JP2005040747A - Sewage treatment method and apparatus - Google Patents

Sewage treatment method and apparatus Download PDF

Info

Publication number
JP2005040747A
JP2005040747A JP2003279496A JP2003279496A JP2005040747A JP 2005040747 A JP2005040747 A JP 2005040747A JP 2003279496 A JP2003279496 A JP 2003279496A JP 2003279496 A JP2003279496 A JP 2003279496A JP 2005040747 A JP2005040747 A JP 2005040747A
Authority
JP
Japan
Prior art keywords
activated sludge
membrane
cod
polymer
biological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003279496A
Other languages
Japanese (ja)
Other versions
JP4046661B2 (en
Inventor
Seiji Izumi
清司 和泉
Kazuhisa Nishimori
一久 西森
Taichi Kamisaka
太一 上坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2003279496A priority Critical patent/JP4046661B2/en
Publication of JP2005040747A publication Critical patent/JP2005040747A/en
Application granted granted Critical
Publication of JP4046661B2 publication Critical patent/JP4046661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent adhesion of excessive polymer on a membrane surface by measuring the amount of organism-originating polymer in a mixed solution of activated sludge and timely reducing the amount of the polymer in an organism treatment tank (aerator), in a membrane separating activated sludge treatment method. <P>SOLUTION: In this sewage treatment apparatus, organic sewage is treated with activated sludge in the organism treatment tank 24; the mixed solution of the activated sludge is separated into solid and liquid by an immersed type membrane separation device 25 serving as a first separation means immersed in the tank 24; COD components containing the organism-originating polymer accumulated in the tank 24 by activated sludge treatment, are timely separated into solid and liquid by a second separation means 29; and a concentration of the polymer in the mixed solution is kept low, while keeping the activated sludge in the tank 24 at a high concentration. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は汚水の処理方法および装置に関し、有機性汚水の処理、低水温地域の槽浸漬型膜分離活性汚泥法(MBR)に係るものである。   The present invention relates to a method and apparatus for treating sewage, and relates to treatment of organic sewage, tank submerged membrane separation activated sludge process (MBR) in low water temperature areas.

膜分離活性汚泥処理法は、処理水質が安定していることや、維持管理も容易なことから広く普及している。この膜分離活性汚泥処理法を適用した一般的な水処理システムとしては、例えば図2に示すものがある。図2において、系内に流入する汚水1は前処理設備2で夾雑物を除去した後に流量調整槽3に一旦貯留し、流量調整槽3から一定の流量で生物処理槽(曝気槽)4に供給しており、生物処理槽(曝気槽)4で活性汚泥により汚水中の有機物質を分解除去し、生物処理槽(曝気槽)4に浸漬設置した浸漬型膜分離装置5で混合液を固液分離し、浸漬型膜分離装置5のろ過膜を透過した膜ろ液を処理水として放流する。   Membrane separation activated sludge treatment methods are widely used because the quality of treated water is stable and maintenance is easy. An example of a general water treatment system to which this membrane separation activated sludge treatment method is applied is shown in FIG. In FIG. 2, the sewage 1 flowing into the system is temporarily stored in the flow rate adjustment tank 3 after removing impurities by the pretreatment facility 2, and then transferred from the flow rate adjustment tank 3 to the biological treatment tank (aeration tank) 4 at a constant flow rate. In the biological treatment tank (aeration tank) 4, organic substances in the sewage are decomposed and removed by activated sludge in the biological treatment tank (aeration tank) 4, and the mixed liquid is solidified by the submerged membrane separation device 5 immersed in the biological treatment tank (aeration tank) 4. Liquid separation is performed, and the membrane filtrate that has permeated through the filtration membrane of the submerged membrane separator 5 is discharged as treated water.

浸漬型膜分離装置5には種々のものがあるが、ここでは上下が開口したケース6の内部に鉛直方向に配置する複数の平板状の膜カートリッジ7を平行に配列し、膜カートリッジ7の下方に散気装置8を配設したものであり、膜カートリッジ7はろ板の表裏に平膜状の有機膜を貼着したものである。   There are various types of submerged membrane separation devices 5. Here, a plurality of flat membrane cartridges 7 arranged in the vertical direction are arranged in parallel inside a case 6 that is open at the top and bottom. The membrane cartridge 7 has a flat membrane-like organic film attached to the front and back of the filter plate.

生物処理槽(曝気槽)4ではブロア9により供給する空気を散気装置8から散気し、空気によって生じる固気液混相の上向流によって汚濁物を含む汚水と活性汚泥との混合液を槽内で循環させながら混合液に酸素を溶解させ、活性汚泥の微生物により汚濁物中の有機物を生物処理して除去する。浸漬型膜分離装置5には上向流によって混合液を膜カートリッジ7の間の流路に膜面に沿ったクロスフローで供給し、上向流が掃流として膜面に作用することで膜面の洗浄を行いつつ、ろ過の駆動力として吸引ポンプ10で吸引圧力を作用させて膜カートリッジ7で混合液を固液分離し、膜カートリッジ7のろ過膜を透過した膜ろ液を滅菌槽11を経て放流する。   In the biological treatment tank (aeration tank) 4, the air supplied by the blower 9 is diffused from the diffuser 8, and the mixed liquid of the sewage containing the pollutant and the activated sludge is produced by the upward flow of the solid-gas liquid mixed phase generated by the air. Oxygen is dissolved in the mixed solution while circulating in the tank, and organic matter in the pollutant is removed by biological treatment with microorganisms of activated sludge. The submerged membrane separation device 5 is supplied with the mixed liquid by cross flow along the membrane surface to the flow path between the membrane cartridges 7 by upward flow, and the upward flow acts on the membrane surface as a sweep flow. While washing the surface, a suction pressure is applied by a suction pump 10 as a driving force for filtration to separate the liquid mixture with the membrane cartridge 7, and the membrane filtrate that has passed through the membrane of the membrane cartridge 7 is removed from the sterilization tank 11. To be released.

先行技術文献の特許文献1には、不織布やネットを用いたろ過方法が開示されている。この方法は不織布やネットの孔にSS乃至はフロック(活性汚泥等のSSの凝集塊)を沈積させてダイナミック膜を形成するものであり、安定したろ過能力を維持するためには好適なダイナミック膜の速やかな形成と厚みの制御が必要であることから、逆洗浄終了後から所要時間のろ過運転の停止期間を設け、原水中にフロックを成長させてろ過運転を再開するものである。   Patent Document 1 of the prior art document discloses a filtration method using a nonwoven fabric or a net. This method forms a dynamic membrane by depositing SS or floc (SS agglomerates such as activated sludge) in the holes of the nonwoven fabric or net, and is suitable for maintaining a stable filtration capacity. Since the formation and the control of the thickness are necessary, the filtration operation is stopped for a required time after the end of the reverse cleaning, and the filtration operation is resumed by growing flocs in the raw water.

