JP2005040646A - Filtering member for collecting dust - Google Patents

Filtering member for collecting dust Download PDF

Info

Publication number
JP2005040646A
JP2005040646A JP2003199707A JP2003199707A JP2005040646A JP 2005040646 A JP2005040646 A JP 2005040646A JP 2003199707 A JP2003199707 A JP 2003199707A JP 2003199707 A JP2003199707 A JP 2003199707A JP 2005040646 A JP2005040646 A JP 2005040646A
Authority
JP
Japan
Prior art keywords
filter member
fiber
ultrafine particles
particles
fiber filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003199707A
Other languages
Japanese (ja)
Inventor
Kazuo Osumi
和生 大角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2003199707A priority Critical patent/JP2005040646A/en
Publication of JP2005040646A publication Critical patent/JP2005040646A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)
  • Separating Particles In Gases By Inertia (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filtering member for collecting dust, which can collect particulate matter (PM) of a submicron level while keeping the merit of a fiber filter and can exhibit high efficiency when the PM having a wide particle size distribution is collected. <P>SOLUTION: This filtering member 10A is composed of a felted fiber filtering member 12. A superfine particle 13 which is made of a ceramics-based material and is used for adsorbing/collecting the particulate matter in a gas is deposited on the surface of a fiber 11 of the member 12. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼルエンジンから排気される排気ガス等を浄化する集塵用フィルタ部材に関する。
【0002】
【従来の技術】
ディーゼルエンジンから排出される粒子状物質(PM:パティキュレート・マター:以下PMとする)の排出量は、NOx,COそしてHC等と共に年々規制が強化されてきており、規制の強化に伴いエンジンの改良のみでは、対応できなくなってきている。そこで、エンジンから排出されるPMをディーゼルパティキュレートフィルタ(DPF:Diesel Particulate Filter :以下DPFとする)と呼ばれるフィルタで捕集して、外部へ排出されるPMの量を低減する技術が開発され、直接、このPMを捕集するフィルタには、多孔質フィルタや繊維フィルタ等が使用されてきている。
【0003】
しかし、多孔質フィルタは、セラミックスや金属の多孔材で形成され、主に、フィルタの表面における慣性さえぎり効果(ケーキろ過)でPMの捕集を行うが、慣性さえぎり効果が主となるため、球直径相当で1μm以下の微細なPMの捕集は困難であり、粒径の範囲が広いPMの微細な粒子が捕集できないという問題がある。
【0004】
また、多孔質フィルタにおいて多孔材の表面に触媒を担持したフィルタは、表面の比表面積拡大の効果と触媒作用による酸化反応の促進効果でPMの吸着及び低温における燃焼除去を行うが、PMの総量によってはフィルタ表面がPMで覆われてしまい捕集効率が低下するという問題がある。
【0005】
そして、繊維フィルタは、セラミックス等の無機繊維をランダムに積層したフェルトを用いて形成され、フィルタ表面(表面ろ過)に加えてフィルタ内部の慣性さえぎり効果(深層ろ過)によってもPMの捕集を行うので、多孔質フィルタに比べて集塵容量が大きくなるが、PMの微細な粒子の捕集効率は低いという問題がある。
【0006】
この繊維フィルタにおいては、PMの捕集効率を向上させるために、複数のフェルトで形成し、排気ガスの通過に関して上流側となるフェルトにおいては比較的太い無機繊維を不規則かつ粗に積層し、下流側となるフェルトにおいては比較的細い無機繊維を不規則かつ密に積層して、粗のフェルトの上流側に耐熱金網を、密のフェルトの下流側に織布をそれぞれ重ねて積層体を形成し、この積層体を周方向に蛇腹状に折り曲げて筒状のフィルタを形成したディーゼル機関の排気微粒子フィルタが提案されている(例えば、特許文献1参照。)。
【0007】
この繊維フィルタの捕集形態は、フィルタ表面でPMを捕集し、この捕集されて堆積したPMにさらにPMが捕集される表面ろ過(ケーキろ過)と、フィルタ内部でPMが捕集される深層ろ過との2つの集塵形式を有しており、また、フィルタの空隙サイズの分布が広くなるように構成されているので、PMの粒径分布に関して広い範囲で捕集できる。
【0008】
しかし、環境改善の見地や排ガス規制対策を考えた場合、さらなるPMの捕集効率向上が求められており、その中でも粒径10μm以下の浮遊粒子状物質(SPM)や粒径が2.5μm以下のPM2.5等のサブミクロン級の微細な粒子を捕集することが重要になってきている。
【0009】
そのため、セラミックス又は耐熱金属からなる繊維積層構造等によって構成されたフィルタにおいて、フィルタを構成する固体部分のうち、排気ガス等の流体が接する表面部分にセラミックス又は耐熱金属からなる被膜をCVDや有機ケイ素ポリマーの熱分解等により形成して、耐熱耐食性を高めると共に、この被膜にセラミックス又は耐熱金属微粒子を内包して凹凸部を形成してPMの捕集効率をアップさせるフィルタ材が提案されている(例えば、特許文献2参照。)。
【0010】
しかしながら、このフィルタ材においては、セラミックス又は耐熱金属微粒子をCVDや有機ケイ素ポリマーの熱分解により生成した被膜に内包する構成になっているため、CVDや熱分解等の加工行程が必要になり、製造コストが高いという問題がある。
【0011】
その上、セラミックス微粒子は被膜の数ミクロンの瘤状粒子からなる凹凸部を形成するために使用され、被膜で包まれてしまうため、微小な凹凸の形成が困難であるという問題と、セラミックス微粒子のPMを吸着する性質を利用できないという問題がある。
【0012】
【特許文献1】
特開2000−130150号公報
【0013】
【特許文献2】
特開2002−38921号公報
【0014】
【発明が解決しようとする課題】
本発明は、上述の問題を解決するべくなされたものであり、その目的は、繊維フィルタの長所を保持したまま、PMのサブミクロン級の微細な粒子も効率よく捕集でき、PMの粒径分布の広い範囲において高い捕集効率を発揮できる集塵用フィルタ部材を提供することにある。
【0015】
【課題を解決するための手段】
以上のような目的を達成するための本発明の集塵用フィルタ部材は、フェルト状の繊維フィルタ部材を有して構成される集塵用フィルタ部材において、前記繊維フィルタ部材の繊維の表面にガス中の微粒子状の物質を吸着捕集する超微粒子を担持して構成される。
【0016】
ディーゼルエンジンの排気ガス中のPMや大気中の浮遊物質等の微粒子状の物質を吸着捕集する超微粒子は、粒径が0.005μmφ〜5μmφの非常に小さい粒子であり、セラミックス系材料等で形成でき、表面活性に優れた高比表面積を有している。この超微粒子の粒径の大きいものは、PM中の比較的大きな粒子(例えば、0.5μmφ〜1μmφ:以下PM粒子という)を吸着し易く、粒径の小さいものは、PM中の比較的小さな粒子(例えば、0.1μmφ以下:以下PM微細粒子という)を吸着し易いという性質を持っている。なお、この超微粒子の粒径が0.005μmφより小さいと製造が困難となり、5μmφより大きいと比表面積が小さくなり、捕集効率が低下する。
【0017】
また、この比較的大きな超微粒子を繊維上に担持させることにより、繊維表面において凹凸が形成され、この凹凸による慣性さえぎり効果が増大するので、慣性さえぎり機構で捕集され易い粒径0.5μmより大きいPM粒子の捕集効率を向上することができる。また、高比表面積の比較的小さな超微粒子を繊維上に担持させることにより、繊維の表面活性を大きくすることができるので、ブラウン拡散効果による吸着捕集機構が支配的となる粒径1μm以下のPM微細粒子の捕集効率を向上することができる。
【0018】
そして、上記の集塵用フィルタ部材において、超微粒子がセラミックス系材料でー形成され、超微粒子の平均粒径が繊維の直径の1/5〜1/3000である場合、及び、超微粒子を担持した繊維フィルタ部材の比表面積が1m/g〜200m/gである場合に、特に、PMの捕集効率を大きくすることができる。なお、このフィルタの比表面積とは、繊維フィルタ部材の繊維に超微粒子を担持させた状態でJIS規格のR1626に準拠して計測した比表面積のことをいう。
