JP2005041006A - Manufacturing method of grooved grinding foam - Google Patents

Manufacturing method of grooved grinding foam Download PDF

Info

Publication number
JP2005041006A
JP2005041006A JP2003200539A JP2003200539A JP2005041006A JP 2005041006 A JP2005041006 A JP 2005041006A JP 2003200539 A JP2003200539 A JP 2003200539A JP 2003200539 A JP2003200539 A JP 2003200539A JP 2005041006 A JP2005041006 A JP 2005041006A
Authority
JP
Japan
Prior art keywords
polishing
foam
grooved
producing
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003200539A
Other languages
Japanese (ja)
Inventor
Takeshi Furukawa
剛 古川
Yoshinori Masaki
義則 政木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003200539A priority Critical patent/JP2005041006A/en
Publication of JP2005041006A publication Critical patent/JP2005041006A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently and stably manufacturing a grooved grinding foam excellent ingrinding capacity, in a grinding pad mainly adapted to a semiconductor, a substrate for a memory hard disk of every kind and the like. <P>SOLUTION: In the manufacturing method for the grooved grinding foam based on a resin composition and obtained by extrusion molding, the groove provided to the surface of the grinding layer of the grooved grinding foam is continuously formed by the mold attached to an extrusion molding machine and/or continuously formed in the process up to a winding or cutting process after extruded. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、主に半導体、各種メモリーハードディスク用基板等の研磨に使用される研磨用発泡体の製造方法に関するものである。
【従来の技術】
半導体のデバイスウエハの表面平坦化加工に用いられる、代表的なプロセスである化学的機械的研磨法(CMP)の一例を図1に示す。定盤(2)、試料ホルダー(5)を回転させ、砥粒を含有する研磨スラリー(4)をスラリー供給用配管(10)を通して滴下しながら、半導体ウエハ(1)を研磨パッド(6)表面に押しあてることにより、デバイス表面を高精度に平坦化するというものである。なお研磨中、ドレッシングディスク(3)を回転させながら研磨パッド(6)表面に押しあてることにより、研磨パッド(6)の表面状態を整えている。研磨条件はもとより、研磨パッド(6)、ドレッシングディスク(3)、研磨スラリー(4)、ウエハ固定用治具(8)およびバッキング材(9)等、各構成部材の特性が、研磨速度、研磨後のデバイス表面の平坦性とウエハ面内における平坦性ばらつき、およびそれらの経時変動の指標となる、ウエハ面間におけるばらつき等に代表される研磨性能に影響を及ぼすが、その中でも研磨パッド(6)と研磨スラリー(4)さらには研磨スラリー中に含まれる砥粒の及ぼす影響は極めて大きい。
【0002】
従来から、層間絶縁膜や金属配線等の研磨に用いられる研磨パッドとして、高分子マトリックス中に、空隙スペースを有する中空高分子微小エレメントを含浸した独立発泡体が標準的に使用されてきた(例えば、特許文献1参照。)。
従来の独立発泡体の代表的な製造方法としては、一般的に注型法と呼ばれる、高分子マトリックスの原料中に中空高分子微小エレメントを混合、分散させた後に、金型に注ぎ込み硬化させ、得られたコンパウンドをスライスする方法等が挙げられる。
注型法で得られた独立発泡体は、中空高分子微小エレメント自体のサイズのばらつきに加え、硬化過程においてコンパウンド内で分布に偏りが生じ安く、その結果、得られた独立発泡体の発泡状態が、ロット内およびロット間においてばらつき、最終的に研磨パッドになった際に、研磨性能がばらつき安いといった問題を有するものであった。
また、一般的な物理発泡剤に比べて高価な中空高分子微小エレメントを用いる上に、例えば長時間を有する、コンパウンドをスライスする工程等が、生産性の低下を招き、結果的に製品コストが上昇するという問題を有していた。
【0003】
一方、研磨層に溝を形成する方法としては、研磨層の表面に加熱プレスで凹溝を形成する方法等が挙げられる(例えば、特許文献2参照)。そのような製造方法の具体的としては、圧縮プレスに所望の形状を施した金型を上下に取り付け、その間に成形物を置き、金型を加熱し加圧する方法である。このような方法だと、研磨層の表面が加熱されるため成形物自体の特性が変化し、それにより研磨性能が低下する恐れがあった。また、溝を機械加工により切削する方法もあるが、この方法は生産性が低かった。
【0004】
【特許文献1】
特許第3013105号
【特許文献2】
特開平8−197434号公報
【0005】
【発明が解決しようとする課題】
本発明は、従来の製造方法における上記の問題点を解決するためのもので、その目的とするところは、研磨性能に優れ、溝の付いた研磨用発泡体を効率良く安定して製造する方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、前記従来の問題点を鑑み、鋭意検討を重ねた結果、以下の手段により、本発明を完成するに至った。
【0007】
すなわち本発明は、
(1) 樹脂組成物を主成分とし、押出成形によって得られる研磨用発泡体であって、研磨層表面の溝が押出成形機に取り付けた金型、及び/又は押し出し後、巻き取り又は切断までの工程内で、連続的に形成されることを特徴とする、溝付き研磨用発泡体の製造方法。
(2) 研磨層表面の溝形状が規則性のある形状である、(1)の溝付き研磨用発泡体の製造方法。
(3) 前記溝が平行溝、格子状、渦巻状、同心円状、または蜂の巣状である、(1)、(2)の溝付き研磨用発泡体の製造方法。
(4) 押し出し後、巻き取り又は切断までの工程内に、ロールおよび/またはベルトによる冷却工程を含む、(1)〜(3)の溝付き研磨用発泡体の製造方法。
(5) 前記樹脂組成物が熱可塑性エラストマーを主成分とする(1)〜(4)の溝付き研磨用発泡体の製造方法。
(6) 研磨用発泡体が押出機中で、10MPaを超える圧力雰囲気下において、前記樹脂組成物に発泡剤を溶解及び/又は混合した後、該溶解及び/又は混合したときの圧力より低い圧力雰囲気下に該溶融樹脂を曝すことにより得られる、(5)の溝付き研磨用発泡体の製造方法。
(7) 発泡剤が常温・常圧で気体状態である、(5)、(6)の溝付き研磨用発泡体の製造方法。
(8) 発泡剤が二酸化炭素である、(5)〜(7)の溝付き研磨用発泡体の製造方法。
(9) 前記熱可塑性エラストマーが、JIS K 7311に準じたA硬度で70以上の硬度をもつ、(5)〜(8)の溝付き研磨用発泡体の製造方法。
(10) 熱可塑性エラストマーがポリウレタンである、(5)〜(9)の溝付き研磨用発泡体の製造方法。
(11) 前記樹脂組成物が熱可塑性エラストマー100重量部に対し、架橋剤0.1〜20重量部を含む、(5)〜(10)の溝付き研磨用発泡体の製造方法。