特許文献2には、ダイナミック膜の問題点としてBOD負荷の変動につれて活性汚泥粒子が分散状態となり、ダイナミック膜のフラックスが低下することが開示されており、この問題の解決のために、ダイナミック膜ろ過槽の前段に位置する生物処理槽から汚泥を引抜くか、ダイナミック膜ろ過槽に滞留する分離汚泥を酸処理し、酸処理分離汚泥を物理化学可溶化手段で可溶化後に生物処理槽へ返送している。   Patent Document 2 discloses that activated sludge particles become dispersed as the BOD load fluctuates as a problem of the dynamic membrane, and the flux of the dynamic membrane decreases. To solve this problem, dynamic membrane filtration is disclosed. Pull out sludge from the biological treatment tank located in the front of the tank, or acid-treat the separated sludge staying in the dynamic membrane filtration tank, and return the acid-treated separated sludge to the biological treatment tank after solubilization by physicochemical solubilization means ing.

特許文献3には、脱水ろ液の発泡量の大小を計測して汚泥の凝集状態を検知する凝集状態検知装置が開示されており、汚泥の凝集処理におけるポリマーの添加量が過剰状態となると、ろ液中の残留ポリマー量が急増し、発泡性が激しくなるので、発泡量を泡高さ計又は圧力計を用いて計測することで、ポリマー添加量の過不足を判定している。
特開2002−126734公報 特開2003−62591公報 実開平7−24500号公報
Patent Document 3 discloses a coagulation state detection device that detects the amount of foaming of the dehydrated filtrate to detect the coagulation state of sludge, and when the amount of polymer added in the sludge coagulation process becomes excessive, Since the amount of residual polymer in the filtrate increases rapidly and foaming becomes intense, the amount of polymer added is determined by measuring the amount of foaming using a foam height meter or pressure gauge.
JP 2002-126734 A JP 2003-62591 A Japanese Utility Model Publication No. 7-24500

ところで、膜分離活性汚泥処理法を適用した水処理において対象汚水の水温が低い場合には、微生物の活性が低下して流入汚水中の有機物が完全に分解されないケースや、微生物自体が異常に代謝産物(未分解有機物)を体外に放出することがある。このような代謝産物は、分子量が数千から数十万の糖蛋白を主体とするポリマーと言われている。この微生物の代謝産物(未分解有機物)由来のポリマーを、従来の高分子凝集剤等に使用するポリマーと区別するために、本発明では以下に生物由来ポリマーと呼称して説明する。   By the way, when the target sewage water temperature is low in the water treatment using the membrane separation activated sludge treatment method, the activity of microorganisms decreases and the organic matter in the influent sewage is not completely decomposed, or the microorganisms themselves are abnormally metabolized. Products (undegraded organic matter) may be released outside the body. Such a metabolite is said to be a polymer mainly composed of glycoprotein having a molecular weight of thousands to hundreds of thousands. In order to distinguish the polymer derived from the metabolite (undegraded organic substance) of the microorganism from the polymer used for the conventional polymer flocculant or the like, in the present invention, the polymer is hereinafter referred to as a biological polymer.

この生物由来ポリマー量が多くなると、活性汚泥混合液の粘度が上昇してその流動性が低下する。また、生物由来ポリマーが活性汚泥(SS)等に付着した状態でろ過膜に堆積するのみならず、生物由来ポリマー自体が直接にろ過膜の表面に堆積してゲル層を形成したり、分子量の小さい生物由来ポリマーがろ過膜を透過する途中でろ過膜中に留まって目詰まることで、ろ過膜のろ過抵抗が異常に大きくなり、通常のろ過圧力では十分な透過流束が得られなくなる。このため、ろ過膜の逆圧洗浄(膜表面の堆積物を洗い落とす)が必要となるが、この洗浄の頻度が多すぎると、膜を利用したプロセスそのものが成立しなくなる。また、生物処理槽(曝気槽)から余剰汚泥を引抜くことで生物処理槽(曝気槽)内の生物由来ポリマーを低減する場合には、余剰汚泥を通常運転における引抜量より過剰に引抜く必要があり、余剰汚泥とともに微生物が槽外へ流出して活性汚泥混合液中の活性汚泥濃度の低下を招くことになる。   When the amount of the biological polymer increases, the viscosity of the activated sludge mixed liquid increases and the fluidity thereof decreases. In addition, the biological polymer is deposited not only on the activated sludge (SS) but also on the filtration membrane, but the biological polymer itself is deposited directly on the surface of the filtration membrane to form a gel layer, The small biological polymer stays in the filtration membrane while clogging through the filtration membrane and becomes clogged, so that the filtration resistance of the filtration membrane becomes abnormally large, and a sufficient permeation flux cannot be obtained at normal filtration pressure. For this reason, back-pressure cleaning of the filtration membrane (washing off deposits on the membrane surface) is required, but if the frequency of this cleaning is too high, the process itself using the membrane will not be established. In addition, when surplus sludge is extracted from the biological treatment tank (aeration tank) to reduce the bio-derived polymer in the biological treatment tank (aeration tank), it is necessary to extract the excess sludge more than the amount extracted during normal operation. The microorganisms flow out of the tank together with the excess sludge, leading to a decrease in the activated sludge concentration in the activated sludge mixed liquid.

一方、適正な量の生物由来ポリマーは、微生物のフロック形成を良好となし、汚泥のろ過性を向上させるとともに、膜表面に適正なポリマー層を形成して膜自体のろ過性能(分画性能)を向上させるダイナミック膜機能を与える。   On the other hand, an appropriate amount of bio-derived polymer improves the floc formation of microorganisms, improves the sludge filterability, and forms an appropriate polymer layer on the membrane surface to filter the membrane itself (fractionation performance). Dynamic membrane function that improves

この活性汚泥混合液中の生物由来ポリマー量を正確に知ることは困難であり、運転条件の変更によって生物処理槽(曝気槽)の活性汚泥混合液に含まれる生物由来ポリマー量を制御することは非常に難しい。   It is difficult to accurately know the amount of biological polymer in the activated sludge mixture, and it is difficult to control the amount of biological polymer contained in the activated sludge mixed liquid in the biological treatment tank (aeration tank) by changing the operating conditions. very difficult.