【0019】
また、このセラミックス系超微粒子は、酸化アルミニウム(アルミナ)、酸化ケイ素、酸化チタニウム、ゼオライト等のセラミックス材料で形成される粒径が0.005μmφ〜5μmφの超微粒子である。また、繊維は炭化ケイ素(SiC)、窒化ケイ素(Si)、アルミナ(Al)、ムライト等で形成できる。
【0020】
上記の集塵用フィルタ部材において、超微粒子を担持した繊維フィルタ部材の上流側に慣性さえぎり効果により捕集する捕集部材を設けることにより、比較的大きなPM粒子を予め上流側で慣性さえぎり効果により捕集できるので、下流側のセラミックス系超微粒子を担持した層では、慣性さえぎり効果では捕集しにくい比較的小さなPM微細粒子を効率良く捕集できるようになる。なお、この慣性さえぎり効果により捕集する捕集部材としては、超微粒子を担持しない繊維フィルタ部材や多孔質フィルタや多孔体で構成されたハニカム構造体等がある。
【0021】
あるいは、上記の集塵用フィルタ部材において、上流側に設ける繊維フィルタ部材を粗に形成し、下流側に設ける繊維フィルタ部材を密に形成すると共に、上流側の前記繊維フィルタ部材の繊維径を下流側の前記繊維フィルタ部材の繊維径よりも太くし、かつ、上流側の前記繊維フィルタ部材の繊維に担持される超微粒子の平均粒径を、下流側の前記繊維フィルタ部材の繊維に担持される超微粒子の平均粒径よりも大きくして構成する。
【0022】
この構成によれば、上流側の繊維フィルタ部材では、比較的大きな超微粒子を担持した繊維層で主に慣性さえぎり機構により比較的大きなPM粒子を捕集でき、下流側繊維フィルタ部材では、比較的小さな超微粒子を担持した繊維層で、吸着機構(ブラウン拡散効果)により比較的小さなPM微細粒子を捕集できる。従って、PMを広い粒径の範囲で効率よく捕集できる。
【0023】
つまり、上流側では、比較的大きなPM粒子を捕捉するため、下流側に到達するPMはPM微細粒子が中心になるので、この部分を構成する繊維表面に表面活性の優れる高比表面積を有するセラミックス系超微粒子を担持することでPM微細粒子の捕集効率をより向上できる。
【0024】
また、上記の集塵用フィルタ部材において、繊維又は超微粒子の少なくとも一方に触媒粒子を担持することにより、担持した酸化触媒やPM酸化触媒やNOx還元触媒等の触媒作用によって、PMの低温燃焼を促進でき、また、NOx等の排気ガス中の有害成分も浄化できるようになる。
【0025】
そして、本発明の排気ガス浄化装置は、上記の集塵用フィルタ部材を有して構成され、PMのサブミクロン級の微細な粒子も効率よく捕集でき、PMの粒径分布の広い範囲において高い捕集効率を発揮できるようになる。
【0026】
なお、ディーゼルエンジンの排気ガス等の高温ガスを浄化対象とする場合には、耐熱性に優れた無機繊維や金属繊維をフェルト状に積層した繊維フィルタ部材を用いるが、低温のガスを浄化対象とする場合には、自然素材や合成樹脂等の有機繊維をフェルト状に積層した繊維フィルタ部材を用いることもできる。
【0027】
【発明の実施の形態】
以下、本発明に係る実施の形態の集塵用フィルタ部材と排気ガス浄化装置について、ディーゼルエンジンの排気ガスを浄化する浄化装置用の集塵用フィルタ部材と排気ガス浄化装置を例にして、図面を参照しながら説明する。
【0028】
本発明の第1の実施の形態の集塵用フィルタ部材10Aは、図1及び図2に示すように、無機繊維11からなるフェルト状の繊維フィルタ部材12において、無機繊維11の表面にPMを吸着捕集するセラミックス系材料で形成した超微粒子13を担持させて形成される。
【0029】
この繊維フィルタ部材12は、炭化ケイ素(SiC)、窒化ケイ素(Si)、アルミナ(Al)、ムライト等の繊維径が5〜20μmφ程度の無機繊維11をランダムに積層してフェルト状にして形成することができる。
【0030】
また、この超微粒子13は、酸化アルミニウム(アルミナ)、酸化ケイ素、酸化チタニウム、ゼオライト等のセラミックス系で形成されるが、同一材料だけの超微粒子13を使用してもよく、幾つかの材料で形成された超微粒子13を混合して使用してもよい。
【0031】
そして、粒径が比較的大きい方の超微粒子13Aとしては、例えば、平均粒径が0.2μmφのα−アルミナの超微粒子があり、粒径が比較的小さい方の超微粒子13Bとしては、例えば、平均粒径が0.03μmφのγ−アルミナの超微粒子がある。また、無機繊維11の引張強度の面から、この超微粒子13の平均粒径は無機繊維11の直径の1/5〜1/3000であることが好ましい。
【0032】
この超微粒子13を繊維フィルタ部材12を形成する無機繊維11に担持させる。この超微粒子13の担持は、繊維フィルタ部材12を、エタノールとテトラエトキシシラン(TES)と蒸留水を重量比で0.5:6:3で混合した溶液中にセラミックス系超微粒子を1mass%(1wt%)分散した担持溶液に浸漬した後、余分な溶液を除去してから大気中550℃で熱処理することにより行う。
【0033】
なお、この超微粒子13の担持によるPMの捕集効果を上げるためには、超微粒子13を担持させた繊維フィルタ部材12の比表面積が1〜200m/gであることが好ましい。
【0034】
そして、この繊維フィルタ部材12を、一枚、又は複数枚積層して、両側を耐熱金網14,14で挟持して第1の実施の形態の集塵用フィルタ部材10Aを形成する。この集塵用フィルタ部材10Aを、図3及び図4に示すように、蛇腹状に折り曲げ加工した後に収納ケース20に入れて、第1の実施の形態の排気ガス浄化装置1Aを形成する。
【0035】
この構成の集塵用フィルタ部材10A及びこれを用いた排気ガス浄化装置1Aによれば、比較的大きな超微粒子を無機繊維上に担持させた場合には、繊維表面において凹凸が形成され、この凹凸による慣性さえぎり効果が増大するので、慣性さえぎり機構で捕集され易い粒径1μm以上のPM粒子の捕集効率が向上し、高比表面積の比較的小さな超微粒子を無機繊維上に担持させた場合には、繊維の表面活性を大きくすることができるので、ブラウン拡散効果による吸着捕集機構が支配的となる粒径1μm以下のPM微細粒子の捕集効率が向上する。従って、PMのサブミクロン級の微細な粒子も効率よく捕集でき、PMの粒径分布の広い範囲において高い捕集効率を発揮できる。
【0036】
次に、第2の実施の形態の集塵用フィルタ部材10Bについて説明する。この集塵用フィルタ部材10Bは、図5に示すように、第1の実施の形態の集塵用フィルタ部材10Aの上流側に慣性さえぎり効果により捕集する捕集部材15を設けて構成する。この慣性さえぎり効果の捕集部材15としては、例えば、繊維径が14μmφの炭化ケイ素(SiC)繊維11Aをフェルト状に積層して形成した粗の繊維フィルタ部材12Aを使用することができる。
【0037】
そして、この粗の繊維フィルタ部材12Aを、第1の実施の形態の繊維フィルタ部材12の上流側に積層して両側を金網14,14で挟持して、第2の実施の形態の集塵用フィルタ部材10Bを形成する。この集塵用フィルタ部材10Bを、図3及び図4に示すように、蛇腹状に折り曲げ加工した後に収納ケース20に入れて、第2の実施の形態の排気ガス浄化装置1Bを形成する。
【0038】
この構成の集塵用フィルタ部材10B及びこれを用いた排気ガス浄化装置1Bによれば、超微粒子13を担持した繊維フィルタ部材12の上流側に慣性さえぎり効果により捕集する捕集部材12A(15)を設けることにより、比較的大きなPM粒子を予め上流側で慣性さえぎり効果により捕集できるので、下流側の繊維フィルタ部材12では、慣性さえぎり効果では捕集しにくい比較的小さなPM微細粒子を効率良く捕集できる。
【0039】
次に第3の実施の形態の集塵用フィルタ部材10Cについて説明する。この集塵用フィルタ部材10Cは、図6に示すように、上流側に比較的大きな超微粒子13Aを担持した粗の繊維フィルタ部材12Aを、下流側に比較的小さな超微粒子13Bを担持した密の繊維フィルタ部材12Bを設けると共に、この上流側の粗の繊維フィルタ部材12Aの繊維径を、下流側の密の繊維フィルタ部材12Bの繊維径よりも太くして形成する。
【0040】
つまり、上流側に設ける繊維フィルタ部材12Aを粗に形成し、下流側に設ける繊維フィルタ部材12Bを密に形成すると共に、上流側の繊維フィルタ部材12Aの繊維径を下流側の繊維フィルタ部材12Bの繊維径よりも太くし、かつ、上流側の繊維フィルタ部材12Aの無機繊維11Aに担持される超微粒子13Aの平均粒径を、下流側の繊維フィルタ部材12Bの無機繊維11Bに担持される超微粒子13Bの平均粒径よりも大きくする。
【0041】
この集塵用フィルタ部材1Cにおいては、上流側の第1繊維フィルタ部材12Aは、繊維径が14μmφの炭化ケイ素繊維11Aをフェルト状に積層して形成され、下流側の密の第2繊維フィルタ部材12Bは9μmφの炭化ケイ素繊維11Bをフェルト状に積層して形成される。
【0042】
そして、第1繊維フィルタ部材12Aを、エタノールとテトラエトキシシラン(TES)と蒸留水を重量比で0.5:6:3で混合した溶液中に平均粒径が0.2μmφのα−アルミナ等の比較的大きな径のセラミックス系超微粒子13Aを1mass%(1wt%)分散した担持溶液に浸漬した後、余分な溶液を除去してから大気中550℃で熱処理して、超微粒子13Aを無機繊維11Aに担持させる。
【0043】
また、第2繊維フィルタ部材12Bを、エタノールとテトラエトキシシラン(TES)と蒸留水を重量比で0.5:6:3で混合した溶液中に平均粒径が0.03μmφのγ−アルミナ等の比較的小さな径のセラミックス系超微粒子13Bを1mass%(1wt%)分散した担持溶液に浸漬した後、余分な溶液を除去してから大気中550℃で熱処理して、超微粒子13Bを無機繊維11Bに担持させる。
【0044】