(12) 得られた発泡体断面の気泡の平均径が0.1μm〜100μmである、(1)〜(11)の溝付き研磨用発泡体の製造方法。
である。
【0008】
【発明の実施の形態】
本発明の製造方法によって得られる溝付き研磨用発泡体を切断した断面の一例を図2に示す。図3〜5も本発明の製造方法によって得られる溝付き研磨用発泡体の一例であるが、図3〜5中の破線に沿って切断した断面が図2である。図7は本発明の金型出口部の断面形状の一例であり、図8はロール断面図の一例である。
本発明の溝(11)の形成方法としては、押出成形により連続的に作り出すことが好ましく、押出成形機に取り付けた金型、及び/又は押し出し後、巻き取り又は切断までの工程内で、連続的に形成される方法であれば、特に制限しないが、金型内部形状や出口部形状(23)、また、押し出し後、巻き取り又は切断までの工程内に所望の表面形状を施したロール(22)及び/またはスチールベルトを配し、これを押出し直後の軟化状態にある発泡体に押し当てることにより溝が形成されることが望ましい。溝形状は特に限定しないが、研磨時のスラリーを適度に保持し、また研磨スラリー中の砥粒の凝集物や研磨屑等を効率良く排出するのに適した形状が好ましく、平行溝、格子状、渦巻状、同心円状、または蜂の巣状に溝が施されていることが好適である。複雑な形状の溝でも、金型内部や出口部、ロールやスチールベルト表面の形状を加工すれば容易に製造することは推測されるが、コスト面や溝加工の難易度等の点から、その形状は可能な限り単純なものが好ましく、その点からも平行、格子状、渦巻状、同心円状、または蜂の巣状の溝が好適である。
【0009】
本発明によって得られた発泡体の平均気泡径は、0.1〜100μmが好ましい。気泡の平均径が0.1μm未満であると、研磨スラリー中に含まれる砥粒の凝集物および研磨の進行に伴い発生する研磨屑等が、開口した気泡内から排出されにくく、空孔が目詰まりし易い。その結果、研磨速度のウエハ面内におけるばらつきを引き起こしやすく、さらには研磨速度の経時変動が大きくなるので好ましくない。また、原料である樹脂の使用量の削減が困難となる。逆に100μmを超えると、ウエハ面内においてスラリーの保持性能がばらつき安く、研磨速度のウエハ面内におけるばらつきが大きくなるため、高精度な研磨の実現が困難となる。
【0010】
研磨に好適に用いられる、平均気泡径が0.1〜100μmの発泡体を得るための条件は、発泡剤を樹脂に溶解混合する圧力雰囲気が10MPa以上であることである。10MPa未満では、発泡剤の溶解混合が安定に進行せず、得られたシートの発泡状態がばらつき安くなるので好ましくない。また、発泡剤を10MPa未満で溶解混合した場合は、得られた発泡体に含まれる気泡は粗大で、平均気泡径が100μm未満の気泡を得ることは非常に困難となることからも、発泡剤を樹脂に溶解混合する圧力雰囲気は10MPa以上であることが好ましい。
【0011】
本発明の製造方法においては、常温・常圧で気体状態のガスを発泡剤とすることが好ましい。このようなガスとしては、特に制限はなく、無機ガス、フロンガス、低分子量の炭化水素などの有機ガス等が挙げられるが、原料樹脂に不活性であり、ガスの回収が不要という点で無機ガスが好ましい。無機ガスとしては、常温・常圧で気体である無機物質であって、原料樹脂に溶解混合できるものであれば特に制限はなく、例えば二酸化炭素、窒素、アルゴン、ネオン、ヘリウム、酸素等が好ましいが、原料樹脂に溶解混合し易く、取り扱いが容易であり、さらには他の発泡剤と比べて安価であるという点等から二酸化炭素がより好ましい。
【0012】
本発明によって得られる発泡体を構成する原料に関しては、樹脂組成物を主成分とするが、樹脂に関しては、熱可塑性、熱硬化性等特に限定しない。好ましい樹脂原料としては、ポリウレタン、ポリスチレン、ポリエステル、ポリプロピレン、ポリエチレン、ナイロン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリブテン、ポリアセタール、ポリフェニレンオキシド、ポリビニルアルコール、ポリメチルメタクリレート、ポリカーボネート、ポリアリレート、芳香族系ポリサルホン、ポリアミド、ポリイミド、フッ素樹脂、エチレン−プロピレン樹脂、エチレン−エチルアクリレート樹脂、アクリル樹脂、ノルボルネン系樹脂、例えば、ビニルポリイソプレン−スチレン共重合体、ブタジエン−スチレン共重合体、アクリロニトリル−スチレン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体等に代表されるスチレン共重合体、天然ゴム、合成ゴム等の熱可塑性エラストマーを挙げることができる。これらは単独で用いても良いし、混合あるいは共重合させてもよい。また、樹脂組成物は、樹脂の他に、架橋剤、酸化防止剤、紫外線吸収剤、染顔料、界面活性剤、カップリング剤、各種充填材等を混入されていても良い。研磨後の被研磨面の平坦性と均一性のバランスが非常に取りやすく、特に研磨対象が比較的柔らかいCuのような金属の場合では、例えばウレタン系やオレフィン系の、JIS K 7311に準じたA硬度で70以上の硬度を持つ熱可塑性エラストマーが好適である。A硬度70未満の原料を主成分として作製した溝付き研磨パッドを用いて研磨した場合、研磨後の平坦化レベルが著しく低下するので好ましくない。
【0013】
本発明に用いられる押出成形方法の具体的な一例としては、固体ペレット樹脂と架橋剤とを混合したものを押出機中に投入し十分に混練した後に、同押出機中において発泡剤を10MPa以上の圧力雰囲気下で溶解混合した溶融樹脂を、押出機先端部に取り付けた金型を通して大気中に押し出すことにより、発泡剤を溶解混合した圧力より低い圧力雰囲気下に曝す方法が挙げられる。
例えば架橋剤としては、大日精化工業(株)製の架橋剤(商品名:クロスネートEM−30)が挙げられる。該架橋剤をポリウレタンとブレンドしたものを常温放置または熱処理することで架橋が進行する。樹脂中に網目構造ができるために、耐磨耗性、耐熱性、耐薬品性の向上に寄与し、品質の安定化が図れることから、非常に有用である。
該架橋剤の添加量は、樹脂100重量部に対し架橋剤0.1〜20重量部が好ましく、より好ましくは0.3〜10重量部、最も好ましくは0.5〜5重量部である。0.1重量部未満であると、成形圧力の低下に寄与せず、架橋剤としての効果が殆ど発現しない。逆に20重量部より大きいと、架橋に寄与しないものが製品中に残存して不純物となり、あるいは製品性能を低下させる要因となるので好ましくない。
押出機内は、温度が100℃以上400℃未満、好ましくは120℃以上300℃未満、より好ましくは130℃以上250℃未満であり、圧力は10MPa以上70MPa未満、好ましくは13MPa以上50MPa未満、より好ましくは15MPa以上40MPa未満である。押出機としては、単軸押出機、二軸押出機、又はこれらの押出機を連結管で接続した、いわゆるタンデム型押出機を適宜選択し、使用することができる。
なお発泡剤である常温・常圧で気体状態のガスを、温度100℃以上400℃未満、圧力10MPa以上70MPa未満で樹脂に溶解及び/又は樹脂と混合する場合、その温度・圧力が該ガスの超臨界状態であることが好ましい。超臨界状態とは、臨界温度、臨界圧力以上の状態を意味し、例えば二酸化炭素の場合、30℃以上、7.3MPa以上である。超臨界状態では、液体状態よりも粘性が低くかつ拡散性が高いという特性を有し、また気体状態よりも密度が大きいことから、樹脂中に大量のガスを速やかに溶解、又は樹脂と混合させることができるので好ましい。
【0014】
【実施例】
以下に、実施例により本発明を具体的に説明するが、本発明は、実施例の内容になんら限定されるものではない。
<研磨用パッド製造設備>
本発明の実施例で使用した発泡体製造設備の概略図を図6に示す。
バレル径50mm、L/D=32の第一押出機(13)とバレル径65mm、L/D=36の第二押出機(14)を中空の単管(18)で連結したタンデム型押出機の先端に、リップ幅300mmのコートハンガータイプの金型(15)を取り付け、その金型(15)から押し出された発泡体は、冷却ロール(22)により引き取られ、次工程に送られる。
発泡剤としては、二酸化炭素を用い、ボンベ(19)から取り出した後に、ガスブースターポンプ(20)により昇圧した二酸化炭素を、単軸押出機(13)の中央前寄りに取り付けた注入口(16)を通して押出機中に注入した。
なお第一押出機において、溶融混練が進行する発泡剤注入口より上流側をゾーン(I)、発泡剤の溶解混合が進行する発泡剤注入口より下流側をゾーン(II)と呼び、図6中に(I)、(II)で示し、押出機中において10MPaを超える圧力雰囲気下で発泡剤を樹脂に溶解混合し、その後、発泡剤を溶解混合した圧力より低い圧力雰囲気下に曝す工程は、金型内部から大気圧雰囲気下へ発泡剤が溶解混合された溶融樹脂が押し出される、図6中に示したゾーン(III)に該当する。
