JP2005042117A - Laminated board and multilayer printed circuit board - Google Patents
Laminated board and multilayer printed circuit board Download PDFInfo
- Publication number
- JP2005042117A JP2005042117A JP2004255049A JP2004255049A JP2005042117A JP 2005042117 A JP2005042117 A JP 2005042117A JP 2004255049 A JP2004255049 A JP 2004255049A JP 2004255049 A JP2004255049 A JP 2004255049A JP 2005042117 A JP2005042117 A JP 2005042117A
- Authority
- JP
- Japan
- Prior art keywords
- insulating layer
- woven fabric
- circuit board
- reinforcing material
- thermal expansion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
本発明は半導体素子を搭載可能な積層板及び多層プリント回路板に関する。 The present invention relates to a laminated board and a multilayer printed circuit board on which a semiconductor element can be mounted.
低熱膨張多層基板としては、セラミックスコア層を有する基板,銅箔にセラミックスを溶射した基板などがあり、面方向の熱膨張率は10ppm/K 以下である。しかし、セラミックス系の場合、スルーホール形成時のドリル加工性に問題がある。一方、有機系の基板においては樹脂系に無機フィラを混入することにより熱膨張率を低減できることが知られている。しかし、この場合には弾性率が大きくなり、必らずしも低応力化を計る上で十分ではない。 Examples of the low thermal expansion multilayer substrate include a substrate having a ceramic score layer, a substrate obtained by spraying ceramics on a copper foil, and the thermal expansion coefficient in the plane direction is 10 ppm / K or less. However, in the case of ceramics, there is a problem in drilling workability when forming a through hole. On the other hand, in an organic substrate, it is known that the thermal expansion coefficient can be reduced by mixing an inorganic filler into a resin system. However, in this case, the elastic modulus is increased, which is not necessarily sufficient for reducing the stress.
従来ゴム系成分を積層材の樹脂成分に添加して低弾性率化を達成できることが知られている(特開昭61−100446号)。この場合、樹脂とゴム系成分を相溶化して可撓性,強靱性にすぐれたフレキシブル基板を提供する。しかし、この場合は低弾性率化には効果があるが熱膨張率が大きくなる傾向がある。 Conventionally, it is known that a low elastic modulus can be achieved by adding a rubber component to a resin component of a laminate (Japanese Patent Laid-Open No. 61-100446). In this case, a flexible substrate having excellent flexibility and toughness is provided by compatibilizing the resin and the rubber component. However, in this case, there is an effect in reducing the elastic modulus, but the thermal expansion coefficient tends to increase.
また、海島構造に代表されるマトリックス樹脂成分と相溶性の悪い他成分を組み合わせた樹脂成分を積層板に適用した例としては、基板表面のみに海島構造からなる樹脂成分からなる層を形成して低弾性率化を計り、実装時の熱応力の低減を達成することが提案されている(特開平4−356995号) 。しかし、該方法では基板の面内方向の低熱膨張率化はむずかしく基板全体の特性に及ぼす効果は極めて小さい。 In addition, as an example of applying a resin component, which is a combination of a matrix resin component typified by sea-island structure, and other components having poor compatibility, to a laminate, a layer made of a resin component having a sea-island structure is formed only on the substrate surface. It has been proposed to achieve a reduction in thermal stress during mounting by reducing the elastic modulus (Japanese Patent Laid-Open No. 4-356995). However, in this method, it is difficult to reduce the coefficient of thermal expansion in the in-plane direction of the substrate, and the effect on the characteristics of the entire substrate is extremely small.
本発明は熱膨張率が小さく、かつ低弾性率の熱応力の小さい積層板,多層プリント回路板,プリプレグ及びそれらを用いたエレクトロニクス製品を提供することを目的とする。 An object of the present invention is to provide a laminated board, a multilayer printed circuit board, a prepreg, and an electronic product using them, which have a low coefficient of thermal expansion and a low elastic modulus and a low thermal stress.
上記目的を達成するため、本発明は以下の手段を提供する。その第1の手段は半導体素子を搭載可能な積層板において、前記積層板が海島構造を有する樹脂部分と織布補強材から構成された絶縁層を有し、該絶縁層の面内方向の熱膨張率が3.0〜10ppm/K,絶縁層のガラス転移温度が150〜300℃であることを特徴とする積層板。 In order to achieve the above object, the present invention provides the following means. The first means is a laminate on which a semiconductor element can be mounted, the laminate having an insulating layer composed of a resin portion having a sea-island structure and a woven fabric reinforcing material, and heat in the in-plane direction of the insulating layer. A laminate having an expansion coefficient of 3.0 to 10 ppm / K and a glass transition temperature of an insulating layer of 150 to 300 ° C.
第2の手段は半導体素子を搭載可能な多層プリント回路板において、前記多層プリント回路板が海島構造を有する樹脂部分と織布補強材から構成された絶縁層を少なくとも2層有し、該絶縁層の面内方向の熱膨張率が3.0〜10ppm/K,絶縁層のガラス転移温度が150〜300℃であることを特徴とする多層プリント回路板。 A second means is a multilayer printed circuit board on which a semiconductor element can be mounted, wherein the multilayer printed circuit board has at least two insulating layers composed of a resin portion having a sea-island structure and a woven fabric reinforcing material. A multilayer printed circuit board having a coefficient of thermal expansion in the in-plane direction of 3.0 to 10 ppm / K and a glass transition temperature of the insulating layer of 150 to 300 ° C.
第3の手段は半導体素子を搭載可能な積層板において、前記積層板が海島構造を有する樹脂部分と無機質充填材と織布補強材から構成された絶縁層を有し、該絶縁層の面内方向の熱膨張率が3.0〜10ppm/K,絶縁層のガラス転移温度が150〜300℃であることを特徴とする積層板。 A third means is a laminated board on which a semiconductor element can be mounted, the laminated board having an insulating layer composed of a resin portion having a sea-island structure, an inorganic filler, and a woven fabric reinforcing material, and the in-plane of the insulating layer A laminate having a thermal expansion coefficient in the direction of 3.0 to 10 ppm / K and a glass transition temperature of the insulating layer of 150 to 300 ° C.
第4の手段は半導体素子を搭載可能な多層プリント回路板において、前記多層プリント回路板が海島構造を有する樹脂部分と無機質充填材と織布補強材から構成された絶縁層を少なくとも2層有し、該絶縁層の面内方向の熱膨張率が3.0〜10ppm/K,絶縁層のガラス転移温度が150〜300℃であることを特徴とする多層プリント回路板。 A fourth means is a multilayer printed circuit board on which a semiconductor element can be mounted, wherein the multilayer printed circuit board has at least two insulating layers composed of a resin portion having a sea-island structure, an inorganic filler, and a woven fabric reinforcing material. A multilayer printed circuit board characterized in that the thermal expansion coefficient in the in-plane direction of the insulating layer is 3.0 to 10 ppm / K, and the glass transition temperature of the insulating layer is 150 to 300 ° C.
第5の手段は織布補強材に樹脂成分を含浸してなるプリプレグにおいて、前記樹脂成分が海島構造を有する樹脂部分を含み、硬化後のプリプレグの面内方向の熱膨張率が3.0〜10ppm/K ,ガラス転移温度が150〜300℃であることを特徴とするプリプレグ。
A fifth means is a prepreg formed by impregnating a woven fabric reinforcing material with a resin component, wherein the resin component includes a resin portion having a sea-island structure, and the coefficient of thermal expansion in the in-plane direction of the cured prepreg is 3.0 to 3.0. A prepreg characterized by 10 ppm /
第6の手段は織布補強材に樹脂成分を含浸してなるプリプレグにおいて、前記樹脂成分が海島構造を有する樹脂部分と平均粒径0.1〜15μm の無機質充填材を含み、硬化後のプリプレグの面内方向の熱膨張率が3.0〜10ppm/K,ガラス転移温度が150〜
300℃であることを特徴とするプリプレグ。
A sixth means is a prepreg obtained by impregnating a woven fabric reinforcing material with a resin component, wherein the resin component includes a resin portion having a sea-island structure and an inorganic filler having an average particle size of 0.1 to 15 μm, The coefficient of thermal expansion in the in-plane direction is 3.0 to 10 ppm / K, and the glass transition temperature is 150 to
A prepreg characterized by being 300 ° C.