この第1繊維フィルタ部材12Aに第2繊維フィルタ部材12Bを積層して両側を金網14,14で挟持して、第3の実施の形態の集塵用フィルタ部材10Cを形成する。この集塵用フィルタ部材10Cを、図3及び図4に示すように、蛇腹状に折り曲げ加工した後に収納ケース20に入れて、第3の実施の形態の排気ガス浄化装置1Cを形成する。
【0045】
この集塵用フィルタ部材10Cは、図7に模式的に示すように、第1繊維フィルタ部材12Aの表面ろ過領域R1と第1深層ろ過領域R2と、第2繊維フィルタ部材12Bの第2深層ろ過領域R3とからなる3段階のろ過領域を有している。
【0046】
この表面ろ過領域R1では、表面ろ過(ケーキろ過)により、フィルタ表面でPMを捕集し、この捕集されて堆積したPM上にさらにPMが捕集される。そして、第1深層ろ過領域R2では、慣性さえぎりが主な捕集機構となり、粒径1μmφ以上のPM粒子を捕集するが、超微粒子13Aの担持による繊維表面の凹凸形成により、この慣性さえぎり効果が増大する。また、第2深層ろ過領域R3では、ブラウン拡散が主な捕集機構となり粒径1μmφ以下のPM微細粒子を捕集するが、高比表面積の超微粒子13Bの担持により繊維11Bの表面活性が大きくなり、PM微細粒子の捕集効果が著しく向上する。
【0047】
従って、この構成の集塵用フィルタ部材10C及びこれを用いた排気ガス浄化装置1Cによれば、上流側で、比較的大きなPM粒子を捕捉し、下流側に到達するPM微細粒子を、高比表面積を有する超微粒子13Bを担持した第2繊維フィルタ部材12Bの第2深層ろ過領域R3で効率よく捕集できる。
【0048】
次に第4の実施の形態の集塵用フィルタ部材10Dについて説明する。この集塵用フィルタ部材1Dでは、第3の実施の形態において、無機繊維11A,11Bが担持する超微粒子13A,13Bに白金等の触媒粒子16を担持させる。
【0049】
この第4の実施の形態の集塵用フィルタ部材1Dは、溶液浸漬、ウォッシュコート等の方法により第3の実施の形態における超微粒子13A,13Bに白金等の触媒粒子16を担持させた超微粒子13C,13Dを用意し、第3の実施の形態における超微粒子13A,13Bの代りに、この超微粒子13C,13Dを用いて、第3の実施の形態の集塵用フィルタ部材1Cと同様な工程を経て作製される。
【0050】
これにより、集塵用フィルタ部材1Dは、図8に示すように、白金等の触媒粒子16を担持させた超微粒子13C,13Dを担持した無機繊維11C,11Dをフェルト状に積層した繊維フィルタ部材12C,12Dを有して構成されるようになる。ちなみに、触媒粒子16の粒径は1〜10nmφ程度である。
【0051】
この構成の集塵用フィルタ部材10E及びこれを用いた排気ガス浄化装置1Eによれば、酸化触媒やPM酸化触媒やNOx還元触媒等の触媒粒子16の触媒作用によって、PMの低温燃焼を促進でき、また、NOx等の排気ガス中の有害成分も浄化できるようになる。
【0052】
次に第5の実施の形態の集塵用フィルタ部材10Eについて説明する。この集塵用フィルタ部材1Eでは、第3の実施の形態に加えて、無機繊維11A,11Bと超微粒子13A,13Bに白金等の触媒粒子16を担持させる。
【0053】
この第5の実施の形態の集塵用フィルタ部材1Eは、第3の実施の形態における繊維フィルタ部材12A,12B又は集塵用フィルタ部材1Eを、触媒粒子16の溶液に浸漬した後乾燥及び熱処理する等の方法により、無機繊維11A,11Bと超微粒子13A,13Bに白金等の触媒粒子16を担持させることにより作製される。
【0054】
これにより、集塵用フィルタ部材1Eは、図9に示すように、白金等の触媒粒子16が超微粒子13C,13Dのみならず、無機繊維11C,11Dにも担持されるようになり、第4の実施の形態の集塵用フィルタ部材1Dと同様な効果を奏することができる。
【0055】
次に第6の実施の形態の集塵用フィルタ部材10Fについて説明する。この集塵用フィルタ部材1Fでは、第3の実施の形態に加えて、無機繊維11A,11Bに白金等の触媒粒子16を担持させる。
【0056】
この第6の実施の形態の集塵用フィルタ部材1Fは、第3の実施の形態における繊維フィルタ部材12A,12Bを、超微粒子13A,13Bを担持させる前に、触媒粒子16の溶液に浸漬した後乾燥及び熱処理する等の方法により、無機繊維11A,11Bに白金等の触媒粒子16を担持させる。この担持後に、第3の実施の形態と同じ工程で、超微粒子13A,13Bを担持させる。
【0057】
これにより、集塵用フィルタ部材1Fは、図10に示すように、白金等の触媒粒子16と超微粒子13A,13Bが担持された無機繊維11E,11Fを積層した繊維フィルタ部材12E,12Fを有して構成されるようになり、第4の実施の形態の集塵用フィルタ部材1Dと同様な効果を奏することができる。
【0058】
〔実施例〕
また、本発明のフィルタの効果を確認するために、以下に述べるような実施例1〜3の集塵用フィルタ部材と、比較のための比較例1,2の集塵用フィルタ部材を作製し、PM粒子の捕集試験等を行った。
【0059】
実施例1の集塵用フィルタ部材は、PM粒子の中でも1μm以下の、特に粒径が100nmφ以下の超微細な粒子に対する捕集効率の向上を図って、粗繊維フィルタ部材と密繊維フィルタ部材を重ねて構成すると共に、下流側の密繊維フィルタ部材においては繊維に平均粒径が0.03μmφのγ−アルミナを担持させて構成した集塵用フィルタ部材であり、次のようにして作製された。
【0060】
繊維径が14μmφの炭化ケイ素繊維をフェルト状に積層して形成した粗繊維フィルタ部材を、第1繊維フィルタ部材とし、繊維径9μmφの炭化ケイ素繊維をフェルト状に積層して形成した密繊維フィルタを第2繊維フィルタ部材とし、この密繊維フィルタ部材を、エタノールとテトラエトキシシラン(TES)と蒸留水を重量比で0.5:6:3で混合した溶液中に平均粒径が0.03μmφのγ−アルミナを1mass%(1wt%)分散した担持溶液に浸漬した後、余分な溶液を除去してから大気中550℃で熱処理して第2繊維フィルタ部材を作製した。
【0061】
そして、第1繊維フィルタ部材に第2繊維フィルタ部材を積層して両側を金網で挟持して実施例1の集塵用フィルタ部材Aを作製し、さらに、蛇腹状に折り曲げ加工した後に収納ケースに入れて排気ガス浄化用の実施例1の排気ガス浄化装置を形成した。
【0062】
実施例2の集塵用フィルタ部材は、PM粒子の中でも特に粒径が0.5μmφ〜1μmφ前後と、更には0.5μmφ以下、好ましくは0.1μmφ以下の微細な粒子に対する捕集効率の向上を図って、粗と密の繊維フィルタ部材を重ねて構成すると共に、上流側の繊維フィルタ部材においては繊維に平均粒径が0.2μmφのα−アルミナを担持させ、下流側の繊維フィルタ部材においては繊維に平均粒径が0.03μmφのγ−アルミナを担持させて構成したフィルタであり、次のようにして作製された。
【0063】
繊維径が14μmφの炭化ケイ素繊維をフェルト状に積層して形成した粗繊維フィルタ部材を、エタノールとテトラエトキシシラン(TES)と蒸留水を重量比で0.5:6:3で混合した溶液中に平均粒径が0.2μmφのα−アルミナを1mass%(1wt%)分散した担持溶液に浸漬した後、余分な溶液を除去してから大気中550℃で熱処理して第1繊維フィルタ部材を作製した。
【0064】
この第1繊維フィルタ部材に、実施例1の第2繊維フィルタ部材と同様にして作製した第2繊維フィルタ部材を積層して両側を金網で挟持して実施例2の集塵用フィルタ部材Bを作製し、更に、蛇腹状に折り曲げ加工した後に収納ケースに入れて排気ガス浄化用の実施例2の排気ガス浄化装置を作製した。
【0065】
実施例3の集塵用フィルタ部材は、PMの燃焼除去の促進を図って、実施例2の集塵用フィルタ部材の第1繊維フィルタ部材と第2繊維フィルタ部材のアルミナ粒子のそれぞれに白金を担持させて形成した第1繊維フィルタ部材と第2繊維フィルタ部材を積層して両側を金網で挟持して実施例3の集塵用フィルタ部材Cを作製し、更に、蛇腹状に折り曲げ加工した後に収納ケースに入れて排気ガス浄化用の実施例3の排気ガス浄化装置を作製した。
【0066】
また、比較例1の集塵用フィルタ部材は、400cpiのコージェライトハニカム構造のフィルタを実施例の容積と同じ容積にして形成し、これを収納ケースに入れて排気ガス浄化用の比較例1の排気ガス浄化装置を作製した。
【0067】
また、比較例2の集塵用フィルタ部材は、繊維径14μmφの炭化ケイ素繊維を用いた粗繊維フィルタ部材と繊維径9μmφの炭化ケイ素繊維を用いた密繊維フィルタ部材を積層して両側を金網で挟持して比較例2の集塵用フィルタ部材を作製し、更に、蛇腹状に折り曲げ加工した後に収納ケースに入れて排気ガス浄化用の比較例2の排気ガス浄化装置を作製した。
【0068】
この比較例2の集塵用フィルタ部材は、表面ろ過(ケーキろ過)と深層ろ過との2つの集塵形式を有し、また、フィルタの空隙サイズの分布が広いので、PMの粒径分布において広い範囲でPMを捕集でき、ディーゼル13モードによるPM捕集結果では捕集効率は75〜84%、PM2.5(2.5μm以下の浮遊粒子状物質)に関しても80%近い捕集効率を示した。
【0069】
なお、コージェライトハニカムの比較例1の集塵用フィルタ部材は初期の状態から捕集効率が高いが、初期圧力損失が高く、目詰まりし易い。一方、繊維フィルタの比較例2の集塵用フィルタ部材は初期の捕集効率は比較例1よりも5%程低いが、初期圧力損失も低い。
【0070】
これらの比表面積を表1に示す。実施例1〜3の比表面積は、比較例1の比表面積に対して150〜200倍で、比較例2の比表面積に対して120〜150倍となった。
【0071】
【表1】

Figure 2005040646
また、図11にPMの捕集試験の結果であるPMの捕集効率(重量比)を示すが、これにより、実施例1〜3(A,B,C)は、同じ繊維フィルタである比較例2(Y)に対して高い捕集効率を示し、特に実施例2,3(B,C)はコージェライトハニカムの比較例1(X)と同等以上の捕集効率を示した。また、この捕集効率の試験は500℃程度の排気ガス温度で行ったが、白金を担持した実施例3では試験中にフィルタの目詰まりが発生せず、白金がPMの燃焼を促す酸化触媒として十分に機能していることが分かった。