槽浸漬型膜分離活性汚泥法(MBR)では、低圧で十分な透過流束を得るために通常は精密ろ過膜(細孔径0.4μm)が使用されることが多い。また、ダイナミック膜として機能するために必要な膜表面に付着堆積するケーキ層(ポリマー量)の制御を容易とするために平膜タイプが主流となっている。   In the bath immersion type membrane separation activated sludge method (MBR), a microfiltration membrane (pore diameter 0.4 μm) is usually used in order to obtain a sufficient permeation flux at a low pressure. In order to easily control the cake layer (polymer amount) deposited and deposited on the film surface necessary for functioning as a dynamic film, the flat film type has become the mainstream.

本発明は膜分離活性汚泥処理法において活性汚泥混合液中の生物由来ポリマー量を測定して、生物処理槽(曝気槽)における生物由来ポリマー量を適時に低減して膜面に過剰なポリマーが付着することを防止するものである。   The present invention measures the amount of biological polymer in the activated sludge mixed solution in the membrane separation activated sludge treatment method, and reduces the amount of biological polymer in the biological treatment tank (aeration tank) in a timely manner so that excess polymer is present on the membrane surface. It prevents it from adhering.

上記課題を解決するために、本発明の請求項1に係る汚水の処理方法は、生物処理槽において有機性汚水を活性汚泥処理し、生物処理槽内に浸漬設置した第1分離手段をなす浸漬型膜分離装置で活性汚泥混合液を固液分離し、活性汚泥処理により生物処理槽内に蓄積される生物由来ポリマーを含むCODを第2分離手段によって適時に活性汚泥混合液から固液分離して、生物処理槽内の活性汚泥量を高濃度に維持しつつ、活性汚泥混合液中の生物由来ポリマー量を低濃度に維持するものである。   In order to solve the above-mentioned problem, a method for treating sewage according to claim 1 of the present invention is a soaking method in which an organic sludge is treated with activated sludge in a biological treatment tank, and the first separation means is immersed in the biological treatment tank. The activated sludge mixed solution is solid-liquid separated by the mold membrane separation device, and the COD containing the biological polymer accumulated in the biological treatment tank by the activated sludge treatment is solid-liquid separated from the activated sludge mixed solution at the appropriate time by the second separation means. Thus, while maintaining the activated sludge amount in the biological treatment tank at a high concentration, the biological polymer amount in the activated sludge mixed solution is maintained at a low concentration.

上記した構成により、生物処理槽において有機性汚水を活性汚泥処理することにより有機性汚水のBODは微生物の生物処理によって分解される。微生物はBODを分解するとともに、代謝産物(未分解有機物)を体外に放出する。この糖蛋白を主体とする生物由来ポリマーは、特に対象汚水の水温が低い場合に、微生物の活性が低下して流入汚水中の有機物が完全に分解されないで残る未分解有機物とともに、微生物が異常に放出することで増加する。   With the above-described configuration, the organic sewage BOD is decomposed by the biological treatment of microorganisms by treating the organic sewage with activated sludge in the biological treatment tank. Microorganisms decompose BOD and release metabolites (undegraded organic substances) outside the body. This bioprotein-based polymer, mainly composed of glycoproteins, has an unusually low microbial activity, especially when the temperature of the target sewage is low, along with the undegraded organic matter that remains because the microbial activity is reduced and the organic matter in the influent sewage is not completely decomposed. Increased by releasing.

生物処理槽における通常の活性汚泥混合液の固液分離は第1分離手段をなす浸漬型膜分離装置で行い、生物処理槽内に活性汚泥および生物由来ポリマーを残留させて浸漬型膜分離装置のろ過膜を透過した膜ろ液を処理水として槽外へ取り出す。   Solid-liquid separation of the normal activated sludge mixed liquid in the biological treatment tank is performed by the submerged membrane separation apparatus that constitutes the first separation means, and the activated sludge and biological polymer are left in the biological treatment tank so that the submerged membrane separation apparatus The membrane filtrate that has passed through the filtration membrane is taken out of the tank as treated water.

生物処理槽内の生物由来ポリマーの濃度が増加し過ぎると浸漬型膜分離装置のろ過膜に付着する生物由来ポリマー量が過剰となってろ過膜の膜抵抗が異常に大きくなり、固液分離操作を阻害する。   If the concentration of the biological polymer in the biological treatment tank increases too much, the amount of biological polymer adhering to the filtration membrane of the submerged membrane separator becomes excessive and the membrane resistance of the filtration membrane becomes abnormally large. Inhibits.

このため、第2分離手段によって生物処理槽内に蓄積される生物由来ポリマーを含むCODを適時に活性汚泥混合液から固液分離することで、生物処理槽内の活性汚泥を槽外へ流出させることなく高濃度に維持しながら、活性汚泥混合液中の生物由来ポリマーを除去して生物由来ポリマー量を低濃度に維持する。この操作により、生物由来ポリマー量が過剰となることに起因する膜抵抗の増加を防止し、適正な量の生物由来ポリマーにより微生物のフロック形成を良好となして汚泥のろ過性を向上させるとともに、膜表面に適正なポリマー層を形成して膜自体のろ過性能(分画性能)を向上させるダイナミック膜機能を与えることができる。   For this reason, the activated sludge in the biological treatment tank is caused to flow out of the tank by solid-liquid separating the COD containing the biological polymer accumulated in the biological treatment tank by the second separation means from the activated sludge mixed solution in a timely manner. While maintaining the high concentration without removing the biological polymer in the activated sludge mixture, the biological polymer amount is maintained at a low concentration. This operation prevents an increase in membrane resistance due to an excessive amount of biological polymer, improves the floc formation of microorganisms with an appropriate amount of biological polymer and improves the sludge filterability, An appropriate polymer layer can be formed on the membrane surface to provide a dynamic membrane function that improves the filtration performance (fractionation performance) of the membrane itself.

