて還元することで酸素濃度を下げていった。試験の結果を図2に示す。 Furthermore, in this example, after the copper material is melted, the nozzle is immersed in the molten metal, and air is blown into the molten metal at a flow rate of 8 to 20 m 3 / min, and the oxygen concentration is increased until time t 2 , and thereafter The oxygen concentration was lowered by reducing with heavy oil. The test results are shown in FIG.

図2に示すようにSiO2及びFeOを含有するスラグによる精錬を行うと共に、酸素濃度を重量比で5000ppm以上に調整することで、Sn、Pb、Ni、及びZnの濃度が低下していることがわかる。具体的には、スラグ除滓により、最低でSn:約35重量ppm、Pb:約15重量ppm、Ni:約30重量ppm、Zn:20重量ppmにまで除去された。一方、スラグ精錬中(図2において時間t1〜t2)において、Feの濃度が高くなっていることがわかる。これは、Feを含有するスラグを用いているためであると推測される。これに対し、スラグ除滓後、酸素濃度を低下させる、特に、図2に示すように3000〜1000ppmとすることで、Feの含有量を低減できることがわかる。具体的には、スラグ精錬中に110重量ppm程度になっていたFeが、スラグ除滓後の酸素濃度の調整により、20重量ppm以下、特に10重量ppm以下となった。 As shown in FIG. 2, the concentration of Sn, Pb, Ni, and Zn is reduced by refining with slag containing SiO 2 and FeO and adjusting the oxygen concentration to 5000 ppm or more by weight ratio. I understand. Specifically, the slag was removed to at least Sn: about 35 ppm by weight, Pb: about 15 ppm by weight, Ni: about 30 ppm by weight, and Zn: 20 ppm by weight. On the other hand, in the slag refining (time t 1 ~t 2 in FIG. 2), it can be seen that the concentration of Fe is high. This is presumed to be due to the use of slag containing Fe. On the other hand, it can be seen that the Fe content can be reduced by reducing the oxygen concentration after removing the slag, in particular by setting it to 3000 to 1000 ppm as shown in FIG. Specifically, Fe, which was about 110 ppm by weight during slag refining, became 20 ppm by weight or less, particularly 10 ppm by weight or less, by adjusting the oxygen concentration after slag removal.

上記試験結果から、まず、SiO2及びFeOを含有するスラグによる精錬を行い、好ましくは、このときの酸素濃度を重量比で5000ppm以上(12000ppm以下)にして溶湯中のSn、Pb、Ni、及びZnの除去を行い、スラグを除滓してから、酸素濃度を一定の範囲(重量比で1000〜3000ppm)に調整して、スラグ精錬により混入されたFe系酸化物の除去により溶湯中のFe成分の除去を行う、という手順により溶湯中の不純物を効果的に除去できることが確認された。 From the above test results, first, refining with slag containing SiO 2 and FeO, preferably, the oxygen concentration at this time is 5000 ppm or more (12000 ppm or less) by weight, Sn, Pb, Ni in the molten metal, and After removing Zn and removing the slag, the oxygen concentration is adjusted to a certain range (1000 to 3000 ppm by weight), and the Fe-based oxide mixed by slag refining is removed to remove Fe in the molten metal. It was confirmed that impurities in the molten metal can be effectively removed by the procedure of removing the components.

上記により精錬された溶湯(溶銅)を用いて、連続鋳造圧延により銅荒引線を作製し、銅荒引線の特性(引張強さ(MPa)、伸び(%)、導電率(%IACS))を調べてみた。また、上記銅荒引線に伸線加工を施して硬銅線を作製し、硬銅線の特性(引張強さ(MPa)、伸び(%)、導電率(%IACS))を調べてみた。連続鋳造圧延の条件、伸線加工の条件は、公知の条件とした。試験の結果を表1に示す。   Using the molten metal (molten copper) refined as described above, copper rough drawn wire was produced by continuous casting and rolling, and the characteristics of copper rough drawn wire (tensile strength (MPa), elongation (%), conductivity (% IACS)) I checked. Moreover, the copper rough drawing wire was drawn to produce a hard copper wire, and the properties of the hard copper wire (tensile strength (MPa), elongation (%), conductivity (% IACS)) were examined. The conditions for continuous casting and rolling and the conditions for wire drawing were known conditions. The test results are shown in Table 1.