【0072】
この図11で、実施例1(A)が比較例1(X)よりも捕集効率が低いのは、主に捕集の対象としているPMの範囲が、比較例1(X),実施例2(B),実施例3(C)は粒径500nmφ〜1μmφ以上のPM粒子であるのに対して、比較例2(Y),実施例1(A)は粒径100nmφ以下のPM微細粒子であるため、比較例2(Y),実施例1(A)でPM微細粒子を捕集しても、重量基準の捕集効率にはその効果が表れないためである。
【0073】
また、図12にPMの粒径500nmφより小さいPM微細粒子の粒径別の捕集効率(粒子数)を測定した結果を示すが、これにより、PMのうちの微細な粒子の捕集効率は実施例1〜3(A,B,C)が比較例1,2(X,Y)に比べて著しく向上していることが分かる。
【0074】
そして、実施例1において、γアルミナの粒子径の平均粒子径(μm)を変化させた場合における比表面積(m/g)を表2に示す。
【0075】
【表2】
Figure 2005040646
また、この比表面積をベースとしたPMの粒径別(37〜420nmφ)の捕集効率を図13に示す。この図13から、比表面積が大きくなる程、より微細な粒子の捕集効率が増加することが分かり、特に、比表面積で1m/g以上、平均粒子径で0.5μm以下であれば大きな捕集効率となることが分かった。
【0076】
また、実施例1において担持させる超微粒子の材料を変化させた場合における比表面積(m/g)を表3に示し、PMの粒径別捕集効率を図14に示す。図13と同様に比表面積が大きくなる程PM微細粒子の捕集効率が向上した。
【0077】
【表3】
Figure 2005040646
次に、図15に「繊維表面に担持した粒子径/繊維径」をベースにした「繊維引張強度の変化率(%)」を示す。この図15は、繊維径を10μmφに固定し、粒子径を0.03〜2μmφとした時の図であるが、この図15より、繊維表面に担持した粒子径/繊維径が2μm/10μmつまり1/5を超えると繊維引張強度が急激に低下する結果となった。従って、繊維表面に担持する超微粒子の平均粒径は、繊維径の1/5以下にすることが好ましいことが分かる。
【0078】
また、図16に粒子径を0.01μmφ、繊維径を10μmφに固定し、繊維表面への粒子担持量(繊維1g当たりの担持した粒子重量(mg))と担持繊維の比表面積の関係を示す。この図16より粒子担持量を350mg/g以上に増しても担持繊維の比表面積は200m/gを大きく超えることはなかった。
【0079】
従って、これらの実施例の試験結果から、担持するセラミックス系超微粒子の平均粒径は0.5μm以下、比表面積は1m/g以上、「超微粒子の平均粒径/繊維径」は1/5以下が好ましいことが分かる。
【0080】
なお、上記では、ディーゼルエンジンの排気ガス用の集塵用フィルタ部材として説明し、超微粒子を担持した無機繊維を積層した繊維フィルタ部材を金網で挟持したものを集塵用フィルタとしているが、本発明の集塵用フィルタ部材は、この形式の集塵用フィルタに限定されるものではなく、また、金網を構成要件とするものでもない。
【0081】
また、集塵の対象もディーゼルパティキュレートフィルタに限定されるものではなく、これ以外の目的にも使用でき、集塵用フィルタ部材の使用条件に合わせて、繊維フィルタ部材に担持させる超微粒子の材料、担持する触媒の種類を選択できる。また、繊維フィルタ部材を構成する材料も集塵用フィルタ部材の使用条件に合わせて、種々選択できる。
【0082】
【発明の効果】
以上に説明したように、本発明の集塵用フィルタ部材によれば、次のような効果を奏することができる。
【0083】
本発明の集塵用フィルタ部材は、フェルト状の繊維フィルタ部材を有して構成される集塵用フィルタ部材において、繊維フィルタ部材の繊維の表面にPMを吸着捕集するセラミックス系超微粒子を担持させて形成されるので、この繊維に担持させるセラミックス系超微粒子を0.2μmφ程度の比較的大きな超微粒子にすると、繊維表面に凹凸が形成され、この凹凸による慣性さえぎり効果が増大し、粒子径が1μm以上のPM粒子の捕集効率を向上することができる。また、0.03μmφ程度の高比表面積の比較的小さな超微粒子にすると、繊維の表面活性を大きくしてブラウン拡散効果による吸着捕集効果を上げることができ、粒子径が1μm以下のPM微細粒子の捕集効率を向上することができる。
【0084】
また、上流側に慣性さえぎり効果により捕集する層を設けたり、上流側と下流側で繊維に担持される超微粒子の平均粒径を変化させたりすることにより、上流側では主に慣性さえぎり機構によりPM中の比較的大きなPM粒子を捕集し、下流側ではブラウン拡散効果による吸着捕集によりPM中の比較的小さなPM微細粒子を効率良く捕集できるようになる。従って、PMを広い粒径の範囲で効率よく捕集できる。
【0085】
そして、上記の集塵用フィルタ部材において、繊維又は超微粒子の少なくとも一方に触媒粒子を担持することにより、担持した酸化触媒やPM酸化触媒やNOx還元触媒等の触媒作用によって、PMの燃焼を促進でき、また、NOx等の排気ガス中の有害成分も浄化できるようになる。
【図面の簡単な説明】
【図1】本発明に係る第1の実施の形態の集塵用フィルタ部材の構造を示す部分拡大図である。
【図2】図1の繊維フィルタ部材の繊維部分の拡大図である。
【図3】集塵用フィルタ部材の蛇腹状の折り曲げ状態を模式的に示す図である。
【図4】集塵用フィルタ部材を蛇腹状の折り曲げて収納ケースに収容した排気ガス浄化装置の構成を模式的に示す図である。
【図5】本発明に係る第2の実施の形態の集塵用フィルタ部材の構造を示す部分拡大図である。
【図6】本発明に係る第3の実施の形態の集塵用フィルタ部材の構造を示す部分拡大図である。
【図7】図6の集塵用フィルタ部材のPM捕集機構を模式的に示す図である。
【図8】本発明に係る第4の実施の形態の集塵用フィルタ部材の構造を示す、繊維フィルタ部材の繊維部分の拡大図である。
【図9】本発明に係る第5の実施の形態の集塵用フィルタ部材の構造を示す、繊維フィルタ部材の繊維部分の拡大図である。
【図10】本発明に係る第6の実施の形態の集塵用フィルタ部材の構造を示す、繊維フィルタ部材の繊維部分の拡大図である。
【図11】実施例と従来例の集塵用フィルタ部材のPM捕集率の経時変化を示す図である。
【図12】実施例と従来例の集塵用フィルタ部材のPM平均粒径と捕集効率の関係を示す図である。
【図13】実施例1の集塵用フィルタ部材における、比表面積と捕集効率の関係をPM平均粒径別に示す図である。
【図14】実施例1の集塵用フィルタ部材における、PM平均粒径と捕集効率の関係を超微粒子の材料別に示す図である。
【図15】実施例1の集塵用フィルタ部材における、超微粒子の平均粒径と繊維引張強度の変化率の関係を示す図である。
【図16】実施例1の集塵用フィルタ部材における、繊維表面への粒子担持量と担持繊維の比表面積率の関係を示す図である。
【符号の説明】
1A〜1F 排気ガス浄化装置
10A〜10F 集塵用フィルタ部材
11,11A〜11F 無機繊維
12,12A〜12F 繊維フィルタ部材
13,13A,13B 超微粒子
14 金網(耐熱金網)
16 触媒粒子
20 収納ケース[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dust collecting filter member for purifying exhaust gas or the like exhausted from a diesel engine.
[0002]
[Prior art]
Emissions of particulate matter (PM: particulate matter: hereinafter referred to as PM) emitted from diesel engines have been strengthened year by year along with NOx, CO and HC. Improvement alone has made it impossible to respond. Therefore, a technology has been developed to collect PM discharged from the engine with a filter called a diesel particulate filter (DPF: DPF) and reduce the amount of PM discharged to the outside. As a filter that directly collects PM, a porous filter, a fiber filter, or the like has been used.
[0003]
However, the porous filter is made of a ceramic or metal porous material and collects PM mainly by the inertia blocking effect (cake filtration) on the surface of the filter, but the inertia blocking effect is mainly used. It is difficult to collect fine PM having a diameter equivalent to 1 μm or less, and there is a problem that PM fine particles having a wide particle size range cannot be collected.