第7の手段は回路板上にメモリ素子を表面実装搭載してなるメモリカードにおいて、前記回路板が海島構造を有する樹脂部分と織布補強材から構成された絶縁層を有し、該絶縁層の面内方向の熱膨張率が3.0〜10ppm/K,絶縁層のガラス転移温度が150〜300℃であることを特徴とするメモリカード。 A seventh means is a memory card in which a memory element is surface-mounted on a circuit board, wherein the circuit board has an insulating layer composed of a resin portion having a sea-island structure and a woven fabric reinforcing material. A memory card having a coefficient of thermal expansion in the in-plane direction of 3.0 to 10 ppm / K and a glass transition temperature of the insulating layer of 150 to 300 ° C.
第8の手段は半導体素子を搭載可能な多層プリント回路板を含む計算機において、前記多層プリント回路板が海島構造を有する樹脂部分と織布補強材から構成された絶縁層を有し、該絶縁層の面内方向の熱膨張率が3.0〜10ppm/K,絶縁層のガラス転移温度が
150〜300℃で、信号伝送遅延時間が1〜15ns/mであることを特徴とする計算機。
An eighth means is a computer including a multilayer printed circuit board on which a semiconductor element can be mounted, wherein the multilayer printed circuit board has an insulating layer composed of a resin portion having a sea-island structure and a woven fabric reinforcing material, and the insulating layer The coefficient of thermal expansion in the in-plane direction is 3.0 to 10 ppm / K, the glass transition temperature of the insulating layer is 150 to 300 ° C., and the signal transmission delay time is 1 to 15 ns / m.
第9の手段は半導体素子を搭載可能な回路板を含む通信機器において、前記回路板が海島構造を有する樹脂部分と織布補強材から構成された絶縁層を有し、該絶縁層の面内方向の熱膨張率が3.0〜10ppm/K,絶縁層のガラス転移温度が150〜300℃で、重量が10g〜30kgであることを特徴とする通信機器。 Ninth means is a communication device including a circuit board on which a semiconductor element can be mounted, wherein the circuit board has an insulating layer composed of a resin portion having a sea-island structure and a woven fabric reinforcing material, and the in-plane of the insulating layer A communication device characterized in that a thermal expansion coefficient in a direction is 3.0 to 10 ppm / K, a glass transition temperature of an insulating layer is 150 to 300 ° C., and a weight is 10 g to 30 kg.
第10の手段は半導体素子を搭載可能な回路板を含むエレクトロニクス機器において、前記回路板が海島構造を有する樹脂部分と織布補強材から構成された絶縁層を有し、該絶縁層の面内方向の熱膨張率が3.0〜10ppm/K,絶縁層のガラス転移温度が150〜
300℃で、エレクトロニクス機器の占有体積が1〜50%であることを特徴とするエレクトロニクス機器。
A tenth means is an electronic device including a circuit board on which a semiconductor element can be mounted, wherein the circuit board has an insulating layer composed of a resin portion having a sea-island structure and a woven fabric reinforcing material, and the in-plane of the insulating layer Coefficient of thermal expansion in the direction is 3.0 to 10 ppm / K, and the glass transition temperature of the insulating layer is 150 to
An electronic device characterized in that the volume occupied by the electronic device is 1 to 50% at 300 ° C.
第11の手段は樹脂と織布補強材からなるプリプレグ又はシートを少なくとも1枚以上積層接着してなる積層板において、前記織布補強材は材料物性が異方性を示すように構成されており、前記樹脂は海島構造を有しかつ前記織布補強材の層間の接触を防止する連続体層であることを特徴とする積層板。 The eleventh means is a laminated plate formed by laminating and bonding at least one prepreg or sheet made of a resin and a woven fabric reinforcing material, and the woven fabric reinforcing material is configured such that material properties exhibit anisotropy. The laminate is characterized in that the resin is a continuous layer that has a sea-island structure and prevents contact between the layers of the woven fabric reinforcing material.
第12の手段は樹脂と織布補強材からなるプリプレグ又はシートを少なくとも1枚以上積層接着してなる積層板において、前記織布補強材は材料物性が異方性を示すように構成されており、前記樹脂は海島構造を有しかつ前記織布補強材の層間の接触を防止する連続体層であり、積層板の面内方向の熱膨張率が3.0〜10ppm/K,ガラス転移温度が150〜300℃であることを特徴とする積層板である。 The twelfth means is a laminated plate formed by laminating and bonding at least one prepreg or sheet made of a resin and a woven fabric reinforcing material, and the woven fabric reinforcing material is configured such that material properties are anisotropic. The resin has a sea-island structure and is a continuous layer that prevents contact between the layers of the woven fabric reinforcing material. The thermal expansion coefficient in the in-plane direction of the laminate is 3.0 to 10 ppm / K, and the glass transition temperature. Is a laminate having a temperature of 150 to 300 ° C.
本発明において、半導体素子とはSi,GaAsなどの半導体からなるウエハ上にメモリ,ロジック,カスタム,パワートランジスタなどのIC,LSIを形成し、リード,バンプなどに接続するための端子を有する素子である。該素子はベア,樹脂,セラミックスなどで被覆,封止された状態,テープオートマティックボンデング(TAB)された状態などのパッケージされた状態のものも含む。 In the present invention, a semiconductor element is an element having terminals for forming ICs and LSIs such as memory, logic, custom, and power transistors on a wafer made of a semiconductor such as Si and GaAs, and connecting to leads, bumps, and the like. is there. The element includes a packaged state such as a state in which it is covered and sealed with bare, resin, ceramics, or the like, or a state in which tape automatic bonding (TAB) is performed.
本発明において、積層板とは織布補強材に樹脂成分を含浸して得られるプリプレグ,シートなどを少なくとも1枚以上積層して加圧接着成形して得られる構造体である。織布補強材としてはガラス(Eガラス,Sガラス,Dガラス,Qガラスなど),チタンなどの無機系繊維からなるクロス,シート,ポリアミド,ポリアミドイミド,ポリイミド,液晶性ポリマ,アラミドなどの有機系繊維からなるクロス,シート,カーボン繊維からなるクロス、あるいは前記無機系繊維,有機系繊維,カーボン繊維からなるクロス,シートなどがある。また、電磁波遮蔽,耐放射線性,機械強度の向上,導電性付与などの目的に応じて、金属繊維からなるシート,クロス、あるいは金属繊維と無機系繊維,有機系繊維,カーボン繊維の少なくとも1種との複合系のクロス,シートを使用することもできる。 In the present invention, a laminate is a structure obtained by laminating at least one prepreg, sheet or the like obtained by impregnating a woven fabric reinforcing material with a resin component and then pressure bonding and molding. Woven fabric reinforcing materials include glass (E glass, S glass, D glass, Q glass, etc.), cloth made of inorganic fibers such as titanium, sheet, polyamide, polyamideimide, polyimide, liquid crystalline polymer, aramid, etc. There are cloth cloth and sheet made of fiber, cloth cloth made of carbon fiber, cloth made of inorganic fiber, organic fiber and carbon fiber, and sheet. In addition, depending on the purpose of electromagnetic shielding, radiation resistance, improvement of mechanical strength, imparting electrical conductivity, etc., at least one of a sheet or cloth made of metal fibers, or metal fibers and inorganic fibers, organic fibers, or carbon fibers is used. It is also possible to use a composite cloth or sheet.
本発明において、多層プリント回路板とは前記半導体素子などを搭載するための配線を有する回路板において、配線層が2層以上形成され、該配線層はスルーホールなどを介して接続されている。配線層としては、銅,銀,金,アルミニウム,クロム,モリブデン,タングステン等の金属箔,メッキ,蒸着などにより回路を形成したものが用いられる。特に、銅が好ましく、銅箔がよい。 In the present invention, the multilayer printed circuit board is a circuit board having wiring for mounting the semiconductor element or the like, and two or more wiring layers are formed, and the wiring layers are connected through a through hole or the like. As the wiring layer, a metal foil made of copper, silver, gold, aluminum, chromium, molybdenum, tungsten, etc., a circuit formed by plating, vapor deposition, or the like is used. In particular, copper is preferable and copper foil is good.