第2分離手段としては、生物処理槽内に浸漬設置する膜ろ過装置があり、膜ろ過装置に浸漬型膜分離装置のろ過膜の細孔より大孔径の細孔(細孔比で10倍以上)を形成した不織布等からなるろ過膜を装着し、活性汚泥の透過を阻止し、生物由来ポリマーを含むCODを通過させて活性汚泥混合液を固液分離する。   As the second separation means, there is a membrane filtration device immersed in a biological treatment tank, and the membrane filtration device has a pore diameter larger than the pores of the filtration membrane of the immersion membrane separation device (more than 10 times by pore ratio). A filtration membrane made of a non-woven fabric or the like is attached, the activated sludge is prevented from permeating, and the activated sludge mixed solution is solid-liquid separated by passing the COD containing the biological polymer.

あるいは、第2分離手段として生物処理槽外に設置する遠心分離機を採用する場合には、生物処理槽内の活性汚泥混合液を遠心分離処理して生物由来ポリマーを含む液相分を分離除去し、固形分を生物処理槽へ戻す。   Alternatively, when a centrifuge installed outside the biological treatment tank is adopted as the second separation means, the activated sludge mixed liquid in the biological treatment tank is centrifuged to separate and remove the liquid phase containing the biological polymer. The solid content is returned to the biological treatment tank.

本発明の請求項2に係る汚水の処理方法は、浸漬型膜分離装置を透過した膜ろ液中のCODを測定し、浸漬型膜分離装置のろ過膜の細孔より大きい所定孔径の細孔を有するろ過手段で生物処理槽内の活性汚泥混合液をろ過したろ過手段ろ液中のCODを測定し、ろ過手段ろ液中のCODから膜ろ液中のCODを減算したCOD差値が所定値以上であるときに、第2分離手段によって活性汚泥混合液から生物由来ポリマーを含むCODを分離するものである。   In the method for treating sewage according to claim 2 of the present invention, the COD in the membrane filtrate permeated through the submerged membrane separator is measured, and the pores having a predetermined pore size larger than the pores of the filter membrane of the submerged membrane separator The COD in the filtration means filtrate obtained by filtering the activated sludge mixed liquid in the biological treatment tank with a filtration means having a COD difference value obtained by subtracting the COD in the membrane filtrate from the COD in the filtration means filtrate is predetermined. When the value is equal to or greater than the value, the COD containing the biological polymer is separated from the activated sludge mixed solution by the second separation means.

上記した構成において、本発明者らは生物処理槽内の活性汚泥混合液中に含まれる生物由来ポリマー量を直接に計測することは困難であることから生物由来ポリマー量を推し量る指標としてCODを採用することにした。しかし、生物処理槽内の活性汚泥混合液中のCODは、生物処理槽において微生物の代謝産物(未分解有機物)として生成する生物由来ポリマーのみならず、系外から生物処理槽へ流入する色度等のCODも含むので、活性汚泥混合液中のCODを活性汚泥混合液中に含まれる生物由来ポリマー量の指標とすることはできない。   In the configuration described above, the present inventors adopt COD as an index for estimating the amount of biological polymer because it is difficult to directly measure the amount of biological polymer contained in the activated sludge mixed liquid in the biological treatment tank. Decided to do. However, the COD in the activated sludge mixed solution in the biological treatment tank is not only a biological polymer produced as a microbial metabolite (undegraded organic substance) in the biological treatment tank, but also the chromaticity flowing from outside the system into the biological treatment tank. Therefore, the COD in the activated sludge mixed solution cannot be used as an index of the amount of biological polymer contained in the activated sludge mixed solution.

このため発明者らは、細孔が小孔径の精密ろ過膜(細孔径0.4μm)等からなる浸漬型膜分離装置のろ過膜では生物由来ポリマーの大部分が透過せず、浸漬型膜分離装置のろ過膜より大きな大孔径の細孔を有するろ紙(細孔径1.0μm)では、活性汚泥(微生物)に相当する固形物の透過を阻止し、生物由来ポリマーを含む溶解性のポリマーを透過させることに鑑み、浸漬型膜分離装置のろ過膜を透過した膜ろ液中のCODを測定し、同じ活性汚泥混合液を細孔が浸漬型膜分離装置のろ過膜の細孔より大孔径のろ紙等のろ過手段で生物処理槽内の活性汚泥混合液をろ過し、ろ過手段を透過したろ過手段ろ液中のCODを測定し、両者を比較することにより微生物の代謝産物(未分解有機物)由来の糖蛋白に起因するポリマー量を間接的に測定できることを発明者らは見出した。   For this reason, the inventors do not allow most of the biological polymer to permeate through the filtration membrane of a submerged membrane separation device composed of a microfiltration membrane having a small pore size (pore size 0.4 μm), etc. A filter paper (pore size 1.0 μm) with pores larger than the filter membrane of the device prevents the permeation of solids corresponding to activated sludge (microorganisms) and permeates soluble polymers including biological polymers. In view of the above, the COD in the membrane filtrate that has passed through the filtration membrane of the submerged membrane separator is measured, and the pores of the same activated sludge mixed solution are larger than the pores of the filtration membrane of the submerged membrane separator. Filter the activated sludge mixture in the biological treatment tank with filtration means such as filter paper, measure the COD in the filtration means filtrate that has passed through the filtration means, and compare the two to compare the metabolites of microorganisms (undegraded organic matter) Indirectly measure the amount of polymer due to the glycoprotein The inventors have found that this can be determined.

知見に基づき、ろ過手段ろ液中のCODから膜ろ液中のCODを減算したCOD差値を生物処理槽における生物由来ポリマー量と推量し、COD差値が所定値以上であるときに第2分離手段による活性汚泥混合液の固液分離を行うことで、適時に活性汚泥混合液から生物由来ポリマーを分離して適正な量の生物由来ポリマーを生物処理槽内に残留させるものである。   Based on the knowledge, the COD difference value obtained by subtracting the COD in the membrane filtrate from the COD in the filtration means filtrate is estimated as the amount of the biological polymer in the biological treatment tank, and the second value is obtained when the COD difference value is equal to or larger than a predetermined value. By performing solid-liquid separation of the activated sludge mixed liquid by the separation means, the biological polymer is separated from the activated sludge mixed liquid in a timely manner, and an appropriate amount of biological polymer is left in the biological treatment tank.

本発明の請求項3に係る汚水の処理装置は、有機性汚水を活性汚泥処理する生物処理槽内に、活性汚泥混合液を固液分離して膜ろ過液を処理水として取り出す第1分離手段と、活性汚泥混合液を固液分離して生物処理槽内に蓄積される生物由来ポリマーを含む膜ろ過液を取り出す第2分離手段とを浸漬設置したものである。   The sewage treatment apparatus according to claim 3 of the present invention is the first separation means for separating the activated sludge mixed liquid into a biological treatment tank for treating the activated sewage with the activated sludge, and taking out the membrane filtrate as the treated water. And a second separation means for taking out the membrane filtrate containing the biological polymer accumulated in the biological treatment tank by solid-liquid separation of the activated sludge mixed liquid.