[0004]
In addition, a filter carrying a catalyst on the surface of a porous material in a porous filter performs adsorption of PM and combustion removal at a low temperature by the effect of expanding the specific surface area of the surface and the effect of the oxidation reaction by the catalytic action, but the total amount of PM In some cases, the filter surface is covered with PM and the collection efficiency is lowered.
[0005]
The fiber filter is formed using a felt in which inorganic fibers such as ceramics are randomly stacked, and collects PM not only by the filter surface (surface filtration) but also by the inertia blocking effect (depth filtration) inside the filter. Therefore, although the dust collection capacity is larger than that of the porous filter, there is a problem that the collection efficiency of the fine particles of PM is low.
[0006]
In this fiber filter, in order to improve the collection efficiency of PM, a plurality of felts are formed, and relatively thick inorganic fibers are laminated irregularly and roughly in the felt on the upstream side with respect to the passage of exhaust gas, In the felt on the downstream side, relatively thin inorganic fibers are laminated irregularly and densely, and a heat-resistant wire mesh is stacked on the upstream side of the coarse felt, and a woven fabric is stacked on the downstream side of the dense felt to form a laminate. An exhaust particulate filter for a diesel engine has been proposed in which the laminated body is bent into a bellows shape in the circumferential direction to form a cylindrical filter (see, for example, Patent Document 1).
[0007]
The collection form of this fiber filter is that the PM is collected on the filter surface, the surface filtration (cake filtration) where PM is further collected on the collected and deposited PM, and the PM is collected inside the filter. In addition, the filter can be collected in a wide range with respect to the particle size distribution of PM.
[0008]
However, considering the viewpoint of environmental improvement and countermeasures for exhaust gas regulations, further improvement in PM collection efficiency is required. Among them, suspended particulate matter (SPM) with a particle size of 10 μm or less and particle size of 2.5 μm or less It has become important to collect fine particles of submicron grade such as PM2.5.
[0009]
Therefore, in a filter constituted by a fiber laminate structure made of ceramics or a heat-resistant metal, a coating made of ceramics or a heat-resistant metal is applied to the surface part in contact with a fluid such as exhaust gas among the solid parts constituting the filter by CVD or organic silicon. A filter material has been proposed which is formed by thermal decomposition of a polymer to improve heat resistance and corrosion resistance, and includes a ceramic or heat resistant metal fine particles in the coating to form an uneven portion to improve PM collection efficiency ( For example, see Patent Document 2.)
[0010]
However, this filter material has a structure in which ceramics or refractory metal fine particles are encapsulated in a coating produced by CVD or pyrolysis of an organosilicon polymer, and therefore, a process such as CVD or pyrolysis is required, and manufacturing is performed. There is a problem that the cost is high.
[0011]
In addition, the ceramic fine particles are used to form irregularities made of a few micron-like particles of the coating, and are encased in the coating, which makes it difficult to form fine irregularities. There is a problem that the property of adsorbing PM cannot be used.
[0012]
[Patent Document 1]
JP 2000-130150 A
[0013]
[Patent Document 2]
JP 2002-38921 A
[0014]
[Problems to be solved by the invention]
The present invention has been made to solve the above-mentioned problems, and the object thereof is to efficiently collect fine PM submicron particles while maintaining the advantages of a fiber filter. An object of the present invention is to provide a dust collection filter member that can exhibit high collection efficiency in a wide range of distribution.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, a dust collecting filter member of the present invention is a dust collecting filter member having a felt-like fiber filter member, and a gas is applied to the fiber surface of the fiber filter member. It is configured to carry ultrafine particles that adsorb and collect the fine particulate matter inside.
[0016]
Ultrafine particles that adsorb and collect particulate matter such as PM in exhaust gas of diesel engines and suspended substances in the atmosphere are very small particles with a particle size of 0.005 μmφ to 5 μmφ. It can be formed and has a high specific surface area with excellent surface activity. The ultrafine particles having a large particle size easily adsorb relatively large particles in PM (for example, 0.5 μmφ to 1 μmφ: hereinafter referred to as PM particles), and those having a small particle size are relatively small in PM. It has the property of easily adsorbing particles (for example, 0.1 μmφ or less: hereinafter referred to as PM fine particles). If the particle size of the ultrafine particles is smaller than 0.005 μmφ, the production becomes difficult. If the particle size is larger than 5 μmφ, the specific surface area becomes small, and the collection efficiency decreases.
[0017]
In addition, by supporting the relatively large ultrafine particles on the fiber, irregularities are formed on the fiber surface, and the inertia blocking effect due to the irregularities is increased. Therefore, the particle diameter is more than 0.5 μm which is easily collected by the inertia blocking mechanism. The collection efficiency of large PM particles can be improved. In addition, since the surface activity of the fiber can be increased by supporting ultrafine particles with a relatively small high specific surface area on the fiber, the particle size of 1 μm or less where the adsorption / collection mechanism by the Brown diffusion effect is dominant. The collection efficiency of PM fine particles can be improved.
[0018]
In the filter member for dust collection, when the ultrafine particles are formed of a ceramic material and the average particle size of the ultrafine particles is 1/5 to 1/3000 of the diameter of the fiber, the ultrafine particles are supported. The specific surface area of the finished fiber filter member is 1 m 2 / G-200m 2 In particular, when PM is / g, the PM collection efficiency can be increased. The specific surface area of the filter means a specific surface area measured in accordance with JIS standard R1626 in a state where ultra fine particles are supported on the fibers of the fiber filter member.
[0019]
The ceramic ultrafine particles are ultrafine particles having a particle diameter of 0.005 μmφ to 5 μmφ formed of a ceramic material such as aluminum oxide (alumina), silicon oxide, titanium oxide, and zeolite. The fibers are silicon carbide (SiC), silicon nitride (Si 3 N 4 ), Alumina (Al 2 O 3 ), Mullite or the like.
[0020]
In the filter member for dust collection described above, by providing a collecting member for collecting by the inertia blocking effect on the upstream side of the fiber filter member carrying the ultrafine particles, relatively large PM particles are previously upstream by the inertia blocking effect. Since it can be collected, the layer carrying the ceramic ultrafine particles on the downstream side can efficiently collect relatively small PM fine particles that are difficult to collect by the inertia blocking effect. Examples of the collecting member that collects by the inertia blocking effect include a fiber filter member that does not carry ultrafine particles, a porous filter, and a honeycomb structure composed of a porous body.
[0021]
Alternatively, in the above dust collecting filter member, the fiber filter member provided on the upstream side is roughly formed, the fiber filter member provided on the downstream side is formed densely, and the fiber diameter of the fiber filter member on the upstream side is set downstream. The fiber diameter of the fiber filter member on the downstream side is made larger than the fiber diameter of the fiber filter member on the side, and the average particle size of the ultrafine particles supported on the fibers of the fiber filter member on the upstream side is supported on the fibers of the fiber filter member on the downstream side. It is configured to be larger than the average particle size of the ultrafine particles.
[0022]
According to this configuration, in the upstream fiber filter member, relatively large PM particles can be collected mainly by the inertia blocking mechanism in the fiber layer carrying relatively large ultrafine particles, and in the downstream fiber filter member, With a fiber layer carrying small ultrafine particles, relatively small PM fine particles can be collected by an adsorption mechanism (Brown diffusion effect). Therefore, PM can be efficiently collected in a wide particle size range.
[0023]
In other words, in order to capture relatively large PM particles on the upstream side, the PM that reaches the downstream side is centered on fine PM particles, so ceramics having a high specific surface area with excellent surface activity on the surface of the fibers constituting this part. By supporting the system ultrafine particles, the collection efficiency of PM fine particles can be further improved.
[0024]
Further, in the filter member for dust collection described above, the catalyst particles are supported on at least one of the fibers or the ultrafine particles, so that the low temperature combustion of PM is caused by the catalytic action of the supported oxidation catalyst, PM oxidation catalyst, NOx reduction catalyst, and the like. It can be promoted, and harmful components in exhaust gas such as NOx can be purified.
[0025]
The exhaust gas purifying apparatus of the present invention is configured to have the above-described dust collecting filter member, and can efficiently collect fine PM submicron particles, and in a wide range of PM particle size distribution. High collection efficiency can be demonstrated.
[0026]
When high temperature gas such as exhaust gas from diesel engines is to be purified, a fiber filter member in which inorganic fibers and metal fibers excellent in heat resistance are laminated in a felt shape is used. In this case, a fiber filter member in which organic fibers such as natural materials and synthetic resins are laminated in a felt shape can be used.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
DETAILED DESCRIPTION OF EMBODIMENTS Hereinafter, a dust collecting filter member and an exhaust gas purifying apparatus according to an embodiment of the present invention will be described with reference to an example of a dust collecting filter member and an exhaust gas purifying apparatus for a purifying apparatus that purifies exhaust gas of a diesel engine. Will be described with reference to FIG.
[0028]
As shown in FIGS. 1 and 2, the dust collecting filter member 10 </ b> A according to the first embodiment of the present invention is a felt-like fiber filter member 12 made of inorganic fibers 11, and PM is applied to the surface of the inorganic fibers 11. It is formed by supporting ultrafine particles 13 formed of a ceramic material to be adsorbed and collected.
[0029]
The fiber filter member 12 includes silicon carbide (SiC) and silicon nitride (Si 3 N 4 ), Alumina (Al 2 O 3 ), Inorganic fibers 11 having a fiber diameter of about 5 to 20 μmφ such as mullite can be randomly laminated to form a felt shape.
[0030]
The ultrafine particles 13 are formed of ceramics such as aluminum oxide (alumina), silicon oxide, titanium oxide, zeolite, etc., but the ultrafine particles 13 made of only the same material may be used. The formed ultrafine particles 13 may be mixed and used.