また、本発明において織布補強材を含浸する樹脂ワニスの使用割合は、両者の合計量に対して、織布補強材が10〜70重量%,ワニスが固形分換算で30〜90重量%程度である。ワニスが少なければ良好なプリプレグ,フィルムが得られにくく、多すぎると面内方向の熱膨張率が3.0〜10ppm/Kの範囲内とすることがむずかしくなる。また、補強効果が減少する。 In the present invention, the proportion of the resin varnish impregnated with the woven fabric reinforcing material is about 10 to 70% by weight of the woven fabric reinforcing material and about 30 to 90% by weight in terms of solid content of the varnish with respect to the total amount of both. It is. If the varnish is small, it is difficult to obtain a good prepreg and film. If the varnish is too large, it is difficult to make the thermal expansion coefficient in the in-plane direction within the range of 3.0 to 10 ppm / K. In addition, the reinforcing effect is reduced.
本発明の積層板は配線用、たとえばフレキシブル配線基板として、又回路間の絶縁フィルムとして好適である。たとえばフレキシブル配線基板として次のように配線用途に供される。 The laminate of the present invention is suitable for wiring, for example, as a flexible wiring board and as an insulating film between circuits. For example, the flexible wiring board is used for wiring as follows.
まずガラスクロスに、樹脂配合物を有機溶剤に溶かしたワニスを含浸する。次に乾燥機中で溶剤を蒸発させると共に硬化反応を少し進め、B−ステージ(半硬化状態、熱をかけると溶融する。)としてプリプレグをつくる。次にプリプレグの両面に銅箔,アルミ箔等の金属箔を重ねサンドイッチ状にし、又はプリプレグの片面にのみ金属箔を重ね、これを熱圧着させて金属箔を接着させ、同時に含浸樹脂を硬化させる。次にレジストインキを銅箔面に回路状に塗布し、レジストインキを乾燥させる。次に、塩化第二鉄水溶液等で回路以外の部分の銅箔をエッチングする。ついで、塩化メチレン等の有機溶媒を使用しレジストインキの除去および洗浄を行う。最後に半田槽につけて、必要な箇所に半田を付着させ回路が完成する。 First, a glass cloth is impregnated with a varnish obtained by dissolving a resin compound in an organic solvent. Next, the solvent is evaporated in the dryer and the curing reaction is advanced a little to make a prepreg as a B-stage (semi-cured state, melts when heated). Next, a metal foil such as copper foil or aluminum foil is laminated on both sides of the prepreg to form a sandwich, or a metal foil is laminated only on one side of the prepreg, and the metal foil is adhered by thermocompression bonding, and at the same time, the impregnating resin is cured. . Next, resist ink is apply | coated to a copper foil surface in circuit shape, and resist ink is dried. Next, the copper foil other than the circuit is etched with a ferric chloride aqueous solution or the like. Next, the resist ink is removed and washed using an organic solvent such as methylene chloride. Finally, it is placed in a solder bath, and solder is attached to the necessary locations to complete the circuit.
このような用途に供するため本発明のフレキシブル基板は半硬化状態(プリプレグ)で、又は金属箔を熱圧着させた後の硬化状態で一般に市販される。本発明のフレキシブル基板にはこのような半硬化状態および硬化状態のいずれの状態のもの含まれる。 In order to provide such a use, the flexible substrate of the present invention is generally marketed in a semi-cured state (prepreg) or in a cured state after thermocompression bonding of a metal foil. The flexible substrate of the present invention includes any of such a semi-cured state and a cured state.
なお、本発明の多層プリント回路板は樹脂成分が溶解したワニスを回路が形成されたプリント配線基板上に塗布した後、乾燥機中で溶剤を蒸発させるとともに、硬化を少し進め、B−ステージとしその後銅箔,アルミ箔等の金属箔を重ねて、熱圧して硬化接着し、引き続き前述した方法で回路を形成させ多層プリント基板とすることもできる。 In the multilayer printed circuit board of the present invention, the varnish in which the resin component is dissolved is applied on the printed wiring board on which the circuit is formed, and then the solvent is evaporated in a dryer and the curing is slightly advanced to form a B-stage. Thereafter, a metal foil such as a copper foil or an aluminum foil is laminated, and hot-pressed and cured and bonded, and a circuit is subsequently formed by the above-described method to form a multilayer printed board.
本発明において、織布補強材への樹脂の含浸は通常用いられている樹脂溶液(ワニス)による水平式、あるいは/および垂直式の含浸塗工機を用いて、1回あるいは複数回の処理を行うことにより製造できる。また織布補強材の片面あるいは両面から樹脂をコーティングすることにより含浸処理することもできる。また、織布補強材に予め固形の樹脂シートを重ねておき、その後加熱あるいは/および加熱することにより含浸処理することもできる。乾燥後のプリプレグまたは含浸シートに粘着性があれば、適当な工程で随意、離型シートを使用することもできる。離型シートとしてはセルロース系の紙やフィルムに離型剤をコーティングしたものや、ポリプロピレンフィルム,ポリビニルアルコールフィルム等を使用できる。 In the present invention, impregnation of the woven fabric reinforcing material with resin is carried out one or more times using a horizontal or / and vertical impregnation coating machine with a commonly used resin solution (varnish). It can be manufactured by doing. Further, the impregnation treatment can be performed by coating the resin from one side or both sides of the woven fabric reinforcing material. Further, the impregnation treatment can be performed by previously superposing a solid resin sheet on the woven fabric reinforcing material and then heating or / and heating. If the dried prepreg or impregnated sheet is sticky, a release sheet can be optionally used in an appropriate step. As the release sheet, a cellulose-based paper or film coated with a release agent, a polypropylene film, a polyvinyl alcohol film, or the like can be used.
本発明において、海島構造を有する樹脂部分としては、相溶性の悪い2種類以上の樹脂と化合物,樹脂と樹脂、あるいは相溶性の悪い成分を共重合させて得られるポリマなどの相分離型の樹脂あるいは樹脂組成物である。前記樹脂組成物において、一成分は他成分に比べて弾性率が低いものを用いることが望ましい。 In the present invention, the resin portion having a sea-island structure includes two or more types of resins and compounds having poor compatibility, resins and resins, or phase-separated resins such as polymers obtained by copolymerizing components having poor compatibility. Or it is a resin composition. In the resin composition, it is desirable to use one component having a lower elastic modulus than other components.
樹脂組成物としては併用する成分の中の少なくとも一成分が非相溶性で海島構造を有するものを選択して使用する。例えば、エポキシ樹脂,不飽和ポリエステル樹脂,エポキシーイソシアネート樹脂,マレイミド樹脂,マレイミド−エポキシ樹脂,シアン酸エステル樹脂,シアン酸エステル−エポキシ樹脂,シアン酸エステル−マレイミド樹脂,フェノール樹脂,ジアリルフタレート樹脂,ウレタン樹脂,シアナミド樹脂,マレイミド−シアナミド樹脂等の各種熱硬化性樹脂を挙げることができる。 As the resin composition, one having at least one component incompatible and having a sea-island structure is selected and used. For example, epoxy resin, unsaturated polyester resin, epoxy-isocyanate resin, maleimide resin, maleimide-epoxy resin, cyanate ester resin, cyanate ester-epoxy resin, cyanate ester-maleimide resin, phenol resin, diallyl phthalate resin, urethane resin And various thermosetting resins such as cyanamide resin and maleimide-cyanamide resin.