【0015】
<研磨性能評価>
被研磨物として、3インチのシリコンウエハ上に、電解メッキで10000ÅのCuを製膜したものを準備した。
研磨には定盤径200mmの片面研磨機を用いた。研磨機の定盤には、研磨パッドを両面テープで貼り付け、ダイヤモンドを電着したドレッシングディスクにより、荷重10kPa、定盤の回転数60rpm、ドレッシングディスクホルダーの回転数50rpmの条件で2時間、研磨パッド表面をドレッシングした後に、Cabot社製研磨スラリー(商品名:iCue5003)を流し、1分間、Cu膜を研磨した。
研磨条件としては、ウエハに加える荷重を350g/cm、定盤の回転数を70rpm、ウエハ回転数を70rpm、研磨スラリーの流量を200ml/minとした。
研磨後のウエハを洗浄、乾燥後、シート抵抗測定機を用いてCu膜厚を測定し、平均研磨速度およびウエハ面内における研磨速度ばらつき、平坦性を従来パッドと比較した。
【0016】
(実施例1)
JIS K 7311に準じたA硬度で99(カタログ収載値)の大日精化製ポリウレタンP−4250(商品名:レザミンP)を100℃で4時間、棚段式乾燥機中で乾燥させた後、その樹脂ペレット100重量部に対し、架橋剤(商品名:クロスネートEM−30)を3.5重量部添加したものを原料とし、発泡剤として二酸化炭素を使用した。
単軸押出機(1)、単軸押出機(2)および成形用金型の平均温度は、それぞれ219℃、195℃、および198℃に設定した。また成形用金型出口部には、発泡体に平行溝が形成されるように、図7に示すような凸形状が施されている。なお、ガス注入部直後の押出機内圧力は17.3MPaであり、樹脂に溶解及び/又は樹脂と混合するゾーンにおいて、発泡剤である二酸化炭素は超臨界状態であることを確認した。押出機の内圧、吐出状態が安定した後、巾方向等間隔に凸形状を有する成形用金型を出た発泡体を、10℃に制御した冷却ロールに通した後に引き取り機で引き取り、平行溝入りの発泡体を得た。
得られた発泡体を図2に示す。発泡体幅270mm、厚み1.2mmの発泡体をカミソリ刃により切断し、その断面を走査型電子顕微鏡S−2400(HITACHI製)で観察したところ、平均径15.9μmの気泡が、発泡体厚み方向および幅方向において、ほぼ均一に分散している状態が確認できた。
得られた発泡シートから、直径200mmの円盤を切り取り、単独で研磨パッドとして用い、Cu膜を研磨した。
【0017】
(実施例2)
JIS K 7311に準じたA硬度で99(カタログ収載値)の大日精化製ポリウレタンP−4250(商品名:レザミンP)を100℃で4時間、棚段式乾燥機中で乾燥させた後、その樹脂ペレット100重量部に対し、架橋剤(商品名:クロスネートEM−30)を3.5重量部添加したものを原料とし、発泡剤として二酸化炭素を使用した。
単軸押出機(1)、単軸押出機(2)および成形用金型の平均温度は、実施例1と同様にそれぞれ219℃、195℃、および198℃に設定した。なお、ガス注入部直後の押出機内圧力は17.7MPaであり、樹脂に溶解及び/又は樹脂と混合するゾーンにおいて、発泡剤である二酸化炭素は超臨界状態であることを確認した。押出機の内圧、吐出状態が安定した後、出口部形状が平坦な成形用金型を出た発泡体を、同心円状に凹凸形状を施した10℃の冷却ロール表面に押し当てることで同心円状に溝の形成された発泡体を得た。
得られた幅275mm、厚み1.1mmの発泡体をカミソリ刃により切断し、その断面を走査型電子顕微鏡S−2400(HITACHI製)で観察したところ、平均径17.8μmの気泡が、発泡体厚み方向および幅方向において、ほぼ均一に分散している状態が確認できた。
得られた発泡シートから、直径200mmの円盤を切り取り、単独で研磨パッドとして用い、Cu膜を研磨した。
【0018】
(実施例3)
JIS K 7311に準じたA硬度で99(カタログ収載値)の大日精化製ポリウレタンP−4250(商品名:レザミンP)を100℃で4時間、棚段式乾燥機中で乾燥させた後、その樹脂ペレット100重量部に対し、架橋剤(商品名:クロスネートEM−30)を3.5重量部添加したものを原料とし、発泡剤として二酸化炭素を使用した。
単軸押出機(1)、単軸押出機(2)および成形用金型の平均温度は、(実施例1)と同様にそれぞれ219℃、195℃、および198℃に設定した。また成形用金型出口部には、発泡体に平行溝が形成されるように凸形状が施されている。なお、ガス注入部直後の押出機内圧力は18.1MPaであり、樹脂に溶解及び/又は樹脂と混合するゾーンにおいて、発泡剤である二酸化炭素は超臨界状態であることを確認した。押出機の内圧、吐出状態が安定した後、実施例1と同様の巾方向等間隔に凸形状を有する成形用金型を出た平行溝入りの発泡体に、その溝と垂直方向(ロール巾方向)に凹凸形状を施した10℃の冷却ロール(図8参照)を押し当てることで格子状に溝の形成された発泡体を得た。
得られた幅275mm、厚み1.1mmの発泡体をカミソリ刃により切断し、その断面を走査型電子顕微鏡S−2400(HITACHI製)で観察したところ、平均径17.8μmの気泡が、発泡体厚み方向および幅方向において、ほぼ均一に分散している状態が確認できた。
得られた発泡シートから、直径200mmの円盤を切り取り、単独で研磨パッドとして用い、Cu膜を研磨した。
【0019】
(比較例1)
研磨パッドとして、ロデール社製パッド(商品名:IC1000)を使用し、Cu膜を研磨した。
<評価結果>
(実施例1)、(実施例2)および(実施例3)は、(比較例1)に対し、ウエハ面内における研磨速度ばらつきは低減し、平坦性が向上した。(比較例1)に対し、(実施例1)、(実施例2)および(実施例3)は、押し出しにより成形され、また押し出す過程において研磨面に溝を施すことで、研磨パッドを効率良く安定に製造できた。
【0020】
【発明の効果】
本発明の製造方法によれば、従来パッドに比べ、研磨性能に優れた溝付き研磨用発泡体を効率良く安定に製造する方法として好適である。
【図面の簡単な説明】
【図1】化学的機械的研磨法(CMP)の標準的なプロセスの一例である。
【図2】本発明の溝付き研磨用発泡体断面の一例である。
【図3】本発明の溝付き研磨用発泡体表面に施した平行溝の一例である。
【図4】本発明の溝付き研磨用発泡体表面に施した同心円状溝の一例である。
【図5】本発明の溝付き研磨用発泡体表面に施した格子状溝の一例である。
【図6】実施例で使用した溝付き研磨用(発泡体)製造設備の概略図である。
【図7】金型出口部の断面図の一例である。
【図8】押し出し後の工程で使用されるロールの一例であり、(a)は立体斜視図、(b)は断面図である。
【符号の説明】
1 半導体ウエハ
2 定盤
3 ドレッサー
4 研磨スラリー
5 試料ホルダー
6 研磨パッド
7 回転軸
8 ウエハ固定用治具
9 スラリー供給用配管
10 バッキング材
11 発泡体
12 溝
13 第一押出機
14 第二押出機
15 金型
16 発泡剤の注入用部品
17 原料ホッパー
18 中空単管
19 ボンベ
20 ガスブースターポンプ
21 圧力調整弁
22 引取ロール
23 金型出口部断面
24 金型内凸部
25 ロール表面凸部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a polishing foam mainly used for polishing semiconductors, various memory hard disk substrates and the like.
[Prior art]