表1において試料No.1〜3が上記スラグ精錬及び酸素濃度の調整による精錬を行ったものである。また、試料No.4は、比較として、Sn、Pb、Ni、及びZnといった不純物を含有させていない銅材を用いたものである。具体的には、不純物を含有させていない銅材を溶解し、得られた溶湯を用いて、試料No.1〜3と同様の条件で連続鋳造圧延を行って銅荒引線を作製し、同様に銅荒引線の特性を調べた。また、この銅荒引線に同様の条件で伸線加工を施して硬銅線を作製し、同様に硬銅線の特性を調べた。その結果も表1に示す。   In Table 1, sample Nos. 1 to 3 are those subjected to the slag refining and refining by adjusting the oxygen concentration. Sample No. 4 uses a copper material that does not contain impurities such as Sn, Pb, Ni, and Zn for comparison. Specifically, a copper material not containing impurities is melted, and the resulting molten metal is used to perform continuous casting and rolling under the same conditions as Sample Nos. The characteristics of the copper rough wire were investigated. Moreover, the copper rough drawing wire was drawn under the same conditions to produce a hard copper wire, and the characteristics of the hard copper wire were similarly examined. The results are also shown in Table 1.

Figure 2005042162
Figure 2005042162

その結果、Sn、Pb、Ni、及びZnを含有した銅材を用いた試料No.1〜3はいずれも、上記の精錬を行うことで、連続鋳造圧延による熱間圧延を行っている際に割れなどが生じることがなかった。また、表1に示すように、試料No.1〜3はいずれも、高い導電率を有する銅荒引線であった。従って、Sn、Pb、Ni、及びZnを含有した銅材を用いても、SiO2及びFeOを含有するスラグによる精錬、更に、スラグ精錬後の酸素濃度の調整による精錬にて不純物の除去を行うことで、Sn、Pb、Ni、及びZnを含有していない銅材を用いた場合と同程度の品位の銅荒引線を提供できることがわかる。そのため、本発明精錬方法を適用すれば、いわゆる低品位銅スクラップを溶解原料として用いても、電解精錬を行うことなく、要求特性を十分に満たす銅荒引線を提供することが可能である。 As a result, all of the sample Nos. 1 to 3 using the copper material containing Sn, Pb, Ni, and Zn are subjected to the above-described refining, when performing hot rolling by continuous casting rolling. There were no cracks. Moreover, as shown in Table 1, all of sample Nos. 1 to 3 were copper roughing wires having high conductivity. Therefore, even if a copper material containing Sn, Pb, Ni, and Zn is used, impurities are removed by refining with slag containing SiO 2 and FeO and further by refining by adjusting the oxygen concentration after slag refining. Thus, it can be seen that a rough drawn copper wire having the same grade as that obtained when a copper material containing no Sn, Pb, Ni, and Zn is used can be provided. Therefore, if the refining method of the present invention is applied, it is possible to provide a rough copper wire that sufficiently satisfies the required characteristics without performing electrolytic refining even when so-called low-grade copper scrap is used as a melting raw material.

本発明銅の精錬方法は、特に、銅スクラップを再利用する際に最適である。また、この精錬方法により得られた溶銅は、銅荒引線の製造に用いることができる。   The copper refining method of the present invention is particularly suitable when copper scrap is reused. Moreover, the molten copper obtained by this refining method can be used for manufacture of a copper roughing wire.

スラグ精錬を行った実施例において、スラグ精錬を行っている際の溶湯中のSn、Pb、Ni、Znの濃度の変化と、酸素濃度の変化とを表すグラフである。In the Example which performed slag refining, it is a graph showing the change of the density | concentration of Sn, Pb, Ni, Zn in the molten metal at the time of performing slag refining, and the change of oxygen concentration. スラグ精錬後、酸素濃度の調整による精錬を行った実施例において、Sn、Pb、Ni、Znの濃度及び酸素濃度の変化を表すグラフである。It is a graph showing the density | concentration of Sn, Pb, Ni, Zn, and the change of oxygen concentration in the Example which refined by adjustment of oxygen concentration after slag refining.

Claims (6)