また、前記樹脂と非相溶性で海島構造を形成可能な化合物,樹脂としては、例えば含けい素化合物,含フッ素化合物及びこれらの重合体が挙げられる。含けい素化合物の代表例としてはアミノ基,カルボキシル基,エポキシ基,水酸基,ピリミジン基,カルボン酸等の官能基を末端あるいは側鎖に有するオルガノシロキサン及びオルガノポリシロキサンがある。含フッ素化合物の代表例としてはアミノ基,カルボキシル基,エポキシ基,水酸基,ピリミジン基,イソシアネート基,カルボン酸等の官能基を末端あるいは側鎖に有するパーフルオロエテール,PTFE,PFA,FEP,PCTFE,ETFE,ECTFE,PVDF,PVF等が挙げられる。上記重合体の分子量は103〜106であることが好ましい。該重合体は低弾性率化に有効である。 Examples of the compound and resin that are incompatible with the resin and can form a sea-island structure include silicon-containing compounds, fluorine-containing compounds, and polymers thereof. Representative examples of silicon-containing compounds include organosiloxanes and organopolysiloxanes having functional groups such as amino groups, carboxyl groups, epoxy groups, hydroxyl groups, pyrimidine groups, and carboxylic acids at the terminals or side chains. Representative examples of fluorine-containing compounds include perfluoroethers having functional groups such as amino groups, carboxyl groups, epoxy groups, hydroxyl groups, pyrimidine groups, isocyanate groups, and carboxylic acids at the terminals or side chains, PTFE, PFA, FEP, and PCTFE. , ETFE, ECTFE, PVDF, PVF and the like. The molecular weight of the polymer is preferably 10 3 to 10 6 . The polymer is effective for lowering the elastic modulus.
本発明においては、積層板,多層プリント回路板の絶縁層並びにプリプレグなどのガラス転移温度が150〜300℃を達成するために、耐熱性のすぐれた上記の樹脂組成物が特に好ましい。また、本発明においては非相溶性の形態は、非反応型,反応型のいずれでもよいが、耐熱性付与の観点からは反応型が好ましい。例えばエポキシ化合物と含けい素化合物とからなる場合には、ワニス作成時に溶液内でエポキシ基あるいはヒドロキシル基と反応性を有する基を持つ含けい素化合物とエポキシ化合物とを予め反応させて用いることもできる。この際、硬化剤,無機フィラ,カップリング剤を添加することもできる。 In the present invention, the above resin composition having excellent heat resistance is particularly preferable in order to achieve a glass transition temperature of 150 to 300 [deg.] C., such as laminates, insulating layers of multilayer printed circuit boards and prepregs. In the present invention, the incompatible form may be either a non-reactive type or a reactive type, but a reactive type is preferred from the viewpoint of imparting heat resistance. For example, when an epoxy compound and a silicon-containing compound are used, a silicon-containing compound having an epoxy group or a group having reactivity with a hydroxyl group and an epoxy compound may be pre-reacted in the solution when the varnish is prepared. it can. At this time, a curing agent, an inorganic filler, and a coupling agent can be added.
本発明において、絶縁層のガラス転移温度は150〜300℃が好ましい。ガラス転移温度が150℃以下では積層板,多層プリント回路板などの製品の信頼性試験(例えば、高温放置,冷熱衝撃試験など)に十分に対応できにくくなる。また、300℃以上では可撓性の付与がむずかしく製品にクラック発生の問題や成形加工上の問題が生じる。 In the present invention, the glass transition temperature of the insulating layer is preferably 150 to 300 ° C. When the glass transition temperature is 150 ° C. or lower, it becomes difficult to sufficiently cope with reliability tests (for example, high temperature storage, thermal shock test, etc.) of products such as laminated boards and multilayer printed circuit boards. In addition, at 300 ° C. or higher, it is difficult to impart flexibility, and problems such as cracking and molding processing occur in the product.
本発明において、面内方向の熱膨張率とは積層板において接着面内での熱膨張率である。接着面内での熱膨張率は3種類ある。プリプレグを製造する際に塗工過程で織布補強材に張力のかかる方向をX方向,これと直交する方向をY方向,斜45度方向がバイアス方向である。一般に熱膨張率はY方向>バイアス方向>X方向の順になる。斜45度のバイアス方向は織布補強材,積層接着工程の影響が最も少ない。本発明ではバイアス方向の熱膨張率を面内方向の熱膨張率とした。 In the present invention, the coefficient of thermal expansion in the in-plane direction is the coefficient of thermal expansion within the bonding surface of the laminate. There are three types of thermal expansion coefficients within the bonding surface. When the prepreg is manufactured, the direction in which tension is applied to the woven fabric reinforcement during the coating process is the X direction, the direction perpendicular to this is the Y direction, and the 45 ° oblique direction is the bias direction. Generally, the thermal expansion coefficient is in the order of Y direction> bias direction> X direction. The bias direction of 45 degrees obliquely has the least influence of the woven fabric reinforcing material and the lamination bonding process. In the present invention, the thermal expansion coefficient in the bias direction is defined as the thermal expansion coefficient in the in-plane direction.
本発明において、面内方向の熱膨張率は3.0〜10ppm/Kの範囲が好ましい。半導体素子(例えばシリコン)の熱膨張率は3.0〜4.0ppm/K である。また、樹脂封止型半導体装置における封止用樹脂の熱膨張率もシリコンの値より若干大きい程度である。半導体素子と積層板(あるいは多層プリント回路板)との接続信頼性を向上させるには両者間に生ずる熱応力を低減することが有効であり、そのためには積層板(あるいは多層プリント回路板)の面内方向の熱膨張率を3.0〜10ppm/Kの範囲にすることにより、積層板と半導体素子の熱膨張率との差を小さくすることができる。また、本発明の多層プリント回路板の構成はセラミックスを構成成分としないで低熱膨張率化を図れるため
(1)ドリル加工性に優れる。
In the present invention, the coefficient of thermal expansion in the in-plane direction is preferably in the range of 3.0 to 10 ppm / K. The coefficient of thermal expansion of the semiconductor element (for example, silicon) is 3.0 to 4.0 ppm / K. Further, the thermal expansion coefficient of the sealing resin in the resin-encapsulated semiconductor device is also slightly larger than the value of silicon. In order to improve the connection reliability between a semiconductor element and a laminated board (or multilayer printed circuit board), it is effective to reduce the thermal stress generated between them, and for that purpose, the laminated board (or multilayer printed circuit board) By setting the thermal expansion coefficient in the in-plane direction to a range of 3.0 to 10 ppm / K, the difference between the thermal expansion coefficient of the laminated plate and the semiconductor element can be reduced. In addition, since the multilayer printed circuit board according to the present invention has a low thermal expansion coefficient without using ceramics as a constituent component, it is excellent in drilling workability (1).
(2)メッキとの密着性に優れるためスルーホールの接続信頼性に優れる。 (2) Excellent through-hole connection reliability due to excellent adhesion to plating.
(3)軽量化が可能。 (3) Weight reduction is possible.
(4)低熱膨張率化と同時に低弾性率化が図れるため熱膨張率の異なる数多くの部品を同
一面内上に搭載可能。熱膨張率差を低弾性率でカバーできる。
(4) Since a low modulus of elasticity can be achieved at the same time as a low coefficient of thermal expansion, many parts with different coefficients of thermal expansion can be mounted on the same surface. The difference in thermal expansion coefficient can be covered with a low elastic modulus.
(5)大面積基板も従来と同じ技術で製造可能。
などの効果が得られる。
(5) Large area substrates can be manufactured using the same technology as before.
Effects such as can be obtained.
本発明は樹脂と織布補強材から構成され、その樹脂部分が海島構造を有し面内方向の熱膨張率が3.0〜10ppm/K,ガラス転移温度が150〜300℃であることを特徴とする回路板を用いて半導体素子等各種の部品を表面実装することにより、該回路板は従来の表面実装用低熱膨張基板であるセラミックス含有基板と比較して、ドリル加工性に優れており、またメッキとの密着性がセラミックスよりも強いためスルーホールの信頼性に関しても優れた効果が得られる。一般にセラミックス系の回路板は樹脂との接着性は低いため、その界面の信頼性に問題がある。 The present invention is composed of a resin and a woven fabric reinforcing material, and the resin portion has a sea-island structure, the thermal expansion coefficient in the in-plane direction is 3.0 to 10 ppm / K, and the glass transition temperature is 150 to 300 ° C. By surface-mounting various components such as semiconductor elements using the circuit board, the circuit board has excellent drillability compared to conventional ceramic-containing substrates that are low thermal expansion substrates for surface mounting. In addition, since the adhesion to the plating is stronger than that of ceramics, an excellent effect can be obtained regarding the reliability of the through hole. In general, a ceramic circuit board has a low adhesiveness with a resin, and thus there is a problem in reliability of the interface.