An example of a chemical mechanical polishing method (CMP), which is a typical process used for surface planarization of a semiconductor device wafer, is shown in FIG. The surface plate (2), the sample holder (5) are rotated, and the polishing slurry (4) containing abrasive grains is dropped through the slurry supply pipe (10), and the semiconductor wafer (1) is removed from the surface of the polishing pad (6). The surface of the device is flattened with high accuracy by being pressed against. During polishing, the surface state of the polishing pad (6) is adjusted by pressing the dressing disk (3) against the surface of the polishing pad (6) while rotating. The characteristics of each component such as the polishing pad (6), dressing disk (3), polishing slurry (4), wafer fixing jig (8) and backing material (9) as well as the polishing conditions, It affects the polishing performance represented by the flatness of the subsequent device surface and the flatness variation in the wafer surface and the variation between the wafer surfaces, which is an index of the variation with time. Among them, the polishing pad (6 ) And polishing slurry (4), and the influence of the abrasive grains contained in the polishing slurry is extremely large.
[0002]
Conventionally, an independent foam impregnated with a hollow polymer microelement having a void space in a polymer matrix has been standardly used as a polishing pad used for polishing an interlayer insulating film or a metal wiring (for example, , See Patent Document 1).
As a typical method for producing a conventional closed-cell foam, a hollow polymer microelement is mixed and dispersed in a raw material of a polymer matrix, generally called a casting method, and then poured into a mold and cured. Examples include a method of slicing the obtained compound.
The closed foam obtained by the casting method is not only uneven in the size of the hollow polymer microelements themselves but also unevenly distributed in the compound during the curing process. As a result, the foamed state of the obtained closed foam is low. However, there is a problem that the polishing performance varies within a lot and between lots, and when the polishing pad is finally used, the polishing performance varies widely.
In addition to using expensive hollow polymer microelements compared to general physical foaming agents, the process of slicing a compound, which has a long time, for example, leads to a decrease in productivity, resulting in a reduction in product cost. Had the problem of rising.
[0003]
On the other hand, as a method of forming a groove in the polishing layer, a method of forming a groove on the surface of the polishing layer with a hot press can be cited (for example, see Patent Document 2). A specific example of such a manufacturing method is a method in which a mold having a desired shape is attached to a compression press at the top and bottom, a molded product is placed between them, and the mold is heated and pressurized. In such a method, since the surface of the polishing layer is heated, the characteristics of the molded product itself are changed, and there is a possibility that the polishing performance is lowered. There is also a method of cutting the groove by machining, but this method has low productivity.
[0004]
[Patent Document 1]
Patent No. 3013105 [Patent Document 2]
JP-A-8-197434 [0005]
[Problems to be solved by the invention]
The present invention is for solving the above-mentioned problems in the conventional manufacturing method, and the object is to provide a method for efficiently and stably manufacturing a polishing foam having a polishing performance and a groove. Is to provide.
[0006]
[Means for Solving the Problems]
In view of the above-mentioned conventional problems, the present inventors have made extensive studies and have completed the present invention by the following means.
[0007]
That is, the present invention
(1) A polishing foam comprising a resin composition as a main component and obtained by extrusion molding, wherein a groove on the surface of the polishing layer is attached to an extrusion molding machine, and / or after extrusion, until winding or cutting A method for producing a grooved abrasive foam, which is formed continuously in the step.