[0031]
The ultrafine particles 13A having a relatively large particle size include, for example, α-alumina ultrafine particles having an average particle size of 0.2 μmφ, and the ultrafine particles 13B having a relatively small particle size include, for example, There are ultrafine particles of γ-alumina having an average particle diameter of 0.03 μmφ. In view of the tensile strength of the inorganic fiber 11, the average particle diameter of the ultrafine particles 13 is preferably 1/5 to 1/3000 of the diameter of the inorganic fiber 11.
[0032]
The ultrafine particles 13 are supported on the inorganic fibers 11 forming the fiber filter member 12. The ultrafine particles 13 are supported by placing 1 mass% of the ceramic ultrafine particles in the fiber filter member 12 in a solution in which ethanol, tetraethoxysilane (TES), and distilled water are mixed at a weight ratio of 0.5: 6: 3. (1 wt%) After immersing in the dispersed support solution, the excess solution is removed and then heat treatment is performed at 550 ° C. in the atmosphere.
[0033]
In order to increase the PM collection effect by supporting the ultrafine particles 13, the specific surface area of the fiber filter member 12 supporting the ultrafine particles 13 is 1 to 200 m. 2 / G is preferable.
[0034]
Then, one or a plurality of the fiber filter members 12 are laminated, and both sides are sandwiched between the heat-resistant metal meshes 14 and 14, thereby forming the dust collection filter member 10A of the first embodiment. As shown in FIGS. 3 and 4, the dust collecting filter member 10A is bent into a bellows shape and then placed in the storage case 20 to form the exhaust gas purifying apparatus 1A of the first embodiment.
[0035]
According to the dust collecting filter member 10A having this configuration and the exhaust gas purifying apparatus 1A using the dust collecting filter member 10A, when relatively large ultrafine particles are supported on the inorganic fiber, unevenness is formed on the fiber surface. Since the inertia blocking effect due to is increased, the collection efficiency of PM particles with a particle size of 1 μm or more that are easily collected by the inertia blocking mechanism is improved, and ultra-fine particles having a relatively high specific surface area are supported on inorganic fibers. Since the surface activity of the fiber can be increased, the collection efficiency of PM fine particles having a particle diameter of 1 μm or less, in which the adsorption and collection mechanism by the Brown diffusion effect is dominant, is improved. Therefore, PM submicron fine particles can be collected efficiently, and high collection efficiency can be exhibited in a wide range of PM particle size distribution.
[0036]
Next, the dust collection filter member 10B of the second embodiment will be described. As shown in FIG. 5, the dust collection filter member 10B is configured by providing a collection member 15 that collects the inertia collection effect on the upstream side of the dust collection filter member 10A of the first embodiment. As the inertia blocking effect collecting member 15, for example, a coarse fiber filter member 12A formed by laminating silicon carbide (SiC) fibers 11A having a fiber diameter of 14 μmφ in a felt shape can be used.
[0037]
Then, the coarse fiber filter member 12A is laminated on the upstream side of the fiber filter member 12 of the first embodiment, and both sides are sandwiched between the metal meshes 14 and 14, thereby collecting the dust of the second embodiment. The filter member 10B is formed. As shown in FIGS. 3 and 4, the dust collecting filter member 10B is bent into a bellows shape and then placed in the storage case 20 to form the exhaust gas purifying apparatus 1B of the second embodiment.
[0038]
According to the dust collection filter member 10B having this configuration and the exhaust gas purification apparatus 1B using the dust collection filter member 10B, the collection member 12A (15) that collects the upstream side of the fiber filter member 12 carrying the ultrafine particles 13 by the inertia blocking effect. ), It is possible to collect relatively large PM particles in advance by the inertia blocking effect on the upstream side. Therefore, the downstream fiber filter member 12 can efficiently collect relatively small PM fine particles that are difficult to collect by the inertia blocking effect. It can be collected well.
[0039]
Next, a dust collection filter member 10C according to a third embodiment will be described. As shown in FIG. 6, the dust collecting filter member 10C has a coarse fiber filter member 12A carrying relatively large ultrafine particles 13A on the upstream side, and a dense fiber carrying relatively small ultrafine particles 13B on the downstream side. The fiber filter member 12B is provided, and the upstream coarse fiber filter member 12A has a fiber diameter larger than the fiber diameter of the downstream dense fiber filter member 12B.
[0040]
That is, the fiber filter member 12A provided on the upstream side is roughly formed, the fiber filter member 12B provided on the downstream side is formed densely, and the fiber diameter of the upstream fiber filter member 12A is set to that of the downstream fiber filter member 12B. The average particle diameter of the ultrafine particles 13A that are thicker than the fiber diameter and supported on the inorganic fibers 11A of the upstream fiber filter member 12A is set to be the ultrafine particles supported on the inorganic fibers 11B of the downstream fiber filter member 12B. It is larger than the average particle size of 13B.
[0041]
In the dust collecting filter member 1C, the upstream first fiber filter member 12A is formed by laminating felt-like silicon carbide fibers 11A having a fiber diameter of 14 μmφ, and the downstream dense second fiber filter member. 12B is formed by laminating 9 μmφ silicon carbide fibers 11B in a felt shape.
[0042]
Then, α-alumina having an average particle size of 0.2 μmφ in a solution in which the first fiber filter member 12A is mixed with ethanol, tetraethoxysilane (TES), and distilled water at a weight ratio of 0.5: 6: 3, etc. After immersing the ceramic ultrafine particles 13A having a relatively large diameter in a supporting solution in which 1% by mass (1 wt%) is dispersed, the excess solution is removed, and then heat treatment is performed at 550 ° C. in the atmosphere, so that the ultrafine particles 13A are inorganic fibers. It is carried on 11A.
[0043]
Further, the second fiber filter member 12B is a solution in which ethanol, tetraethoxysilane (TES), and distilled water are mixed at a weight ratio of 0.5: 6: 3, and γ-alumina having an average particle size of 0.03 μmφ. After immersing the ceramic-based ultrafine particles 13B having a relatively small diameter in a supporting solution in which 1 mass% (1 wt%) is dispersed, the excess solution is removed, and then heat treatment is performed at 550 ° C. in the atmosphere, so that the ultrafine particles 13B are inorganic fibers. It is carried on 11B.
[0044]
The second fiber filter member 12B is laminated on the first fiber filter member 12A and both sides are sandwiched between the metal meshes 14 and 14, thereby forming the dust collection filter member 10C of the third embodiment. As shown in FIGS. 3 and 4, the dust collecting filter member 10C is bent into a bellows shape and then placed in the storage case 20 to form the exhaust gas purifying apparatus 1C of the third embodiment.
[0045]
As schematically shown in FIG. 7, the dust collecting filter member 10C includes a surface filtration region R1, a first depth filtration region R2 of the first fiber filter member 12A, and a second depth filtration of the second fiber filter member 12B. It has a three-stage filtration region consisting of region R3.
[0046]
In the surface filtration region R1, PM is collected on the filter surface by surface filtration (cake filtration), and further PM is collected on the collected and deposited PM. In the first depth filtration region R2, inertia blocking is a main collection mechanism, and PM particles having a particle diameter of 1 μmφ or more are collected. However, this inertia blocking effect is achieved by forming irregularities on the fiber surface by supporting the ultrafine particles 13A. Will increase. Further, in the second depth filtration region R3, Brown diffusion is the main collection mechanism, and PM fine particles having a particle size of 1 μmφ or less are collected. However, the surface activity of the fibers 11B is increased by supporting the ultrafine particles 13B having a high specific surface area. Thus, the effect of collecting PM fine particles is remarkably improved.
[0047]
Therefore, according to the dust collecting filter member 10C having this configuration and the exhaust gas purification apparatus 1C using the dust collecting filter member 10C, on the upstream side, relatively large PM particles are captured, and the PM fine particles reaching the downstream side are reduced to a high ratio. It can be efficiently collected in the second depth filtration region R3 of the second fiber filter member 12B carrying the ultrafine particles 13B having a surface area.
[0048]
Next, a dust collection filter member 10D according to a fourth embodiment will be described. In the dust collecting filter member 1D, in the third embodiment, catalyst particles 16 such as platinum are supported on the ultrafine particles 13A and 13B supported by the inorganic fibers 11A and 11B.
[0049]
The dust collecting filter member 1D according to the fourth embodiment has ultrafine particles obtained by supporting catalyst particles 16 such as platinum on the ultrafine particles 13A and 13B according to the third embodiment by a method such as solution dipping or wash coating. 13C and 13D are prepared, and using the ultrafine particles 13C and 13D instead of the ultrafine particles 13A and 13B in the third embodiment, the same process as the dust collecting filter member 1C of the third embodiment is performed. It is produced through.
[0050]
Thereby, as shown in FIG. 8, the dust collecting filter member 1D is a fiber filter member in which inorganic fibers 11C and 11D carrying ultrafine particles 13C and 13D carrying catalyst particles 16 such as platinum are laminated in a felt shape. 12C and 12D are configured. Incidentally, the particle size of the catalyst particles 16 is about 1 to 10 nmφ.
[0051]
According to the dust collecting filter member 10E having this configuration and the exhaust gas purification apparatus 1E using the dust collecting filter member 10E, the low temperature combustion of PM can be promoted by the catalytic action of the catalyst particles 16 such as an oxidation catalyst, a PM oxidation catalyst, and a NOx reduction catalyst. In addition, harmful components in exhaust gas such as NOx can be purified.