上記した構成により、第1分離手段により通常の固液分離操作を行って膜ろ液を処理水として取り出すとともに、第2分離手段によって生物処理槽内に蓄積される生物由来ポリマーを含むCODを適時に活性汚泥混合液から固液分離することで、槽内の活性汚泥量を高濃度に維持しながら、生物由来ポリマー量を低濃度に維持でき、生物由来ポリマー量の過剰により生じる膜抵抗の増加を防止し、適正量の生物由来ポリマーにより微生物のフロック形成を促進して汚泥のろ過性を向上させ、膜表面に形成する適正なポリマー層によってろ過性能(分画性能)が向上するダイナミック膜の機能を発揮できる。   With the above-described configuration, a normal solid-liquid separation operation is performed by the first separation means, and the membrane filtrate is taken out as treated water, and the COD containing the biological polymer accumulated in the biological treatment tank by the second separation means is appropriately timed. In addition, the solid-liquid separation from the activated sludge mixture allows the biological polymer amount to be maintained at a low level while maintaining the activated sludge amount in the tank at a high concentration, and the increase in membrane resistance caused by the excessive amount of biological polymer. Of the dynamic membrane that improves the filtration performance (fractionation performance) with the proper polymer layer formed on the membrane surface. The function can be demonstrated.

以下に本発明の実施の形態を図面に基づいて説明する。図1において、系内に流入する有機性汚水21は前処理設備22で夾雑物を除去した後に流量調整槽23に一旦貯留し、流量調整槽23から一定の流量で生物処理槽(曝気槽)24に供給する。   Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, organic waste water 21 flowing into the system is temporarily stored in a flow rate adjusting tank 23 after removing contaminants by a pretreatment facility 22, and a biological treatment tank (aeration tank) at a constant flow rate from the flow rate adjusting tank 23. 24.

生物処理槽(曝気槽)24では活性汚泥による生物処理で有機性汚水21に含まれた有機物質(BOD)を分解除去する。生物処理槽(曝気槽)24における通常の活性汚泥混合液の固液分離は槽内に浸漬設置した第1分離手段をなす浸漬型膜分離装置25で行い、浸漬型膜分離装置25のろ過膜を透過した膜ろ液26を取り出して滅菌槽27で消毒後に処理水28として放流する。   In the biological treatment tank (aeration tank) 24, the organic substance (BOD) contained in the organic sewage 21 is decomposed and removed by biological treatment with activated sludge. Solid-liquid separation of the normal activated sludge mixed liquid in the biological treatment tank (aeration tank) 24 is performed by the submerged membrane separator 25 that constitutes the first separation means immersed in the tank, and the filtration membrane of the submerged membrane separator 25. The membrane filtrate 26 that has permeated is taken out, disinfected in a sterilization tank 27, and discharged as treated water 28.

浸漬型膜分離装置25には種々のものが適用可能であり、そのろ過膜としては平膜状有機膜、チューブ状有機膜、セラミック膜等があるが、ここではろ過膜を細孔が小孔径の精密ろ過膜(細孔径0.4μm)を使用し、先に図2において説明した浸漬型膜分離装置5と同様の構成とすることで、同符号を付与してその説明を省略する。   Various devices can be applied to the submerged membrane separator 25, and there are flat membrane organic membranes, tube-like organic membranes, ceramic membranes, etc. as filtration membranes. Here, the filtration membrane has a small pore diameter. Are used in the same configuration as the submerged membrane separation device 5 described above with reference to FIG.

生物処理槽(曝気槽)24で微生物はBODを分解するとともに、代謝産物(未分解有機物)を体外に放出する。この糖蛋白を主体とする生物由来ポリマーは、特に対象汚水の水温が低い場合に、微生物の活性が低下して流入汚水中の有機物が完全に分解されないで残る未分解有機物とともに、微生物が異常に放出することで増加する。   In the biological treatment tank (aeration tank) 24, the microorganisms decompose BOD and release metabolites (undecomposed organic substances) to the outside of the body. This bioprotein-based polymer, mainly composed of glycoproteins, has an unusually low microbial activity, especially when the temperature of the target sewage is low, along with the undegraded organic matter that remains because the microbial activity is reduced and the organic matter in the influent sewage is not completely decomposed. Increased by releasing.

浸漬型膜分離装置25は、生物処理槽(曝気槽)24に活性汚泥および生物由来ポリマーを残留させて膜ろ液26を処理水として槽外へ取り出すので、生物処理槽(曝気槽)24の生物由来ポリマーの濃度が増加し過ぎると浸漬型膜分離装置25のろ過膜に付着する生物由来ポリマー量が過剰となってろ過膜の膜抵抗が異常に大きくなり、固液分離操作を阻害する。   The submerged membrane separation device 25 leaves the activated sludge and the biological polymer in the biological treatment tank (aeration tank) 24 and removes the membrane filtrate 26 as treated water from the tank, so that the biological treatment tank (aeration tank) 24 If the concentration of the biological polymer is excessively increased, the amount of the biological polymer adhering to the filtration membrane of the submerged membrane separation device 25 becomes excessive, and the membrane resistance of the filtration membrane becomes abnormally large, thereby inhibiting the solid-liquid separation operation.

このため、適時に生物処理槽(曝気槽)24に浸漬設置した第2分離手段をなす膜ろ過装置29を吸引ポンプ30の吸引圧力を駆動して活性汚泥混合液を固液分離し、活性汚泥の透過を阻止し、生物由来ポリマーを含むCODを通過させて分離除去し、生物処理槽(曝気槽)24の活性汚泥量を高濃度に維持しつつ、活性汚泥混合液中の生物由来ポリマー量を低濃度に維持する。   For this reason, the activated sludge mixed liquid is solid-liquid separated by driving the suction pressure of the suction pump 30 through the membrane filtration device 29 constituting the second separation means immersed in the biological treatment tank (aeration tank) 24 in a timely manner. The amount of biological polymer in the activated sludge mixture is maintained while maintaining the activated sludge amount in the biological treatment tank (aeration tank) 24 at a high concentration. Is maintained at a low concentration.