(2) The method for producing a grooved polishing foam according to (1), wherein the groove shape on the surface of the polishing layer is a regular shape.
(3) The method for producing a grooved polishing foam according to (1) or (2), wherein the groove is a parallel groove, a lattice shape, a spiral shape, a concentric shape, or a honeycomb shape.
(4) The manufacturing method of the abrasive foam with a groove | channel of (1)-(3) including the cooling process by a roll and / or a belt in the process from winding up or cutting after extrusion.
(5) The method for producing a grooved polishing foam according to any one of (1) to (4), wherein the resin composition comprises a thermoplastic elastomer as a main component.
(6) A pressure lower than a pressure when the foam for polishing is dissolved and / or mixed in the extruder under a pressure atmosphere exceeding 10 MPa and then the foaming agent is dissolved and / or mixed in the resin composition. The method for producing a grooved abrasive foam according to (5), which is obtained by exposing the molten resin to an atmosphere.
(7) The method for producing a grooved polishing foam according to (5) or (6), wherein the foaming agent is in a gaseous state at normal temperature and normal pressure.
(8) The method for producing a grooved polishing foam according to (5) to (7), wherein the foaming agent is carbon dioxide.
(9) The method for producing a grooved abrasive foam according to any one of (5) to (8), wherein the thermoplastic elastomer has an A hardness according to JIS K 7311 and a hardness of 70 or more.
(10) The method for producing a grooved abrasive foam according to (5) to (9), wherein the thermoplastic elastomer is polyurethane.
(11) The method for producing a grooved polishing foam according to (5) to (10), wherein the resin composition contains 0.1 to 20 parts by weight of a crosslinking agent with respect to 100 parts by weight of the thermoplastic elastomer.
(12) The method for producing a grooved polishing foam according to any one of (1) to (11), wherein the average diameter of bubbles in the obtained foam cross-section is 0.1 μm to 100 μm.
It is.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
An example of a cross section obtained by cutting the grooved abrasive foam obtained by the production method of the present invention is shown in FIG. 3 to 5 are also examples of the grooved abrasive foam obtained by the production method of the present invention, and FIG. 2 shows a cross section cut along the broken line in FIGS. FIG. 7 is an example of a cross-sectional shape of the mold outlet of the present invention, and FIG. 8 is an example of a roll cross-sectional view.
As a method for forming the groove (11) of the present invention, it is preferable to create continuously by extrusion molding, and continuously in a mold attached to the extrusion molding machine and / or from the extrusion to the winding or cutting. The method is not particularly limited as long as it is a method formed automatically, but the inner shape of the mold and the shape of the outlet portion (23), and a roll having a desired surface shape in the process from extrusion to winding or cutting ( 22) and / or a steel belt is preferably provided and the groove is formed by pressing it against a foam in a softened state immediately after extrusion. The groove shape is not particularly limited, but a shape suitable for holding the slurry at the time of polishing moderately and efficiently discharging aggregates of abrasive grains and polishing debris in the polishing slurry is preferable. It is preferable that the groove is provided in a spiral shape, a concentric circle shape, or a honeycomb shape. Even if the groove has a complicated shape, it is presumed that it can be easily manufactured by processing the inside of the mold, the outlet, the surface of the roll or the steel belt, but in terms of cost and the difficulty of groove processing, The shape is preferably as simple as possible, and from this point, a parallel, lattice, spiral, concentric, or honeycomb-like groove is preferable.
[0009]
As for the average cell diameter of the foam obtained by this invention, 0.1-100 micrometers is preferable. When the average diameter of the bubbles is less than 0.1 μm, aggregates of abrasive grains contained in the polishing slurry and polishing debris generated with the progress of polishing are difficult to be discharged from the open bubbles, and the pores are not visible. Easy to clog. As a result, variations in the polishing rate within the wafer surface are likely to occur, and further, fluctuations in the polishing rate over time are increased, which is not preferable. In addition, it is difficult to reduce the amount of resin used as a raw material. On the other hand, if the thickness exceeds 100 μm, the slurry holding performance within the wafer surface is less variable, and the variation in the polishing speed within the wafer surface becomes larger, making it difficult to realize high-precision polishing.
[0010]
A condition for obtaining a foam having an average cell diameter of 0.1 to 100 μm that is suitably used for polishing is that the pressure atmosphere in which the foaming agent is dissolved and mixed in the resin is 10 MPa or more. If it is less than 10 MPa, dissolution and mixing of the foaming agent does not proceed stably, and the foamed state of the obtained sheet becomes less variable, which is not preferable. Also, when the foaming agent is dissolved and mixed at less than 10 MPa, the bubbles contained in the obtained foam are coarse and it is very difficult to obtain bubbles having an average cell diameter of less than 100 μm. The pressure atmosphere for dissolving and mixing the resin in the resin is preferably 10 MPa or more.
[0011]
In the production method of the present invention, a gas in a gaseous state at normal temperature and normal pressure is preferably used as the foaming agent. Such gas is not particularly limited, and examples thereof include inorganic gas, chlorofluorocarbon gas, organic gas such as low molecular weight hydrocarbon, etc., but inorganic gas is inert because it is inert to the raw material resin and does not require gas recovery. Is preferred. The inorganic gas is not particularly limited as long as it is an inorganic substance that is a gas at normal temperature and normal pressure and can be dissolved and mixed in the raw material resin. For example, carbon dioxide, nitrogen, argon, neon, helium, oxygen and the like are preferable. However, carbon dioxide is more preferable because it is easy to dissolve and mix in the raw material resin, is easy to handle, and is cheaper than other foaming agents.
[0012]
Regarding the raw material constituting the foam obtained by the present invention, the resin composition is a main component, but the resin is not particularly limited, such as thermoplasticity and thermosetting. Preferred resin raw materials include polyurethane, polystyrene, polyester, polypropylene, polyethylene, nylon, polyvinyl chloride, polyvinylidene chloride, polybutene, polyacetal, polyphenylene oxide, polyvinyl alcohol, polymethyl methacrylate, polycarbonate, polyarylate, aromatic polysulfone, Polyamide, polyimide, fluororesin, ethylene-propylene resin, ethylene-ethyl acrylate resin, acrylic resin, norbornene resin, for example, vinyl polyisoprene-styrene copolymer, butadiene-styrene copolymer, acrylonitrile-styrene copolymer, Thermoplastic elastomers such as styrene copolymers, natural rubber, and synthetic rubber represented by acrylonitrile-butadiene-styrene copolymer It can gel. These may be used alone, or may be mixed or copolymerized. In addition to the resin, the resin composition may contain a crosslinking agent, an antioxidant, an ultraviolet absorber, a dye / pigment, a surfactant, a coupling agent, various fillers, and the like. It is very easy to balance the flatness and uniformity of the polished surface after polishing. Particularly in the case of a relatively soft metal such as Cu, the object to be polished conforms to, for example, urethane type or olefin type JIS K 7311. A thermoplastic elastomer having an A hardness of 70 or more is suitable. Polishing using a grooved polishing pad made of a raw material with an A hardness of less than 70 as the main component is not preferable because the level of planarization after polishing is significantly reduced.