[0052]
Next, a dust collection filter member 10E according to a fifth embodiment will be described. In the dust collecting filter member 1E, in addition to the third embodiment, catalyst particles 16 such as platinum are supported on the inorganic fibers 11A and 11B and the ultrafine particles 13A and 13B.
[0053]
The dust collecting filter member 1E of the fifth embodiment is dried and heat-treated after the fiber filter members 12A, 12B or the dust collecting filter member 1E of the third embodiment are immersed in the solution of the catalyst particles 16. In this way, the inorganic fibers 11A and 11B and the ultrafine particles 13A and 13B are made to carry catalyst particles 16 such as platinum.
[0054]
As a result, as shown in FIG. 9, the filter member 1E for dust collection is such that the catalyst particles 16 such as platinum are supported not only on the ultrafine particles 13C and 13D but also on the inorganic fibers 11C and 11D. The same effect as the dust collecting filter member 1D of the embodiment can be obtained.
[0055]
Next, a dust collection filter member 10F according to a sixth embodiment will be described. In the dust collection filter member 1F, in addition to the third embodiment, catalyst particles 16 such as platinum are supported on the inorganic fibers 11A and 11B.
[0056]
In the dust collecting filter member 1F of the sixth embodiment, the fiber filter members 12A and 12B in the third embodiment are immersed in a solution of the catalyst particles 16 before the ultrafine particles 13A and 13B are supported. The catalyst particles 16 such as platinum are supported on the inorganic fibers 11A and 11B by a method such as post-drying and heat treatment. After this loading, the ultrafine particles 13A and 13B are loaded in the same process as in the third embodiment.
[0057]
As a result, the filter member 1F for dust collection has fiber filter members 12E and 12F in which inorganic fibers 11E and 11F carrying catalyst particles 16 such as platinum and ultrafine particles 13A and 13B are laminated as shown in FIG. Thus, the same effect as the dust collecting filter member 1D of the fourth embodiment can be obtained.
[0058]
〔Example〕
Further, in order to confirm the effect of the filter of the present invention, the dust collecting filter member of Examples 1 to 3 as described below and the dust collecting filter member of Comparative Examples 1 and 2 for comparison were prepared. A PM particle collection test was conducted.
[0059]
The filter member for dust collection of Example 1 is intended to improve the collection efficiency for ultrafine particles having a particle diameter of 1 nm or less, particularly 100 nmφ or less, among the PM particles, and the coarse fiber filter member and the dense fiber filter member. A dust collecting filter member constructed by overlapping and forming a dense fiber filter member on the downstream side by supporting γ-alumina having an average particle diameter of 0.03 μmφ on the fiber, and was produced as follows. .
[0060]
A coarse fiber filter member formed by laminating silicon carbide fibers having a fiber diameter of 14 μmφ in a felt shape is used as a first fiber filter member, and a dense fiber filter formed by laminating silicon carbide fibers having a fiber diameter of 9 μmφ in a felt shape is provided. As the second fiber filter member, this dense fiber filter member has an average particle size of 0.03 μmφ in a solution in which ethanol, tetraethoxysilane (TES), and distilled water are mixed at a weight ratio of 0.5: 6: 3. After immersing γ-alumina in a supporting solution in which 1% by mass (1 wt%) was dispersed, the excess solution was removed, and then heat treatment was performed at 550 ° C. in the atmosphere to produce a second fiber filter member.
[0061]
Then, the second fiber filter member is laminated on the first fiber filter member, and both sides are sandwiched by a metal mesh to produce the dust collecting filter member A of Example 1, and after being bent into a bellows shape, The exhaust gas purification apparatus of Example 1 for exhaust gas purification was formed.
[0062]
The filter member for dust collection of Example 2 improves the collection efficiency for fine particles having a particle size of about 0.5 μmφ to about 1 μmφ, and further 0.5 μmφ or less, preferably 0.1 μmφ or less among PM particles. In the downstream fiber filter member, the fiber filter member on the upstream side carries α-alumina having an average particle diameter of 0.2 μmφ, and the fiber filter member on the upstream side carries a coarse and dense fiber filter member. Is a filter constructed by supporting γ-alumina having an average particle diameter of 0.03 μmφ on a fiber, and was produced as follows.
[0063]
A coarse fiber filter member formed by laminating silicon carbide fibers having a fiber diameter of 14 μmφ in a felt shape, in a solution in which ethanol, tetraethoxysilane (TES), and distilled water are mixed at a weight ratio of 0.5: 6: 3 After immersing α-alumina having an average particle diameter of 0.2 μmφ in a supporting solution in which 1 mass% (1 wt%) is dispersed, the excess solution is removed, and heat treatment is performed at 550 ° C. in the atmosphere to obtain the first fiber filter member. Produced.
[0064]
The second fiber filter member produced in the same manner as the second fiber filter member of Example 1 is laminated on this first fiber filter member, and both sides are sandwiched by a metal mesh, and the dust collection filter member B of Example 2 is used. The exhaust gas purification apparatus of Example 2 for purifying exhaust gas was manufactured after being manufactured and further bent into a bellows shape and then placed in a storage case.
[0065]
The filter member for dust collection of Example 3 promotes combustion removal of PM, and platinum is applied to each of the first fiber filter member of the filter member for dust collection of Example 2 and the alumina particles of the second fiber filter member. After the first fiber filter member and the second fiber filter member formed to be supported are laminated and both sides are sandwiched by a wire mesh, the filter member C for dust collection of Example 3 is manufactured, and further, after being bent into a bellows shape An exhaust gas purifying apparatus of Example 3 for purifying exhaust gas was prepared in a storage case.
[0066]
In addition, the filter member for dust collection of Comparative Example 1 is formed by forming a 400 cpi cordierite honeycomb structure filter having the same volume as that of the Example, and placing this in a storage case, and purifying the exhaust gas purifying of Comparative Example 1 An exhaust gas purification device was produced.
[0067]
Further, the dust collecting filter member of Comparative Example 2 is formed by laminating a coarse fiber filter member using a silicon carbide fiber having a fiber diameter of 14 μmφ and a dense fiber filter member using a silicon carbide fiber having a fiber diameter of 9 μmφ, and both sides are made of a metal mesh. The dust collecting filter member of Comparative Example 2 was produced by being sandwiched, and after being bent into a bellows shape, the filter member was placed in a storage case to produce the exhaust gas purifying apparatus of Comparative Example 2 for exhaust gas purification.
[0068]
The filter member for dust collection of Comparative Example 2 has two dust collection types of surface filtration (cake filtration) and depth filtration, and since the pore size distribution of the filter is wide, the PM particle size distribution is PM can be collected in a wide range, and the PM collection result by diesel 13 mode is 75 to 84%, and PM2.5 (floating particulate matter of 2.5 μm or less) is nearly 80%. Indicated.
[0069]
The filter member for dust collection of Comparative Example 1 of cordierite honeycomb has a high collection efficiency from the initial state, but has a high initial pressure loss and is easily clogged. On the other hand, the dust collection filter member of Comparative Example 2 of the fiber filter has an initial collection efficiency of about 5% lower than that of Comparative Example 1, but the initial pressure loss is also low.
[0070]
These specific surface areas are shown in Table 1. The specific surface areas of Examples 1 to 3 were 150 to 200 times that of Comparative Example 1 and 120 to 150 times that of Comparative Example 2.
[0071]
[Table 1]
Figure 2005040646
Moreover, although the collection efficiency (weight ratio) of PM which is the result of the collection test of PM is shown in FIG. 11, Examples 1-3 (A, B, C) are comparisons which are the same fiber filters by this. Example 2 (Y) showed high collection efficiency, and in particular, Examples 2 and 3 (B, C) showed collection efficiency equal to or higher than that of Comparative Example 1 (X) of cordierite honeycomb. The collection efficiency test was performed at an exhaust gas temperature of about 500 ° C., but in Example 3 in which platinum was supported, the filter was not clogged during the test, and platinum was an oxidation catalyst that promoted PM combustion. It turns out that it works well.
[0072]
In FIG. 11, Example 1 (A) has a lower collection efficiency than Comparative Example 1 (X) because the range of PM that is mainly the target of collection is Comparative Example 1 (X). 2 (B) and Example 3 (C) are PM particles having a particle size of 500 nmφ to 1 μmφ or more, whereas Comparative Example 2 (Y) and Example 1 (A) are PM fine particles having a particle size of 100 nmφ or less. Therefore, even if PM fine particles are collected in Comparative Example 2 (Y) and Example 1 (A), the effect does not appear in the collection efficiency on a weight basis.
[0073]
FIG. 12 shows the results of measuring the collection efficiency (number of particles) of PM fine particles smaller than the particle diameter of PM of 500 nmφ by particle diameter, whereby the collection efficiency of fine particles in PM is It turns out that Examples 1-3 (A, B, C) are remarkably improved as compared with Comparative Examples 1 and 2 (X, Y).
[0074]
In Example 1, the specific surface area (m) when the average particle size (μm) of the particle size of γ-alumina was changed. 2 / G) is shown in Table 2.
[0075]
[Table 2]
Figure 2005040646
Moreover, the collection efficiency according to the particle size (37 to 420 nmφ) of PM based on this specific surface area is shown in FIG. From FIG. 13, it can be seen that as the specific surface area increases, the collection efficiency of finer particles increases. In particular, the specific surface area is 1 m. 2 / G or more and an average particle size of 0.5 μm or less, it was found that the collection efficiency was large.
[0076]
Further, the specific surface area (m 2 / G) is shown in Table 3, and the collection efficiency by PM particle size is shown in FIG. As in FIG. 13, the collection efficiency of PM fine particles improved as the specific surface area increased.