膜ろ過装置29を透過した膜ろ液31は、通常においては浸漬型膜分離装置25の膜ろ液26で希釈して放流するが、希釈してもCOD規制値を超える時は、凝集処理(凝集沈殿)32してCODを規制値内に低減して放流する。   The membrane filtrate 31 that has permeated through the membrane filtration device 29 is normally diluted with the membrane filtrate 26 of the submerged membrane separation device 25 and discharged. However, when the COD regulation value is exceeded even after dilution, a coagulation treatment ( Agglomeration and sedimentation) 32, COD is reduced within the regulation value and discharged.

膜ろ過装置29はろ過膜として浸漬型膜分離装置25の精密ろ過膜(細孔径0.4μm)より細孔比において10倍以上の大孔径の細孔を形成した不織布を使用している。不織布は長時間の使用によって膜面にケーキ層が形成され、ケーキろ過となる状態においても実質数μmの孔径となるように、細孔の孔径を選定する。   The membrane filtration device 29 uses a non-woven fabric in which pores having a large pore size 10 times or more in terms of pore ratio than the microfiltration membrane (pore size 0.4 μm) of the submerged membrane separation device 25 are used as a filtration membrane. The pore diameter of the non-woven fabric is selected so that a cake layer is formed on the membrane surface when used for a long time and the pore diameter is substantially several μm even in the state of cake filtration.

第2分離手段としては生物処理槽(曝気槽)24の外部に設置する遠心分離機を採用することもできる。この場合には活性汚泥混合液を遠心分離処理して生物由来ポリマーを含む液相分を分離除去し、固形分を生物処理槽へ戻す。   As the second separation means, a centrifuge installed outside the biological treatment tank (aeration tank) 24 can also be adopted. In this case, the activated sludge mixed liquid is centrifuged to separate and remove the liquid phase containing the biological polymer, and the solid content is returned to the biological treatment tank.

この操作により、生物由来ポリマー量が過剰となることに起因する膜抵抗の増加を防止し、適正な量の生物由来ポリマーにより微生物のフロック形成を良好となして汚泥のろ過性を向上させるとともに、膜表面に適正なポリマー層を形成して膜自体のろ過性能(分画性能)を向上させるダイナミック膜機能を与えることができる。   This operation prevents an increase in membrane resistance due to an excessive amount of biological polymer, improves the floc formation of microorganisms with an appropriate amount of biological polymer and improves the sludge filterability, An appropriate polymer layer can be formed on the membrane surface to provide a dynamic membrane function that improves the filtration performance (fractionation performance) of the membrane itself.

第2分離手段の膜ろ過装置29によって活性汚泥混合液から生物由来ポリマーを含むCODを分離するタイミングは以下の測定によって検知する。
本発明においては生物処理槽(曝気槽)24の活性汚泥混合液中に含まれる生物由来ポリマー量を直接に計測することは困難であることから生物由来ポリマー量を推し量る指標としてCODを採用している。この活性汚泥混合液中のCODは生物処理槽(曝気槽)24において微生物の代謝産物(未分解有機物)として生成する生物由来ポリマーのみならず、系外から生物処理槽へ流入する色度等のCODも含むので、活性汚泥混合液中のCODを活性汚泥混合液中に含まれる生物由来ポリマー量の指標とすることはできない。
The timing at which the COD containing the biological polymer is separated from the activated sludge mixed solution by the membrane filtration device 29 of the second separation means is detected by the following measurement.
In the present invention, since it is difficult to directly measure the amount of biological polymer contained in the activated sludge mixed liquid of the biological treatment tank (aeration tank) 24, COD is adopted as an index for estimating the amount of biological polymer. Yes. The COD in the activated sludge mixed liquid is not only a biological polymer produced as a microbial metabolite (undecomposed organic matter) in the biological treatment tank (aeration tank) 24, but also the chromaticity flowing into the biological treatment tank from outside the system. Since COD is also included, COD in the activated sludge mixed solution cannot be used as an indicator of the amount of biological polymer contained in the activated sludge mixed solution.

このため、浸漬型膜分離装置25の精密ろ過膜(細孔径0.4μm)を透過した膜ろ液26に含まれるCODを測定し、浸漬型膜分離装置25の精密ろ過膜の細孔(孔径0.4μm)より大きい所定孔径(孔径1〜3μm)程度のろ紙をろ過手段として生物処理槽(曝気槽)24の活性汚泥混合液をろ過するとともに、ろ過したろ紙ろ液中のCODを測定し、ろ紙ろ液のCODから膜ろ液のCODを減算したCOD差値が微生物の代謝産物(未分解有機物)由来の糖蛋白に起因するポリマー量を間接的に示すものと推量し、COD差値が所定値(5mg/L以上が有効値)以上であるときに、第2分離手段の膜ろ過装置29によって活性汚泥混合液から生物由来ポリマーを含むCODを分離する。   Therefore, the COD contained in the membrane filtrate 26 that has passed through the microfiltration membrane (pore diameter 0.4 μm) of the submerged membrane separator 25 is measured, and the pores (pore diameter) of the microfiltration membrane of the submerged membrane separator 25 are measured. Filter the activated sludge mixed liquid in the biological treatment tank (aeration tank) 24 using filter paper having a predetermined pore size larger than 0.4 μm) (pore size 1 to 3 μm) as a filtering means, and measure the COD in the filtered filter paper filtrate. The COD difference value obtained by subtracting the COD of the membrane filtrate from the COD of the filter paper filtrate is assumed to indirectly indicate the amount of polymer derived from the glycoprotein derived from the microbial metabolite (undegraded organic matter). Is equal to or greater than a predetermined value (5 mg / L or more is an effective value), the membrane filtration device 29 of the second separation means separates the COD containing the biological polymer from the activated sludge mixed solution.

これは浸漬型膜分離装置25の精密ろ過膜を生物由来ポリマーの大部分が透過せず、精密ろ過膜より大きな大孔径の細孔を有するろ紙では、活性汚泥(微生物)に相当する固形物の透過を阻止し、生物由来ポリマーを含む溶解性のポリマーを透過させることに鑑みたものである。   This is because most of the biological polymer does not permeate through the microfiltration membrane of the submerged membrane separation device 25, and the filter paper having pores having a larger pore size than the microfiltration membrane has a solid substance corresponding to activated sludge (microorganisms). This is in view of preventing permeation and allowing soluble polymers including biological polymers to permeate.