Sn、Pb、Ni、及びZnからなる群から選択される1種以上の金属元素を含有する銅を溶解する溶解工程と、
前記溶解された銅を含有する溶湯にSiO2及びFeOを含有するスラグを接触させた後、前記スラグを除滓して、前記金属元素を溶湯中から除去する精錬工程とを具えることを特徴とする銅の精錬方法。
A dissolution step of dissolving copper containing one or more metal elements selected from the group consisting of Sn, Pb, Ni, and Zn;
A slag containing SiO 2 and FeO is brought into contact with the molten copper-containing molten metal, and then the slag is removed, and a refining step of removing the metal element from the molten metal is provided. The copper refining method.
スラグは、SiO2及びFeOを75重量%以上含有することを特徴とする請求項1に記載の銅の精錬方法。 2. The copper refining method according to claim 1, wherein the slag contains SiO 2 and FeO in an amount of 75% by weight or more. 精錬工程において、スラグを接触させる際の溶湯の温度を1100℃以上1300℃未満にすることを特徴とする請求項1又は2に記載の銅の精錬方法。   3. The method for refining copper according to claim 1, wherein the temperature of the molten metal in contact with the slag is set to 1100 ° C. or higher and lower than 1300 ° C. in the refining step. 精錬工程において、スラグを溶湯に接触させる際、溶湯の酸素濃度を重量比で5000ppm以上12000ppm以下にすることを特徴とする請求項1〜3のいずれかに記載の銅の精錬方法。   4. The copper refining method according to claim 1, wherein, when the slag is brought into contact with the molten metal in the refining step, the oxygen concentration of the molten metal is set to 5000 ppm to 12000 ppm by weight. 更に、スラグを除滓した後、溶湯の酸素濃度を重量比で1000ppm以上3000ppm以下にして、Feを溶湯中から除去する第二精錬工程を具えることを特徴とする請求項1〜4のいずれかに記載の銅の精錬方法。   Furthermore, after removing the slag, the oxygen concentration of the molten metal is set to 1000 ppm or more and 3000 ppm or less in a weight ratio, and further comprises a second refining step of removing Fe from the molten metal. A method for refining copper according to crab. 請求項1〜5のいずれかに記載の銅の精錬方法により得られた溶銅を用いて、連続鋳造圧延により銅荒引線を製造することを特徴とする銅荒引線の製造方法。   6. A method for producing a copper roughing wire, comprising producing a copper roughing wire by continuous casting and rolling using the molten copper obtained by the copper refining method according to any one of claims 1 to 5.
JP2003277440A 2003-07-22 2003-07-22 Copper refining method Expired - Lifetime JP4140471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003277440A JP4140471B2 (en) 2003-07-22 2003-07-22 Copper refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003277440A JP4140471B2 (en) 2003-07-22 2003-07-22 Copper refining method

Publications (2)

Publication Number Publication Date
JP2005042162A true JP2005042162A (en) 2005-02-17
JP4140471B2 JP4140471B2 (en) 2008-08-27

Family

ID=34264167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003277440A Expired - Lifetime JP4140471B2 (en) 2003-07-22 2003-07-22 Copper refining method

Country Status (1)

Country Link
JP (1) JP4140471B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100441710C (en) * 2006-03-31 2008-12-10 日矿金属株式会社 Dry type refining method for copper
JP2012201894A (en) * 2011-03-23 2012-10-22 Jx Nippon Mining & Metals Corp Treatment method of copper containing iron and tin
JP2012229472A (en) * 2011-04-26 2012-11-22 Jx Nippon Mining & Metals Corp Treatment method of tin inclusion copper
JP2017188436A (en) * 2016-03-31 2017-10-12 株式会社オートネットワーク技術研究所 Communication wire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100441710C (en) * 2006-03-31 2008-12-10 日矿金属株式会社 Dry type refining method for copper
JP2012201894A (en) * 2011-03-23 2012-10-22 Jx Nippon Mining & Metals Corp Treatment method of copper containing iron and tin
JP2012229472A (en) * 2011-04-26 2012-11-22 Jx Nippon Mining & Metals Corp Treatment method of tin inclusion copper
JP2017188436A (en) * 2016-03-31 2017-10-12 株式会社オートネットワーク技術研究所 Communication wire

Also Published As

Publication number Publication date
JP4140471B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
JP5147040B2 (en) Method for producing copper alloy conductor
KR101022068B1 (en) Process for producing steel for high-carbon steel wire material with excellent drawability and fatigue characteristics
JP2004225093A (en) Copper-base alloy and manufacturing method therefor
JP2008056977A (en) Copper alloy and its production method
JP2018003159A (en) Copper alloy trolley wire and method of manufacturing copper alloy trolley wire
JPH0754103A (en) Oxide inclusion super-finely dispersed steel
JP4140471B2 (en) Copper refining method
JP2004137551A (en) Method for manufacturing copper alloy conductor for train wire, and copper alloy conductor for train wire
JP4140470B2 (en) Copper refining method
JP6825399B2 (en) How to melt clean steel
KR101233836B1 (en) Tundish flux composite and Method of manufacturing the same
JP5713529B2 (en) Steel material with excellent rolling fatigue life
JP5326467B2 (en) Method for producing copper alloy wire
JP4833694B2 (en) Oxygen-free copper and oxygen-free copper alloy rough wire rods with excellent peelability
JP4069150B2 (en) Manufacturing method of high carbon steel wire rod steel with excellent drawability and fatigue properties
JP6493047B2 (en) Copper alloy material and method for producing the same
JP6965511B2 (en) Manufacturing method of copper alloy wire
JP4882249B2 (en) Manufacturing method of high clean steel
JP4214394B2 (en) Abrasion-resistant trolley wire and its manufacturing method
JP2018104763A (en) Refining method of molten iron
JP2006198623A (en) Solid wire for gas shield arc welding
JP2007177296A (en) Method for deoxidizing molten steel
JP2005042163A (en) Method for producing wear-resistant trolley wire
JPS61217538A (en) Method for continuously melting and casting copper
JP2005133111A (en) Trolley wire and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080229

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4140471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term