本発明により得られる回路板ではそのような異相界面が存在しないため、信頼性の高いメモリカードを提供することができる。またセラミックスを含有せず、さらに海島構造の場合は未変性に比べて弾性率が低下するため、熱膨張率の異なる各種の部品を同時に搭載させても発生する熱応力は小さく接続信頼性に優れた多機能のメモリカードを提供することができる。 Since the circuit board obtained according to the present invention does not have such a heterogeneous interface, a highly reliable memory card can be provided. In addition, since the elastic modulus of the sea-island structure does not contain ceramics and is lower than that of unmodified, the thermal stress generated even when various parts with different thermal expansion coefficients are simultaneously mounted is small and excellent in connection reliability. Multifunctional memory cards can be provided.
また、薄型高集積半導体素子パッケージの熱膨張率はシリコンとほぼ等しく6ppm/K 前後である。そのため樹脂と織布補強材から構成され、その樹脂部分が海島構造を有し面内方向の熱膨張率が3.0〜10ppm/K,ガラス転移温度が150〜300℃であることを特徴とする回路板を用いることにより、接続信頼性を保ちながらこの低熱膨張率高集積半導体素子を高密度に表面実装することが可能になる。これにより信号伝送距離の短縮化を図ることができ信号伝送遅延時間が1〜15ns/mの演算処理速度の優れた計算機を得ることができる。また高密度実装により小型計量化を図ることができ、携帯性に優れた計算機を提供することもできる。 The thermal expansion coefficient of the thin and highly integrated semiconductor device package is approximately 6 ppm / K, which is almost the same as that of silicon. Therefore, it is composed of a resin and a woven fabric reinforcing material, and the resin part has a sea-island structure, the coefficient of thermal expansion in the in-plane direction is 3.0 to 10 ppm / K, and the glass transition temperature is 150 to 300 ° C. By using the circuit board to be used, it becomes possible to surface-mount the low-expansion coefficient highly integrated semiconductor element with high density while maintaining connection reliability. As a result, the signal transmission distance can be shortened, and a computer having an excellent processing speed with a signal transmission delay time of 1 to 15 ns / m can be obtained. In addition, miniaturization can be achieved by high-density mounting, and a computer with excellent portability can be provided.
また、本発明は樹脂と織布補強材から構成され、その樹脂部分が海島構造を有し面内方向の熱膨張率が3.0〜10ppm/K,ガラス転移温度が150〜300℃であることを特徴とする回路板を用いて半導体素子等の部品を高密度に表面実装することにより、10g〜30kgの小型軽量化を図ることができ、携帯性に優れた通信機器を得ることができる。代表的な通信機器としては携帯電話,携帯無線器等がある。また海島基板はセラミックス含有基板に比べて低重量で軽量化に効果的である。またセラミックス含有基板や未変性基板に比べて、海島基板は弾性率が著しく低下するため、熱膨張率の異なる各種の部品を同時に搭載させても発生する熱応力は小さく接続信頼性に優れた通信機器を提供することができる。
そのため目的に応じて多種多様に富んだ通信機器を得ることができる。
Moreover, this invention is comprised from resin and a woven fabric reinforcement material, The resin part has a sea-island structure, the coefficient of thermal expansion of an in-plane direction is 3.0-10 ppm / K, and a glass transition temperature is 150-300 degreeC. By using high-density surface mounting of components such as semiconductor elements using a circuit board characterized by the above, it is possible to reduce the size and weight of 10 g to 30 kg and obtain a communication device with excellent portability. . Typical communication devices include mobile phones and portable radio devices. In addition, the sea-island substrate is lower in weight and effective in reducing the weight than the ceramic-containing substrate. In addition, since the elastic modulus of the sea-island substrate is significantly lower than that of ceramic-containing substrates and unmodified substrates, the thermal stress that occurs even when various parts with different thermal expansion coefficients are simultaneously mounted is small, and communication with excellent connection reliability. Equipment can be provided.
Therefore, a wide variety of communication devices can be obtained according to the purpose.
また、本発明は樹脂と織布補強材から構成され、その樹脂部分が海島構造を有し面内方向の熱膨張率が3.0〜10ppm/K,ガラス転移温度が150〜300℃であることを特徴とする回路板を用いて半導体素子等の部品を高密度に表面実装することにより、それにより構成されるカーエレクトロニクス機器は占有体積が小さくすることができ、かつエンジンルーム内等の高温高湿における耐環境性に優れた機器を提供することができる。このようなカーエレクトロニクス機器の代表例としてはエンジン制御装置,ナビゲーション装置等がある。これらは環境の厳しい限られた場所に搭載されることが要求される。そのため海島構造の樹脂から構成される回路板を用いた機器は高密度実装により小型化が達成でき、さらにセラミックス材料を含有していないため異種界面が少なく接続信頼性に優れていることが特徴となるためカーエレクトロニクス分野に好適である。 Moreover, this invention is comprised from resin and a woven fabric reinforcement material, The resin part has a sea-island structure, the coefficient of thermal expansion of an in-plane direction is 3.0-10 ppm / K, and a glass transition temperature is 150-300 degreeC. By using high-density surface mounting of components such as semiconductor elements using a circuit board characterized by this, the car electronics equipment constructed thereby can occupy a small volume and can be used at high temperatures such as in engine rooms. A device excellent in environmental resistance at high humidity can be provided. Typical examples of such car electronics equipment include an engine control device and a navigation device. These are required to be installed in limited places where the environment is severe. Therefore, equipment using circuit boards made of sea-island resin can be downsized by high-density mounting, and since it does not contain ceramic material, it has fewer heterogeneous interfaces and excellent connection reliability. Therefore, it is suitable for the car electronics field.
本発明は樹脂と補強材からなる積層板において、その樹脂成分を海島構造すなわち相分離構造にすることにより樹脂の熱膨張率と弾性率を同時に低減することができる。その発現機構としては低弾性率の島構造を有する相分離樹脂の場合、マトリックス層の樹脂の弾性率は島部分との加工性により弾性率が小さくなる。面内方向の熱膨張率に関してはマトリックスの熱膨張が島部分を押し潰すため、結果的に樹脂全体の熱膨張は見かけ上小さくなると考えられる。その他相分離構造は様々な発現機構によりこの両特性を同時に低減できる。 In the present invention, the thermal expansion coefficient and the elastic modulus of the resin can be simultaneously reduced by making the resin component a sea-island structure, that is, a phase separation structure, in a laminated plate made of a resin and a reinforcing material. As a manifestation mechanism, in the case of a phase separation resin having an island structure with a low elastic modulus, the elastic modulus of the resin of the matrix layer becomes smaller due to the workability with the island portion. Regarding the thermal expansion coefficient in the in-plane direction, the thermal expansion of the matrix crushes the island portion, and as a result, the thermal expansion of the entire resin is considered to be apparently small. In addition, the phase separation structure can simultaneously reduce both of these characteristics by various expression mechanisms.
その発現機構のすべてはまだ十分に解明されていない。 All of its expression mechanisms have not been fully elucidated.
積層板,多層プリント回路板,プリプレグの面内の熱膨張率,弾性率を低減することにより、実装表面の熱応力を格段に低減でき、実装品との接続信頼性を大幅に向上できる。 By reducing the in-plane thermal expansion coefficient and elastic modulus of the laminated board, multilayer printed circuit board, and prepreg, the thermal stress on the mounting surface can be significantly reduced, and the connection reliability with the mounted product can be greatly improved.
次に実施例に基づき、本発明を詳細に説明する。 Next, based on an Example, this invention is demonstrated in detail.