本実施の形態では、生物由来ポリマー量を推し量る指標としてCODを採用したが、生物由来ポリマー量を推し量る指標としてUV260(紫外線吸収)を採用することも可能である。UV260(紫外線吸収)の測定方法は公知の技術で行うので説明を省略する。この場合には、生物由来ポリマー量とUV260(紫外線吸収)の相関を予め実験によって求め、運転時に実測定したUV260(紫外線吸収)の値から生物由来ポリマー量を推し量る。 In the present embodiment, COD is adopted as an index for estimating the amount of biological polymer, but UV 260 (ultraviolet absorption) can also be adopted as an index for estimating the amount of biological polymer. Since the measurement method of UV 260 (ultraviolet absorption) is performed by a known technique, the description thereof is omitted. In this case, the correlation between the amount of biological polymer and UV 260 (ultraviolet absorption) is obtained in advance by experiments, and the amount of biological polymer is estimated from the value of UV 260 (ultraviolet absorption) actually measured during operation.

上記した構成において、生活排水を対象にした場合で8〜12℃の低水温時には2〜3週に1回の頻度で膜の洗浄が必要であったが、不織布によるろ過を1日に2時間実施することで膜の洗浄頻度が2〜3ヶ月に1度となった。不織布によるろ過を1週間に1日行った場合でもほぼ同様の結果となった。このときの浸漬型膜分離装置25の膜ろ液26のCODは6〜9mg/Lであり、不織布でろ過した膜ろ液31のCODは15〜40mg/Lであった。   In the above-described configuration, when the waste water is targeted at a low water temperature of 8 to 12 ° C., it was necessary to wash the membrane once every 2 to 3 weeks. As a result, the cleaning frequency of the film became once every two to three months. Even when filtration with a non-woven fabric was performed for one day per week, almost the same result was obtained. The COD of the membrane filtrate 26 of the submerged membrane separator 25 at this time was 6 to 9 mg / L, and the COD of the membrane filtrate 31 filtered with a nonwoven fabric was 15 to 40 mg / L.

本発明の実施の形態における汚水の処理方法を示すブロック図である。It is a block diagram which shows the processing method of the sewage in embodiment of this invention. 従来の汚水の処理方法を示すブロック図である。It is a block diagram which shows the processing method of the conventional sewage.

符号の説明Explanation of symbols

6 ケース
7 平板状の膜カートリッジ
8 散気装置
9 ブロア
10 吸引ポンプ
21 有機性汚水
22 前処理設備
23 流量調整槽
24 生物処理槽(曝気槽)
25 浸漬型膜分離装置
26 膜ろ液
27 滅菌槽
28 処理水
29 膜ろ過装置
30 吸引ポンプ
31 膜ろ液
32 凝集処理(凝集沈殿)
6 Case 7 Flat membrane cartridge 8 Air diffuser 9 Blower 10 Suction pump 21 Organic sewage 22 Pretreatment equipment 23 Flow control tank 24 Biological treatment tank (aeration tank)
25 Submerged membrane separator 26 Membrane filtrate 27 Sterilization tank 28 Treated water 29 Membrane filtration device 30 Suction pump 31 Membrane filtrate 32 Aggregation treatment (aggregation precipitation)

Claims (3)

生物処理槽において有機性汚水を活性汚泥処理し、生物処理槽内に浸漬設置した第1分離手段をなす浸漬型膜分離装置で活性汚泥混合液を固液分離し、活性汚泥処理により生物処理槽内に蓄積される生物由来ポリマーを含むCODを第2分離手段によって適時に活性汚泥混合液から固液分離して、生物処理槽内の活性汚泥量を高濃度に維持しつつ、活性汚泥混合液中の生物由来ポリマー量を低濃度に維持することを特徴とする汚水の処理方法。 Organic sludge is treated with activated sludge in a biological treatment tank, and the activated sludge mixed solution is solid-liquid separated with an immersion type membrane separation device that forms a first separation means immersed in the biological treatment tank. The COD containing the biological polymer accumulated in the solid is separated from the activated sludge mixed liquid in a timely manner by the second separation means, and the activated sludge mixed liquid is maintained while maintaining a high concentration of activated sludge in the biological treatment tank. A method for treating sewage, characterized in that the amount of the biological polymer therein is maintained at a low concentration. 請求項1記載の汚水の処理方法において、浸漬型膜分離装置を透過した膜ろ液中のCODを測定し、浸漬型膜分離装置のろ過膜の細孔より大きい所定口径の細孔を有するろ過手段で生物処理槽内の活性汚泥混合液をろ過したろ過手段ろ液中のCODを測定し、ろ過手段ろ液中のCODから膜ろ液中のCODを減算したCOD差値が所定値以上であるときに、第2分離手段によって活性汚泥混合液から生物由来ポリマーを含むCODを分離することを特徴とする汚水の処理方法。 2. The method for treating sewage according to claim 1, wherein the COD in the membrane filtrate permeated through the submerged membrane separator is measured, and the filtration has a pore having a predetermined diameter larger than the pores of the filter membrane of the submerged membrane separator. The COD in the filtration means filtrate obtained by filtering the activated sludge mixed liquid in the biological treatment tank is measured, and the COD difference value obtained by subtracting the COD in the membrane filtrate from the COD in the filtration means filtrate is a predetermined value or more. In some cases, the second separation means separates COD containing the biological polymer from the activated sludge mixed solution, and a method for treating wastewater. 有機性汚水を活性汚泥処理する生物処理槽内に、活性汚泥混合液を固液分離して膜ろ過液を処理水として取り出す第1分離手段と、活性汚泥混合液を固液分離して生物処理槽内に蓄積される生物由来ポリマーを含む膜ろ過液を取り出す第2分離手段とを浸漬設置したことを特徴とする汚水の処理装置。 In the biological treatment tank for treating activated sludge with organic sludge, the first separation means for separating the activated sludge mixed liquid into solid-liquid separation and taking out the membrane filtrate as treated water, and the biological treatment with solid-liquid separation of the activated sludge mixed liquid. A wastewater treatment apparatus, wherein a second separation means for taking out a membrane filtrate containing a biological polymer accumulated in a tank is immersed and installed.
JP2003279496A 2003-07-25 2003-07-25 Wastewater treatment method Expired - Lifetime JP4046661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003279496A JP4046661B2 (en) 2003-07-25 2003-07-25 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003279496A JP4046661B2 (en) 2003-07-25 2003-07-25 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2005040747A true JP2005040747A (en) 2005-02-17
JP4046661B2 JP4046661B2 (en) 2008-02-13