[0013]
As a specific example of the extrusion molding method used in the present invention, a mixture of a solid pellet resin and a crosslinking agent is put into an extruder and sufficiently kneaded, and then a foaming agent is added to 10 MPa or more in the extruder. There is a method in which the molten resin melted and mixed under the pressure atmosphere is exposed to the pressure atmosphere lower than the pressure where the foaming agent is dissolved and mixed by extruding the molten resin into the atmosphere through a die attached to the tip of the extruder.
For example, a crosslinking agent (trade name: Crossnate EM-30) manufactured by Dainichi Seika Kogyo Co., Ltd. can be used as the crosslinking agent. Crosslinking proceeds by allowing the cross-linking agent blended with polyurethane to stand at room temperature or heat treatment. Since a network structure is formed in the resin, it contributes to the improvement of wear resistance, heat resistance and chemical resistance and can stabilize the quality, which is very useful.
The addition amount of the crosslinking agent is preferably 0.1 to 20 parts by weight, more preferably 0.3 to 10 parts by weight, and most preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the resin. If it is less than 0.1 part by weight, it does not contribute to the reduction of the molding pressure, and the effect as a crosslinking agent is hardly expressed. On the other hand, when the amount is larger than 20 parts by weight, it is not preferable because those which do not contribute to crosslinking remain in the product to become impurities or cause deterioration in product performance.
The temperature inside the extruder is 100 ° C. or higher and lower than 400 ° C., preferably 120 ° C. or higher and lower than 300 ° C., more preferably 130 ° C. or higher and lower than 250 ° C., and the pressure is 10 MPa or higher and lower than 70 MPa, preferably 13 MPa or higher and lower than 50 MPa, more preferably. Is 15 MPa or more and less than 40 MPa. As the extruder, a single-screw extruder, a twin-screw extruder, or a so-called tandem extruder in which these extruders are connected by a connecting pipe can be appropriately selected and used.
In addition, when a gas in a gaseous state at normal temperature and normal pressure, which is a foaming agent, is dissolved in a resin and / or mixed with a resin at a temperature of 100 ° C. or higher and lower than 400 ° C. and a pressure of 10 MPa or higher and lower than 70 MPa, the temperature / pressure of A supercritical state is preferred. The supercritical state means a state at or above the critical temperature and critical pressure. For example, in the case of carbon dioxide, it is 30 ° C. or higher and 7.3 MPa or higher. In the supercritical state, it has properties of lower viscosity and higher diffusibility than the liquid state, and has a higher density than the gas state, so that a large amount of gas can be quickly dissolved or mixed with the resin. This is preferable.
[0014]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the contents of the examples.
<Polishing pad manufacturing equipment>
A schematic diagram of the foam production equipment used in the examples of the present invention is shown in FIG.
A tandem extruder in which a first extruder (13) having a barrel diameter of 50 mm and L / D = 32 and a second extruder (14) having a barrel diameter of 65 mm and L / D = 36 are connected by a hollow single pipe (18). A coat hanger type mold (15) having a lip width of 300 mm is attached to the tip of the foam, and the foam extruded from the mold (15) is taken up by the cooling roll (22) and sent to the next step.
As the blowing agent, carbon dioxide was used, and after being taken out from the cylinder (19), the carbon dioxide whose pressure was increased by the gas booster pump (20) was attached to the front of the center of the single screw extruder (13) (16 ) Through the extruder.
In the first extruder, the upstream side from the blowing agent inlet where melt kneading proceeds is called zone (I), and the downstream side from the blowing agent inlet where melting and mixing of the blowing agent progresses is called zone (II). In the process shown in (I) and (II), the foaming agent is dissolved and mixed in the resin under a pressure atmosphere exceeding 10 MPa in the extruder, and then the foaming agent is exposed to a pressure atmosphere lower than the pressure at which the foaming agent is dissolved and mixed. This corresponds to the zone (III) shown in FIG. 6 where the molten resin in which the foaming agent is dissolved and mixed into the atmospheric pressure atmosphere is extruded from the inside of the mold.
[0015]
<Polishing performance evaluation>
As an object to be polished, a 10,000-inch Cu film was prepared by electrolytic plating on a 3-inch silicon wafer.
A single-side polishing machine with a platen diameter of 200 mm was used for polishing. A polishing pad is affixed to the surface plate of the polishing machine with double-sided tape, and a dressing disk electrodeposited with diamond is polished for 2 hours under the conditions of a load of 10 kPa, a rotation speed of the surface plate of 60 rpm, and a rotation speed of the dressing disk holder of 50 rpm. After dressing the pad surface, a polishing slurry (product name: iCue5003) manufactured by Cabot was passed to polish the Cu film for 1 minute.
As polishing conditions, the load applied to the wafer was 350 g / cm 2 , the rotation speed of the surface plate was 70 rpm, the rotation speed of the wafer was 70 rpm, and the flow rate of the polishing slurry was 200 ml / min.
After cleaning and drying the polished wafer, the Cu film thickness was measured using a sheet resistance measuring machine, and the average polishing rate, the polishing rate variation in the wafer surface, and the flatness were compared with the conventional pad.
[0016]
(Example 1)
After drying polyurethane P-4250 (trade name: Rezamin P) manufactured by Dainichi Seika Co., Ltd. with A hardness according to JIS K 7311 of 99 (catalog listed value) at 100 ° C. for 4 hours in a shelf dryer, A material obtained by adding 3.5 parts by weight of a crosslinking agent (trade name: Crossnate EM-30) to 100 parts by weight of the resin pellets was used as a raw material, and carbon dioxide was used as a foaming agent.
The average temperatures of the single screw extruder (1), single screw extruder (2), and molding die were set to 219 ° C, 195 ° C, and 198 ° C, respectively. Further, a convex shape as shown in FIG. 7 is applied to the molding die outlet so that parallel grooves are formed in the foam. The pressure inside the extruder immediately after the gas injection part was 17.3 MPa, and it was confirmed that carbon dioxide as a blowing agent was in a supercritical state in a zone where it was dissolved in the resin and / or mixed with the resin. After the internal pressure and discharge state of the extruder have been stabilized, the foam that has been formed from the molding die having convex shapes at equal intervals in the width direction is passed through a cooling roll controlled at 10 ° C. A filled foam was obtained.