(実施例1)
エポキシ化合物(大日本インキ化学,EXA−1514)100重量部に対して硬化剤としてフェノールノボラック樹脂(三井東圧,XL225−3L)を88重量部、低弾性率成分としてアミン変性ジメチルシロキサン(チッソ,PS513)10重量部をメチルエチルケトン中に加えて固形分量50重量%のワニスを作製した。このワニスを用いてEガラスクロス(100μm厚)に含浸塗工し、さらに120℃10分乾燥し溶媒を除去してプリプレグを得た。得られたプリプレグの樹脂分は70重量%であった。
(Example 1)
88 parts by weight of a phenol novolac resin (Mitsui Toatsu, XL225-3L) as a curing agent and 100 parts by weight of an epoxy compound (Dainippon Ink Chemical Co., Ltd. EXA-1514), and amine-modified dimethylsiloxane (Tisso, PS513) 10 parts by weight was added to methyl ethyl ketone to prepare a varnish having a solid content of 50% by weight. Using this varnish, E glass cloth (100 μm thick) was impregnated and dried at 120 ° C. for 10 minutes to remove the solvent to obtain a prepreg. The resin content of the obtained prepreg was 70% by weight.
得られたプリプレグの両面に銅箔(18μm厚)を重ね、プレスにより加熱加圧し、積層板を得た。プレス条件は130℃30分,180℃60分の二段階反応で行った。圧力は20kg/cm2 とした。得られた積層板の銅箔ピール強度、さらに銅箔エッチング後の面内方向の熱膨張率をTMA法で求めた。また樹脂部分の弾性率測定用としてはプリプレグから樹脂粉を取り、積層板と同様のプレス条件で樹脂板を作製した。この試料を粘弾性測定により室温の弾性率を求めた。 A copper foil (18 μm thick) was stacked on both sides of the obtained prepreg and heated and pressed by a press to obtain a laminate. The pressing conditions were a two-step reaction at 130 ° C. for 30 minutes and 180 ° C. for 60 minutes. The pressure was 20 kg / cm 2 . The copper foil peel strength of the obtained laminate and the coefficient of thermal expansion in the in-plane direction after etching the copper foil were determined by the TMA method. For measuring the elastic modulus of the resin portion, resin powder was taken from the prepreg, and a resin plate was produced under the same press conditions as the laminated plate. The elastic modulus at room temperature of this sample was determined by viscoelasticity measurement.
(実施例2)
エポキシ化合物(油化シェル,YX4000H)100重量部に対して硬化剤としてフェノールノボラック(日立化成,H100)を55重量部、低弾性率成分として、エポキシ変性ポリジメチルシロキサン(トーレシリコン,SF8413)15重量部を樹脂成分とした。この時予備反応として、メチルイソブチルケトン中で予め硬化剤とエポキシ変性ポリジメチルシロキサンを90℃30分反応させ、室温まで冷却後エポキシ化合物を加えて固形分量50重量%のワニスとした。得られたワニスをSガラスクロス(70μm厚)に含浸塗工し、140℃10分の乾燥により溶媒を除去してプリプレグを得た。
(Example 2)
55 parts by weight of phenol novolac (Hitachi Kasei, H100) as a curing agent for 100 parts by weight of an epoxy compound (oilized shell, YX4000H), and 15 parts by weight of epoxy-modified polydimethylsiloxane (Toray Silicon, SF8413) as a low elastic modulus component The part was used as a resin component. At this time, as a preliminary reaction, a curing agent and an epoxy-modified polydimethylsiloxane were reacted in advance at 90 ° C. for 30 minutes in methyl isobutyl ketone. After cooling to room temperature, an epoxy compound was added to obtain a varnish having a solid content of 50% by weight. The obtained varnish was impregnated and coated on S glass cloth (70 μm thickness), and the solvent was removed by drying at 140 ° C. for 10 minutes to obtain a prepreg.
得られたプリプレグを実施例1と同様な方法で積層板及び樹脂板を作製し、特性を評価した。 A laminate and a resin plate were produced from the obtained prepreg in the same manner as in Example 1, and the characteristics were evaluated.
(実施例3)
マレイミド化合物(三井東圧,ビス(4−マレイミドフェニル)メタン))100重量部とアミン化合物(和歌山精化,2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン))38重量部,アミン変性ポリジメチルシロキサン(トーレシリコン,SF8418)5重量部を樹脂成分とした。予備反応としてマレイミド化合物50重量部とアミン変性ポリジメチルシロキサンをジメチルホルムアミド中で110℃20分反応し、さらに残りのマレイミド化合物50重量部とアミン化合物を加えて20分反応させ、固形分量40重量%のワニスを得た。さらにこれに溶融シリカフィラ(平均粒径10μm)を20重量部分散混合した。得られたワニスをDガラスクロス(80μm厚)に含浸塗工し、140℃5分,145℃5分の乾燥により溶媒を除去してプリプレグを得た。
(Example 3)
100 parts by weight of maleimide compound (Mitsui Toatsu, bis (4-maleimidophenyl) methane) and 38 parts by weight of amine compound (Seika Wakayama, 2,2-bis (4- (4-aminophenoxy) phenyl) propane)) The resin component was 5 parts by weight of amine-modified polydimethylsiloxane (Tore Silicon, SF8418). As a preliminary reaction, 50 parts by weight of maleimide compound and amine-modified polydimethylsiloxane were reacted in dimethylformamide at 110 ° C. for 20 minutes, and the remaining maleimide compound and 50 parts by weight of amine compound were further reacted for 20 minutes to obtain a solid content of 40% by weight. The varnish was obtained. Further, 20 parts by weight of a fused silica filler (average particle size 10 μm) was dispersed and mixed with this. The obtained varnish was impregnated with D glass cloth (80 μm thick), and the solvent was removed by drying at 140 ° C. for 5 minutes and 145 ° C. for 5 minutes to obtain a prepreg.
得られたプリプレグを実施例1と同様な方法で積層板を作製し、特性を評価した。成形条件は130℃30分,200℃60分とした。 A laminate was prepared from the obtained prepreg in the same manner as in Example 1, and the characteristics were evaluated. The molding conditions were 130 ° C. for 30 minutes and 200 ° C. for 60 minutes.
(実施例4)
エポキシ化合物(油化シェル,YX4000H)100重量部に対して硬化剤としてオルトクレゾールノボラック(日本化薬,OCN7000)を72重量部、低弾性率成分として両末端カルボン酸変性パーフルオロエーテル(モンテフェロス,ZDIAC−2000)10重量部を樹脂成分とした。この時硬化促進材としてイミダゾール(四国化成,2E4MZ) 1重量部を添加した。溶媒としてアセトンを用いて固形分量60重量%のワニスを作製した。得られたワニスをポリアラミドクロス(70μm厚)に含浸塗工し、110℃10分,120℃15分の乾燥により溶媒を除去してプリプレグを得た。
(Example 4)
72 parts by weight of orthocresol novolak (Nippon Kayaku, OCN7000) as a curing agent and 100 parts by weight of an epoxy compound (Oilized shell, YX4000H), and both terminal carboxylic acid-modified perfluoroether (Monteferros, ZDIAC-2000) 10 parts by weight was used as the resin component. At this time, 1 part by weight of imidazole (Shikoku Chemicals, 2E4MZ) was added as a curing accelerator. A varnish having a solid content of 60% by weight was prepared using acetone as a solvent. The obtained varnish was impregnated with polyaramid cloth (70 μm thickness), and the solvent was removed by drying at 110 ° C. for 10 minutes and 120 ° C. for 15 minutes to obtain a prepreg.
得られたプリプレグを実施例1と同様な方法で積層板を作製し、特性を評価した。成形条件は130℃30分,200℃60分とした。 A laminate was prepared from the obtained prepreg in the same manner as in Example 1, and the characteristics were evaluated. The molding conditions were 130 ° C. for 30 minutes and 200 ° C. for 60 minutes.
(比較例1)
実施例1のエポキシ化合物及びフェノール系硬化剤を用いて、ポリジメチルシロキサンを除いて、海島構造のない均一な樹脂部分を有する積層板及び樹脂板を作製し、特性を評価した。
(Comparative Example 1)
Using the epoxy compound of Example 1 and a phenol-based curing agent, a laminate and a resin plate having a uniform resin portion without a sea-island structure were produced except for polydimethylsiloxane, and the characteristics were evaluated.