Family

ID=34265581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003279496A Expired - Lifetime JP4046661B2 (en) 2003-07-25 2003-07-25 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4046661B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075754A (en) * 2005-09-15 2007-03-29 Mitsubishi Rayon Co Ltd Method for treating water to be treated
WO2008035710A1 (en) * 2006-09-21 2008-03-27 Asahi Kasei Chemicals Corporation Method of wastewater disposal
WO2011043232A1 (en) 2009-10-05 2011-04-14 旭化成ケミカルズ株式会社 Additive used in a membrane-separation activated sludge process
JP2012200631A (en) * 2011-03-24 2012-10-22 Kubota Corp Method for evaluating fouling of separation membrane and method for operating membrane separation equipment
JP2012213364A (en) * 2011-04-01 2012-11-08 Asahi Kasei Chemicals Corp Biofilm removing agent
JP2013176710A (en) * 2012-02-28 2013-09-09 Kubota Corp Membrane separation activated sludge treatment method and system
JP5399065B2 (en) * 2006-02-23 2014-01-29 旭化成ケミカルズ株式会社 Wastewater treatment method
JP2014140787A (en) * 2013-01-22 2014-08-07 Toshiba Corp Water treatment system and water treatment method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975938A (en) * 1995-09-08 1997-03-25 Kurita Water Ind Ltd Membrane separation device
JPH105783A (en) * 1996-06-27 1998-01-13 Kubota Corp Filtering method for sewage treatment
JPH1015552A (en) * 1996-07-02 1998-01-20 Inax Corp Membrane separation sewage treatment apparatus
JPH1034181A (en) * 1996-07-23 1998-02-10 Ebara Corp Method for treating organic drainage
JP2001087790A (en) * 1999-09-27 2001-04-03 Hitachi Plant Eng & Constr Co Ltd Apparatus for biological treatment by membrane separation
JP2002001333A (en) * 2000-06-22 2002-01-08 Mitsubishi Rayon Co Ltd Method for treating organic waste water

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975938A (en) * 1995-09-08 1997-03-25 Kurita Water Ind Ltd Membrane separation device
JPH105783A (en) * 1996-06-27 1998-01-13 Kubota Corp Filtering method for sewage treatment
JPH1015552A (en) * 1996-07-02 1998-01-20 Inax Corp Membrane separation sewage treatment apparatus
JPH1034181A (en) * 1996-07-23 1998-02-10 Ebara Corp Method for treating organic drainage
JP2001087790A (en) * 1999-09-27 2001-04-03 Hitachi Plant Eng & Constr Co Ltd Apparatus for biological treatment by membrane separation
JP2002001333A (en) * 2000-06-22 2002-01-08 Mitsubishi Rayon Co Ltd Method for treating organic waste water

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075754A (en) * 2005-09-15 2007-03-29 Mitsubishi Rayon Co Ltd Method for treating water to be treated
JP5399065B2 (en) * 2006-02-23 2014-01-29 旭化成ケミカルズ株式会社 Wastewater treatment method
JP5208750B2 (en) * 2006-09-21 2013-06-12 旭化成ケミカルズ株式会社 Wastewater treatment method
US8097161B2 (en) 2006-09-21 2012-01-17 Asahi Kasei Chemicals Corporation Wastewater treatment method
CN101516790B (en) * 2006-09-21 2012-07-25 旭化成化学株式会社 Method of wastewater disposal
AU2007298198B2 (en) * 2006-09-21 2010-06-10 Asahi Kasei Chemicals Corporation Method of wastewater disposal
WO2008035710A1 (en) * 2006-09-21 2008-03-27 Asahi Kasei Chemicals Corporation Method of wastewater disposal
WO2011043232A1 (en) 2009-10-05 2011-04-14 旭化成ケミカルズ株式会社 Additive used in a membrane-separation activated sludge process
CN102548914A (en) * 2009-10-05 2012-07-04 旭化成化学株式会社 Additive used in a membrane-separation activated sludge process
JP2012200631A (en) * 2011-03-24 2012-10-22 Kubota Corp Method for evaluating fouling of separation membrane and method for operating membrane separation equipment
JP2012213364A (en) * 2011-04-01 2012-11-08 Asahi Kasei Chemicals Corp Biofilm removing agent
JP2013176710A (en) * 2012-02-28 2013-09-09 Kubota Corp Membrane separation activated sludge treatment method and system
JP2014140787A (en) * 2013-01-22 2014-08-07 Toshiba Corp Water treatment system and water treatment method

Also Published As

Publication number Publication date
JP4046661B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
Chang et al. Wastewater treatment using membrane filtration—effect of biosolids concentration on cake resistance
Wu et al. Effects of relaxation and backwashing conditions on fouling in membrane bioreactor
JP4874231B2 (en) Water treatment system
Li et al. Comparison of the filtration characteristics between biological powdered activated carbon sludge and activated sludge in submerged membrane bioreactors
US9868079B2 (en) Method and system for filtration and filtration cake layer formation
JP5822264B2 (en) Operation method of membrane separation activated sludge treatment equipment
JPH07155758A (en) Waste water treating device
KR101030480B1 (en) Method of treating wastewater
JP4046661B2 (en) Wastewater treatment method
JP2007000727A (en) Method for operating membrane separation activated sludge treatment apparatus
JP2010012434A (en) Structure of mbr+ro system and operation method for the system
JP3473309B2 (en) Operation control device for membrane separation device
JP6613323B2 (en) Water treatment apparatus and water treatment method
JP5103747B2 (en) Water treatment apparatus and water treatment method
JP2003080246A (en) Apparatus and method for treating water
JP2006055804A (en) Coagulation device, coagulation method and controller for charging chemical
JP4925403B2 (en) Waste water treatment apparatus and waste water treatment method
JP2014213265A (en) Method and device for biologically treating organic matter-containing water
JP2005074345A (en) Sewage treatment method
JP2013176710A (en) Membrane separation activated sludge treatment method and system
JP2010046561A (en) Sludge dehydrating and concentrating method and apparatus thereof
JP3697938B2 (en) Wastewater treatment equipment
JP2001070758A (en) Operation method of membrane filtration apparatus
JP4142401B2 (en) Filtration-type water treatment method and filtration-type water treatment apparatus
JP2004305926A (en) Immersion membrane separation type activated sludge treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4046661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

EXPY Cancellation because of completion of term