The obtained foam is shown in FIG. When a foam with a width of 270 mm and a thickness of 1.2 mm was cut with a razor blade and the cross section was observed with a scanning electron microscope S-2400 (manufactured by HITACHI), bubbles with an average diameter of 15.9 μm In the direction and the width direction, it was confirmed that they were dispersed almost uniformly.
A disc having a diameter of 200 mm was cut out from the obtained foamed sheet and used alone as a polishing pad to polish the Cu film.
[0017]
(Example 2)
After drying a polyurethane P-4250 (trade name: Rezamin P) manufactured by Dainichi Seika Co., Ltd. with an A hardness according to JIS K 7311 of 99 (catalog listed value) at 100 ° C. for 4 hours in a shelf dryer, A material obtained by adding 3.5 parts by weight of a crosslinking agent (trade name: Crossnate EM-30) to 100 parts by weight of the resin pellets was used as a raw material, and carbon dioxide was used as a foaming agent.
The average temperatures of the single screw extruder (1), single screw extruder (2), and molding die were set to 219 ° C., 195 ° C., and 198 ° C., respectively, in the same manner as in Example 1. The pressure inside the extruder immediately after the gas injection part was 17.7 MPa, and it was confirmed that carbon dioxide as a blowing agent was in a supercritical state in a zone where it was dissolved in the resin and / or mixed with the resin. After the internal pressure and discharge state of the extruder have stabilized, the foam from the molding die with a flat outlet shape is pressed against the surface of a 10 ° C. cooling roll having a concavity and convexity to form a concentric shape. A foam having a groove was obtained.
The obtained foam having a width of 275 mm and a thickness of 1.1 mm was cut with a razor blade, and the cross section was observed with a scanning electron microscope S-2400 (manufactured by HITACHI). As a result, bubbles with an average diameter of 17.8 μm were found to be foam. In the thickness direction and the width direction, it was confirmed that the layers were dispersed almost uniformly.
A disc having a diameter of 200 mm was cut out from the obtained foamed sheet and used alone as a polishing pad to polish the Cu film.
[0018]
(Example 3)
After drying polyurethane P-4250 (trade name: Rezamin P) manufactured by Dainichi Seika Co., Ltd. with A hardness according to JIS K 7311 of 99 (catalog listed value) at 100 ° C. for 4 hours in a shelf dryer, A material obtained by adding 3.5 parts by weight of a crosslinking agent (trade name: Crossnate EM-30) to 100 parts by weight of the resin pellets was used as a raw material, and carbon dioxide was used as a foaming agent.
The average temperatures of the single screw extruder (1), single screw extruder (2), and molding die were set to 219 ° C., 195 ° C., and 198 ° C., respectively, as in Example 1. In addition, a convex shape is applied to the molding die outlet so that a parallel groove is formed in the foam. Note that the pressure inside the extruder immediately after the gas injection part was 18.1 MPa, and it was confirmed that carbon dioxide as the blowing agent was in a supercritical state in the zone where it was dissolved in the resin and / or mixed with the resin. After the internal pressure and discharge state of the extruder are stabilized, a foam with parallel grooves, which is formed from a molding die having convex shapes at equal intervals in the width direction as in Example 1, is formed in a direction perpendicular to the grooves (roll width). A foam having grooves formed in a lattice shape was obtained by pressing a 10 ° C. cooling roll (see FIG. 8) having an uneven shape in the direction).
The obtained foam having a width of 275 mm and a thickness of 1.1 mm was cut with a razor blade, and the cross section was observed with a scanning electron microscope S-2400 (manufactured by HITACHI). As a result, bubbles with an average diameter of 17.8 μm were found to be foam. In the thickness direction and the width direction, it was confirmed that the layers were dispersed almost uniformly.
A disc having a diameter of 200 mm was cut out from the obtained foamed sheet and used alone as a polishing pad to polish the Cu film.
[0019]
(Comparative Example 1)
As a polishing pad, a pad made by Rodel (trade name: IC1000) was used, and the Cu film was polished.
<Evaluation results>
In (Example 1), (Example 2), and (Example 3), the polishing rate variation in the wafer surface was reduced and the flatness was improved as compared with (Comparative Example 1). In contrast to (Comparative Example 1), (Example 1), (Example 2) and (Example 3) are molded by extrusion, and the polishing pad is efficiently formed by forming grooves on the polishing surface during the extrusion process. Stable production was possible.
[0020]
【The invention's effect】
According to the manufacturing method of the present invention, it is suitable as a method for efficiently and stably manufacturing a grooved polishing foam excellent in polishing performance as compared with a conventional pad.
[Brief description of the drawings]
FIG. 1 is an example of a standard process for chemical mechanical polishing (CMP).
FIG. 2 is an example of a cross-section of a grooved abrasive foam according to the present invention.
FIG. 3 is an example of parallel grooves formed on the surface of a grooved polishing foam according to the present invention.
FIG. 4 is an example of concentric grooves formed on the surface of the grooved polishing foam of the present invention.
FIG. 5 is an example of a lattice-shaped groove formed on the surface of a grooved polishing foam according to the present invention.
FIG. 6 is a schematic view of a grooved polishing (foam) production facility used in Examples.
FIG. 7 is an example of a cross-sectional view of a mold outlet.