(比較例2)
実施例3のマレイミド化合物,アミン化合物及び溶融シリカフィラを用いて、ポリジメチルシロキサンを除いて、海島構造のない均一な樹脂部分を有する積層板及び樹脂板を作製し、特性を評価した。
(Comparative Example 2)
Using the maleimide compound, the amine compound, and the fused silica filler of Example 3, a laminate and a resin plate having a uniform resin portion without a sea-island structure were produced except for polydimethylsiloxane, and the characteristics were evaluated.
さらに銅箔を組み合わせた銅張積層板に所定の回路形成を施したプリント配線板に、それぞれ100個の素子パッケージを半田付けで表面実装した。半田付けは遠赤外ヒータで加熱リフローにより接続した。この実装品をMIL規格により100サイクル試験し、終了後の半田接続部の欠陥個数を計測した。 Further, 100 device packages were each surface-mounted by soldering on a printed wiring board in which a predetermined circuit was formed on a copper clad laminate combined with a copper foil. Soldering was performed by heating reflow with a far infrared heater. This mounted product was tested for 100 cycles according to the MIL standard, and the number of defects in the solder joint after completion was measured.
(実施例5)
図1に本発明の積層板の構成を示す。
(Example 5)
FIG. 1 shows the configuration of the laminate of the present invention.
織布補強材1に海島構造を有する樹脂部分2を含浸させ乾燥したプリプレグを2枚積層接着して得ることができる。該構成においては、織布補強材が面内方向に全てに存在しているため面内方向の海島構造による熱膨張率の低減効果が最大限に生かせる。
It can be obtained by laminating and bonding two prepregs dried by impregnating a woven
海島構造有機樹脂マトリックスが補強材間を通して連続的に存在するため複合材料における異相間界面での接着の問題がない。 There is no problem of adhesion at the interface between different phases in the composite material because the sea-island structure organic resin matrix exists continuously between the reinforcing materials.
(比較例3)
図2に従来の積層板の構成を示す。
(Comparative Example 3)
FIG. 2 shows the configuration of a conventional laminate.
該構成では、面内方向の熱膨張率の低減効果はあるが、海島構造樹脂マトリックスが連続体でないため界面での接着問題等を生じやすい。 In this configuration, there is an effect of reducing the coefficient of thermal expansion in the in-plane direction.
(比較例4)
図3に従来の積層板の構成を示す。
(Comparative Example 4)
FIG. 3 shows a configuration of a conventional laminated board.
該構成では織布補強材が独立体で存在し、積層板全体で等方性を示す。そのため海島構造との相互作用による低熱膨張率化の効果を面内方向で最大限に利用することはできない。 In this configuration, the woven fabric reinforcing material is present as an independent body, and is isotropic throughout the laminate. Therefore, the effect of lowering the coefficient of thermal expansion due to the interaction with the sea-island structure cannot be fully utilized in the in-plane direction.
(実施例6〜8)
エポキシ化合物(大日本インキ化学,EXA−1514)100重量部に対して硬化剤としてフェノールノボラック樹脂(三井東圧,XL225−3L)を88重量部、低弾性率成分としてアミノ基末端パーフルオロエーテル系化合物(三井フルオロケミカル社製)10,20,50重量部をメチルエチルケトン中に加えて固形分量50重量%のワニスを作製した。このワニスを用いてEガラスクロス(100μm厚)に含浸塗工し、さらに
120℃10分乾燥し溶媒を除去してプリプレグを得た。得られたプリプレグの樹脂分は70重量%であった。
(Examples 6 to 8)
88 parts by weight of phenol novolak resin (Mitsui Toatsu, XL225-3L) as a curing agent and 100 parts by weight of an epoxy compound (Dainippon Ink Chemical, EXA-1514), and an amino group-terminated perfluoroether as a low elastic modulus component A varnish having a solid content of 50% by weight was prepared by adding 10, 20, and 50 parts by weight of a compound (manufactured by Mitsui Fluorochemical Co., Ltd.) to methyl ethyl ketone. Using this varnish, E glass cloth (100 μm thick) was impregnated and dried at 120 ° C. for 10 minutes to remove the solvent to obtain a prepreg. The resin content of the obtained prepreg was 70% by weight.
得られたプリプレグの両面に銅箔(18μm厚)を重ね、プレスにより加熱加圧し、積層板を得た。プレス条件は130℃30分,180℃60分の二段階反応で行った。圧力は20kg/cm2 とした。得られた積層板の銅箔ピール強度、さらに銅箔エッチング後の面内方向の熱膨張率をTMA法で求めた。また樹脂部分の弾性率測定用としてはプリプレグから樹脂粉を取り、積層板と同様のプレス条件で樹脂板を作製した。この試料を粘弾性測定により室温の弾性率を求めた。 A copper foil (18 μm thick) was stacked on both sides of the obtained prepreg and heated and pressed by a press to obtain a laminate. The pressing conditions were a two-step reaction at 130 ° C. for 30 minutes and 180 ° C. for 60 minutes. The pressure was 20 kg / cm 2 . The copper foil peel strength of the obtained laminate and the coefficient of thermal expansion in the in-plane direction after etching the copper foil were determined by the TMA method. For measuring the elastic modulus of the resin portion, resin powder was taken from the prepreg, and a resin plate was produced under the same press conditions as the laminated plate. The elastic modulus at room temperature of this sample was determined by viscoelasticity measurement.
(実施例9)
エポキシ化合物(油化シェル,YX4000H)100重量部に対して硬化剤としてフェノールノボラック(日立化成,H100)55重量部、低弾性率成分として、カルボキシル基末端パーフルオロエーテル系化合物(三井フルオロケミカル社製)15重量部を樹脂成分とした。この時予備反応として、メチルイソブチルケトン中で予め硬化剤とエポキシ変性ポリジメチルシロキサンを90℃30分反応させ、室温まで冷却後エポキシ化合物を加えて固形分量50重量%のワニスとした。得られたワニスをSガラスクロス(70
μm厚)に含浸塗工し、140℃10分の乾燥により溶媒を除去したプリプレグを得た。
Example 9
55 parts by weight of phenol novolak (Hitachi Kasei, H100) as a curing agent and 100 parts by weight of an epoxy compound (oilized shell, YX4000H), a carboxyl group-terminated perfluoroether compound (manufactured by Mitsui Fluorochemical Co., Ltd.) as a low elastic modulus component ) 15 parts by weight of resin component. At this time, as a preliminary reaction, a curing agent and an epoxy-modified polydimethylsiloxane were reacted in advance at 90 ° C. for 30 minutes in methyl isobutyl ketone. After cooling to room temperature, an epoxy compound was added to obtain a varnish having a solid content of 50% by weight. The obtained varnish is made of S glass cloth (70
A prepreg from which the solvent was removed by drying at 140 ° C. for 10 minutes was obtained.
得られたプリプレグを実施例1と同様な方法で積層板及び樹脂板を作製し、特性を評価した。 A laminate and a resin plate were produced from the obtained prepreg in the same manner as in Example 1, and the characteristics were evaluated.
1…織布補強材、2…海島構造を有する樹脂部分、3…分散(島)相。
DESCRIPTION OF
Claims (15)
30kgであることを特徴とする通信機器。 In a communication device including a circuit board on which a semiconductor element can be mounted, the circuit board has an insulating layer composed of a resin portion having a sea-island structure and a woven fabric reinforcing material, and the thermal expansion coefficient in the in-plane direction of the insulating layer Is 3.0 to 10 ppm / K, the glass transition temperature of the insulating layer is 150 to 300 ° C., and the weight is 10 g to
A communication device characterized by being 30 kg.