FIG. 8 is an example of a roll used in the process after extrusion, (a) is a three-dimensional perspective view, and (b) is a cross-sectional view.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor wafer 2 Surface plate 3 Dresser 4 Polishing slurry 5 Sample holder 6 Polishing pad 7 Rotating shaft 8 Wafer fixing jig 9 Slurry supply pipe 10 Backing material 11 Foam 12 Groove 13 First extruder 14 Second extruder 15 Mold 16 Parts for injecting foaming agent 17 Raw material hopper 18 Hollow single pipe 19 Cylinder 20 Gas booster pump 21 Pressure regulating valve 22 Take-up roll 23 Mold outlet section 24 Mold inner convex section 25 Roll surface convex section

Claims (12)

樹脂組成物を主成分とし、押出成形によって得られる研磨用発泡体であって、研磨層表面の溝が押出成形機に取り付けた金型、及び/又は押し出し後、巻き取り又は切断までの工程内で、連続的に形成されることを特徴とする、溝付き研磨用発泡体の製造方法。A foam for polishing comprising a resin composition as a main component and obtained by extrusion molding, wherein the groove on the surface of the polishing layer is attached to the extrusion molding machine, and / or within the process from extrusion to winding or cutting A method for producing a grooved abrasive foam, wherein the grooved abrasive foam is formed continuously. 研磨層表面の溝形状が規則性のある形状である、請求項1記載の溝付き研磨用発泡体の製造方法。The method for producing a grooved polishing foam according to claim 1, wherein the groove shape on the surface of the polishing layer is a regular shape. 前記溝が平行溝、格子状、渦巻状、同心円状、または蜂の巣状である、請求項1又は2記載の溝付き研磨用発泡体の製造方法。The method for producing a grooved abrasive foam according to claim 1 or 2, wherein the groove is a parallel groove, a lattice shape, a spiral shape, a concentric shape, or a honeycomb shape. 押し出し後、巻き取り又は切断までの工程内に、ロールおよび/またはベルトによる冷却工程を含む、請求項1〜3のいずれか1項に記載の溝付き研磨用発泡体の製造方法。The manufacturing method of the abrasive foam with a groove | channel of any one of Claims 1-3 including the cooling process by a roll and / or a belt in the process after winding or cutting | disconnection after extrusion. 前記樹脂組成物が熱可塑性エラストマーを主成分とする請求項1〜4のいずれか1項に記載の溝付き研磨用発泡体の製造方法。The method for producing a grooved abrasive foam according to any one of claims 1 to 4, wherein the resin composition comprises a thermoplastic elastomer as a main component. 研磨用発泡体が押出機中で、10MPaを超える圧力雰囲気下において、前記樹脂組成物に発泡剤を溶解及び/又は混合した後、該溶解及び/又は混合したときの圧力より低い圧力雰囲気下に該溶融樹脂を曝すことにより得られる、請求項5記載の溝付き研磨用発泡体の製造方法。In a pressure atmosphere of more than 10 MPa, the foam for polishing is in an extruder, and after the foaming agent is dissolved and / or mixed in the resin composition, the pressure is lower than the pressure at the time of the dissolution and / or mixing. The manufacturing method of the abrasive foam with a groove | channel of Claim 5 obtained by exposing this molten resin. 発泡剤が常温・常圧で気体状態である、請求項5又は6記載の溝付き研磨用発泡体の製造方法。The method for producing a grooved abrasive foam according to claim 5 or 6, wherein the foaming agent is in a gaseous state at normal temperature and normal pressure. 発泡剤が二酸化炭素である、請求項5〜7のいずれか1項に記載の溝付き研磨用発泡体の製造方法。The method for producing a grooved polishing foam according to any one of claims 5 to 7, wherein the foaming agent is carbon dioxide. 前記熱可塑性エラストマーが、JIS K 7311に準じたA硬度で70以上の硬度をもつ、請求項5〜8のいずれかに1項に記載の溝付き研磨用発泡体の製造方法。The method for producing a grooved abrasive foam according to any one of claims 5 to 8, wherein the thermoplastic elastomer has an A hardness according to JIS K 7311 and a hardness of 70 or more. 熱可塑性エラストマーがポリウレタンである、請求項5〜9のいずれか1項に記載の溝付き研磨用発泡体の製造方法。The method for producing a grooved abrasive foam according to any one of claims 5 to 9, wherein the thermoplastic elastomer is polyurethane. 前記樹脂組成物が熱可塑性エラストマー100重量部に対し、架橋剤0.1〜20重量部を含む、請求項5〜10のいずれか1項に記載の溝付き研磨用発泡体の製造方法。The method for producing a grooved abrasive foam according to any one of claims 5 to 10, wherein the resin composition comprises 0.1 to 20 parts by weight of a crosslinking agent with respect to 100 parts by weight of the thermoplastic elastomer. 得られた発泡体断面の気泡の平均径が0.1μm〜100μmである、請求項1〜11のいずれか1項に記載の溝付き研磨用発泡体の製造方法。The method for producing a grooved abrasive foam according to any one of claims 1 to 11, wherein the average diameter of the bubbles in the cross-section of the obtained foam is from 0.1 µm to 100 µm.
JP2003200539A 2003-07-23 2003-07-23 Manufacturing method of grooved grinding foam Pending JP2005041006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003200539A JP2005041006A (en) 2003-07-23 2003-07-23 Manufacturing method of grooved grinding foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003200539A JP2005041006A (en) 2003-07-23 2003-07-23 Manufacturing method of grooved grinding foam

Publications (1)

Publication Number Publication Date
JP2005041006A true JP2005041006A (en) 2005-02-17

Family

ID=34260922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003200539A Pending JP2005041006A (en) 2003-07-23 2003-07-23 Manufacturing method of grooved grinding foam

Country Status (1)

Country Link
JP (1) JP2005041006A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221055A (en) * 2006-02-20 2007-08-30 Toyo Tire & Rubber Co Ltd Polishing pad
JP2008302454A (en) * 2007-06-06 2008-12-18 Sharp Corp Polishing pad and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221055A (en) * 2006-02-20 2007-08-30 Toyo Tire & Rubber Co Ltd Polishing pad
JP2008302454A (en) * 2007-06-06 2008-12-18 Sharp Corp Polishing pad and its manufacturing method
JP4499136B2 (en) * 2007-06-06 2010-07-07 シャープ株式会社 Polishing pad manufacturing method

Similar Documents

Publication Publication Date Title
TWI309994B (en) Method for manufacturing microporous cmp materials having controlled pore size
JP3920829B2 (en) Polishing pad containing embedded liquid microelement and method of manufacturing the same
US8357027B2 (en) Polishing pad and method of manufacture
TWI386442B (en) Chemical mechanical polishing pads comprising liquid organic material core encapsulated in polymer shell and methods for producing the same
US7029747B2 (en) Integral polishing pad and manufacturing method thereof
US6017265A (en) Methods for using polishing pads
JP5514806B2 (en) Polishing pad composition, method for producing the same and use thereof
US20030233792A1 (en) Foamed mechanical planarization pads made with supercritical fluid
JP2007088464A (en) Aqueous polishing pad with improved adhesion and its manufacturing method
JP2006253691A (en) Water-based polishing pad and its manufacturing method
TW201509595A (en) Low density polishing pad
US20150133039A1 (en) Polishing pad and method for manufacturing same
JP2007180550A (en) Multi-layered polishing pad with improved defectivity and its manufacture method
JP5868566B2 (en) Polishing pad
JP2010274362A (en) Method for manufacturing polyurethane foam and method for manufacturing polishing pad
US20020098789A1 (en) Polishing pad and methods for improved pad surface and pad interior characteristics
JP2001277304A (en) Producing method for polishing pad for semiconductor wafer
TW201402275A (en) Methods and systems for centrifugal casting of polymer polish pads and polishing pads made by the methods
JP2005183708A (en) Polishing pad for cmp and method of polishing using the same
JP2003220550A (en) Abrasive pad and manufacturing method for the same
JP4873667B2 (en) Polishing pad
JP2005041006A (en) Manufacturing method of grooved grinding foam
JP4591980B2 (en) Polishing pad and manufacturing method thereof
JP2003209078A (en) Foam plastic sheet for polishing and manufacturing method therefor
JP2004315785A (en) Method for molding hardly foaming resin for use in polishing