In a laminate obtained by laminating and bonding at least one prepreg or sheet made of a resin and a woven fabric reinforcing material, the woven fabric reinforcing material is configured such that material properties are anisotropic, and the resin is a sea island It is a continuous layer having a structure and preventing contact between the layers of the woven fabric reinforcing material, the thermal expansion coefficient in the in-plane direction of the laminate is 3.0 to 10 ppm / K, and the glass transition temperature is 150 to 300 ° C. The laminated board characterized by being.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004255049A JP3838250B2 (en) | 2004-09-02 | 2004-09-02 | Laminated board and multilayer printed circuit board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004255049A JP3838250B2 (en) | 2004-09-02 | 2004-09-02 | Laminated board and multilayer printed circuit board |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22844593A Division JP3648750B2 (en) | 1993-09-14 | 1993-09-14 | Laminated board and multilayer printed circuit board |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005042117A true JP2005042117A (en) | 2005-02-17 |
JP3838250B2 JP3838250B2 (en) | 2006-10-25 |
Family
ID=34270224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004255049A Expired - Fee Related JP3838250B2 (en) | 2004-09-02 | 2004-09-02 | Laminated board and multilayer printed circuit board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3838250B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007002071A (en) * | 2005-06-22 | 2007-01-11 | Sumitomo Bakelite Co Ltd | Prepreg, circuit board and semiconductor device |
JP2007288087A (en) * | 2006-04-20 | 2007-11-01 | Matsushita Electric Ind Co Ltd | Circuit board fabrication method |
JP2007318071A (en) * | 2006-04-28 | 2007-12-06 | Hitachi Chem Co Ltd | Insulating base board, base board with metal foil, and printed circuit board |
JP2010238907A (en) * | 2009-03-31 | 2010-10-21 | Sumitomo Bakelite Co Ltd | Laminated board, multilayer printed wiring board, and semiconductor device |
JP2011155083A (en) * | 2010-01-26 | 2011-08-11 | Panasonic Electric Works Co Ltd | Onboard printed circuit board |
JP2013030794A (en) * | 2005-12-01 | 2013-02-07 | Sumitomo Bakelite Co Ltd | Prepreg, substrate, and semiconductor device |
JP2014024927A (en) * | 2012-07-25 | 2014-02-06 | Hitachi Chemical Co Ltd | Prepreg, laminate and multilayer printed wiring board using the same |
JPWO2012099131A1 (en) * | 2011-01-18 | 2014-06-30 | 日立化成株式会社 | Prepreg, laminated board using the same, and printed wiring board |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6478309B2 (en) * | 2012-12-31 | 2019-03-06 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | Multilayer substrate and method for manufacturing multilayer substrate |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04356995A (en) * | 1991-04-24 | 1992-12-10 | Matsushita Electric Works Ltd | Printed wiring board |
JPH05163373A (en) * | 1991-12-13 | 1993-06-29 | Sumitomo Bakelite Co Ltd | Production of laminate board |
JPH05182518A (en) * | 1991-05-03 | 1993-07-23 | Internatl Business Mach Corp <Ibm> | Low dielectric-constant composite laminate filled with molecular porous aerogel |
JPH05222221A (en) * | 1992-02-13 | 1993-08-31 | Hitachi Chem Co Ltd | Production of prepreg for printed wiring board |
-
2004
- 2004-09-02 JP JP2004255049A patent/JP3838250B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04356995A (en) * | 1991-04-24 | 1992-12-10 | Matsushita Electric Works Ltd | Printed wiring board |
JPH05182518A (en) * | 1991-05-03 | 1993-07-23 | Internatl Business Mach Corp <Ibm> | Low dielectric-constant composite laminate filled with molecular porous aerogel |
JPH05163373A (en) * | 1991-12-13 | 1993-06-29 | Sumitomo Bakelite Co Ltd | Production of laminate board |
JPH05222221A (en) * | 1992-02-13 | 1993-08-31 | Hitachi Chem Co Ltd | Production of prepreg for printed wiring board |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007002071A (en) * | 2005-06-22 | 2007-01-11 | Sumitomo Bakelite Co Ltd | Prepreg, circuit board and semiconductor device |
JP2013030794A (en) * | 2005-12-01 | 2013-02-07 | Sumitomo Bakelite Co Ltd | Prepreg, substrate, and semiconductor device |
JP2007288087A (en) * | 2006-04-20 | 2007-11-01 | Matsushita Electric Ind Co Ltd | Circuit board fabrication method |
JP2007318071A (en) * | 2006-04-28 | 2007-12-06 | Hitachi Chem Co Ltd | Insulating base board, base board with metal foil, and printed circuit board |
JP2010238907A (en) * | 2009-03-31 | 2010-10-21 | Sumitomo Bakelite Co Ltd | Laminated board, multilayer printed wiring board, and semiconductor device |
JP2011155083A (en) * | 2010-01-26 | 2011-08-11 | Panasonic Electric Works Co Ltd | Onboard printed circuit board |
JPWO2012099131A1 (en) * | 2011-01-18 | 2014-06-30 | 日立化成株式会社 | Prepreg, laminated board using the same, and printed wiring board |
JP2016104882A (en) * | 2011-01-18 | 2016-06-09 | 日立化成株式会社 | Prepreg, laminate sheet and printed wiring board using the same |
KR101914917B1 (en) | 2011-01-18 | 2018-11-05 | 히타치가세이가부시끼가이샤 | Prepreg, and laminate board and printed wiring board using same |
KR20180121679A (en) * | 2011-01-18 | 2018-11-07 | 히타치가세이가부시끼가이샤 | Prepreg, and laminate board and printed wiring board using same |
KR102039874B1 (en) | 2011-01-18 | 2019-11-04 | 히타치가세이가부시끼가이샤 | Prepreg, and laminate board and printed wiring board using same |
JP2014024927A (en) * | 2012-07-25 | 2014-02-06 | Hitachi Chemical Co Ltd | Prepreg, laminate and multilayer printed wiring board using the same |
Also Published As
Publication number | Publication date |
---|---|
JP3838250B2 (en) | 2006-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5677045A (en) | Laminate and multilayer printed circuit board | |
JP3648750B2 (en) | Laminated board and multilayer printed circuit board | |
JP5771987B2 (en) | Multilayer circuit board, insulating sheet, and semiconductor package using multilayer circuit board | |
US20110120754A1 (en) | Multilayer wiring board and semiconductor device | |
US6849934B2 (en) | Dielectric film for printed wiring board, multilayer printed board, and semiconductor device | |
TW200913098A (en) | Semiconductor plastic package and fabricating method thereof | |
WO2007063960A1 (en) | Prepreg, process for producing prepreg, substrate, and semiconductor device | |
JP5200405B2 (en) | Multilayer wiring board and semiconductor package | |
KR100432105B1 (en) | Resin Compound, and Adhesive Film, Metal-clad Adhesive Film, Circuit Board, and Assembly Structure, Using the Resin Compound | |
US20050269128A1 (en) | Semiconductor module with high process accuracy, manufacturing method thereof, and semiconductor device therewith | |
JP3838250B2 (en) | Laminated board and multilayer printed circuit board | |
WO2007108087A1 (en) | Insulating resin layer, insulating resin layer with carrier and multilayer printed wiring board | |
TWI491320B (en) | Metal foil laminates and printed circuit boards | |
WO2008099940A1 (en) | Circuit board manufacturing method, semiconductor manufacturing apparatus, circuit board and semiconductor device | |
JP2008088280A (en) | Prepreg, circuit board and semiconductor device | |
JP6176294B2 (en) | Resin sheet with support | |
JP4269746B2 (en) | Printed wiring board manufacturing method, printed wiring board, and semiconductor package | |
JP5776134B2 (en) | Resin composition | |
JP4967359B2 (en) | Resin composition, resin film, interlayer adhesive, and multilayer circuit board | |
JPWO2009107346A1 (en) | Circuit board and circuit board manufacturing method | |
JP2010221526A (en) | Metal clad laminated plate, printed circuit board, and semiconductor device | |
JP5109258B2 (en) | Semiconductor device | |
JP6610612B2 (en) | Resin sheet with support | |
JP6191659B2 (en) | Resin composition | |
JPH11204944A (en) | Manufacture of multilayer printed wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050125 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050719 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050920 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051018 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051219 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060425 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060427 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060626 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060711 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060724 |
|
LAPS | Cancellation because of no payment of annual fees |