[0077]
[Table 3]
Figure 2005040646
Next, FIG. 15 shows “change rate (%) of fiber tensile strength” based on “particle diameter supported on fiber surface / fiber diameter”. FIG. 15 is a diagram when the fiber diameter is fixed to 10 μmφ and the particle diameter is 0.03 to 2 μmφ. From FIG. 15, the particle diameter / fiber diameter carried on the fiber surface is 2 μm / 10 μm. If it exceeded 1/5, the fiber tensile strength was abruptly reduced. Therefore, it can be seen that the average particle diameter of the ultrafine particles supported on the fiber surface is preferably 1/5 or less of the fiber diameter.
[0078]
FIG. 16 shows the relationship between the amount of particles supported on the fiber surface (particle weight supported per gram of fiber (mg)) and the specific surface area of the supported fibers, with the particle diameter fixed at 0.01 μmφ and the fiber diameter fixed at 10 μmφ. . FIG. 16 shows that the specific surface area of the supported fiber is 200 m even when the particle loading is increased to 350 mg / g or more. 2 / G was not greatly exceeded.
[0079]
Therefore, from the test results of these examples, the average particle size of the ceramic ultrafine particles to be supported is 0.5 μm or less and the specific surface area is 1 m. 2 It can be seen that the average particle size / fiber diameter of the ultrafine particles is preferably 1/5 or less.
[0080]
In the above description, the dust collecting filter member for exhaust gas of a diesel engine is described. A fiber filter member in which inorganic fibers carrying ultrafine particles are sandwiched by a wire mesh is used as a dust collecting filter. The dust collection filter member of the invention is not limited to this type of dust collection filter, and does not have a wire mesh as a constituent feature.
[0081]
In addition, the dust collection target is not limited to the diesel particulate filter, and can be used for other purposes. The material of the ultrafine particles supported on the fiber filter member according to the use conditions of the dust collection filter member. The type of catalyst to be supported can be selected. Moreover, the material which comprises a fiber filter member can also be variously selected according to the use conditions of the filter member for dust collection.
[0082]
【The invention's effect】
As described above, according to the filter member for dust collection of the present invention, the following effects can be obtained.
[0083]
The filter member for dust collection of the present invention is a filter member for dust collection configured to have a felt-like fiber filter member, and carries ceramic ultrafine particles that adsorb and collect PM on the fiber surface of the fiber filter member. Therefore, if the ceramic ultrafine particles supported on this fiber are made to be relatively large ultrafine particles of about 0.2 μmφ, irregularities are formed on the fiber surface, and the inertia blocking effect due to these irregularities is increased. Can improve the collection efficiency of PM particles having a particle size of 1 μm or more. In addition, if ultrafine particles with a relatively high specific surface area of about 0.03 μmφ are used, the surface activity of the fibers can be increased to increase the adsorption and collection effect by the Brown diffusion effect, and the PM fine particles having a particle diameter of 1 μm or less. The collection efficiency of can be improved.
[0084]
In addition, an inertia blocking mechanism is mainly used on the upstream side by providing a layer to collect by the inertia blocking effect on the upstream side, and changing the average particle size of the ultrafine particles supported on the fibers on the upstream side and the downstream side. Thus, relatively large PM particles in the PM can be collected, and relatively small PM fine particles in the PM can be efficiently collected on the downstream side by adsorption and collection due to the brown diffusion effect. Therefore, PM can be efficiently collected in a wide particle size range.
[0085]
In the dust collecting filter member, catalyst combustion is supported on at least one of the fibers or the ultrafine particles, thereby promoting the combustion of PM by the catalytic action of the supported oxidation catalyst, PM oxidation catalyst, NOx reduction catalyst, or the like. In addition, harmful components in exhaust gas such as NOx can be purified.
[Brief description of the drawings]
FIG. 1 is a partially enlarged view showing the structure of a filter member for dust collection according to a first embodiment of the present invention.
2 is an enlarged view of a fiber portion of the fiber filter member of FIG. 1. FIG.
FIG. 3 is a diagram schematically showing a bellows-like bent state of a dust collecting filter member.
FIG. 4 is a diagram schematically showing a configuration of an exhaust gas purifying apparatus in which a dust collecting filter member is bent in a bellows shape and accommodated in a storage case.
FIG. 5 is a partially enlarged view showing a structure of a dust collecting filter member according to a second embodiment of the present invention.
FIG. 6 is a partially enlarged view showing the structure of a filter member for dust collection according to a third embodiment of the present invention.
7 is a view schematically showing a PM collection mechanism of the dust collection filter member of FIG. 6. FIG.
FIG. 8 is an enlarged view of a fiber portion of a fiber filter member showing a structure of a filter member for dust collection according to a fourth embodiment of the present invention.
FIG. 9 is an enlarged view of a fiber portion of a fiber filter member showing a structure of a filter member for dust collection according to a fifth embodiment of the present invention.
FIG. 10 is an enlarged view of a fiber portion of a fiber filter member showing a structure of a dust collection filter member according to a sixth embodiment of the present invention.
FIG. 11 is a diagram showing a change with time of PM collection rate of a filter member for dust collection of an example and a conventional example.
FIG. 12 is a graph showing the relationship between the PM average particle diameter and the collection efficiency of the filter member for dust collection in Examples and Conventional Examples.
FIG. 13 is a graph showing the relationship between the specific surface area and the collection efficiency in the dust collection filter member of Example 1 for each PM average particle diameter.
14 is a graph showing the relationship between the PM average particle diameter and the collection efficiency in the dust collection filter member of Example 1 for each material of ultrafine particles. FIG.
15 is a graph showing the relationship between the average particle diameter of ultrafine particles and the rate of change in fiber tensile strength in the dust collection filter member of Example 1. FIG.
16 is a graph showing the relationship between the amount of particles supported on the fiber surface and the specific surface area ratio of the supported fibers in the dust collection filter member of Example 1. FIG.
[Explanation of symbols]
1A-1F Exhaust gas purification device
10A-10F Dust collection filter member
11, 11A-11F Inorganic fiber
12, 12A-12F Fiber filter member
13, 13A, 13B Ultrafine particles
14 Wire mesh (heat-resistant wire mesh)
16 catalyst particles
20 Storage case

Claims (7)

フェルト状の繊維フィルタ部材を有して構成される集塵用フィルタ部材において、前記繊維フィルタ部材の繊維の表面にガス中の微粒子状の物質を吸着捕集する超微粒子を担持した集塵用フィルタ部材。A dust collecting filter member comprising a felt-like fiber filter member, the dust collecting filter carrying ultra fine particles that adsorb and collect particulate matter in the gas on the fiber surface of the fiber filter member. Element. 前記超微粒子がセラミックス系材料で形成され、前記超微粒子の平均粒径が前記繊維の直径の1/5〜1/3000である請求項1記載の集塵用フィルタ部材。2. The dust collecting filter member according to claim 1, wherein the ultrafine particles are formed of a ceramic material, and the average particle diameter of the ultrafine particles is 1/5 to 1/3000 of the diameter of the fiber. 前記超微粒子を担持した前記繊維フィルタ部材の比表面積が1m/g〜200m/gである請求項1又は2に記載の集塵用フィルタ部材。The dust collecting filter member according to claim 1 or 2 specific surface area of the fiber filter member carrying ultrafine particles is 1 m 2 / g to 200 m 2 / g. 前記超微粒子を担持した前記繊維フィルタ部材の上流側に慣性さえぎり効果により捕集する捕集部材を設けた請求項1〜3のいずれか1項に記載の集塵用フィルタ部材。The filter member for dust collection according to any one of claims 1 to 3, wherein a collecting member that collects by an inertia blocking effect is provided on an upstream side of the fiber filter member carrying the ultrafine particles. 上流側に設ける前記繊維フィルタ部材を粗に形成し、下流側に設ける前記繊維フィルタ部材を密に形成すると共に、上流側の前記繊維フィルタ部材の繊維径を下流側の前記繊維フィルタ部材の繊維径よりも太くし、かつ、上流側の前記繊維フィルタ部材の繊維に担持される前記超微粒子の平均粒径を、下流側の前記繊維フィルタ部材の繊維に担持される前記超微粒子の平均粒径よりも大きくした請求項1〜4のいずれか1項に記載の集塵用フィルタ部材。The fiber filter member provided on the upstream side is roughly formed, the fiber filter member provided on the downstream side is formed densely, and the fiber diameter of the fiber filter member on the upstream side is set to the fiber diameter of the fiber filter member on the downstream side. The average particle diameter of the ultrafine particles supported by the fibers of the fiber filter member on the upstream side is larger than the average particle diameter of the ultrafine particles supported on the fibers of the fiber filter member on the downstream side. The filter member for dust collection according to any one of claims 1 to 4, wherein the filter member is also made larger. 前記繊維又は前記超微粒子の少なくとも一方に触媒粒子を担持した請求項1〜5のいずれか1項に記載の集塵用フィルタ部材。The filter member for dust collection according to any one of claims 1 to 5, wherein catalyst particles are supported on at least one of the fibers or the ultrafine particles. 請求項1〜5のいずれか1項に記載の集塵用フィルタ部材を有して構成される排気ガス浄化装置。An exhaust gas purifying apparatus comprising the dust collection filter member according to any one of claims 1 to 5.
JP2003199707A 2003-07-22 2003-07-22 Filtering member for collecting dust Pending JP2005040646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003199707A JP2005040646A (en) 2003-07-22 2003-07-22 Filtering member for collecting dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003199707A JP2005040646A (en) 2003-07-22 2003-07-22 Filtering member for collecting dust

Publications (1)

Publication Number Publication Date
JP2005040646A true JP2005040646A (en) 2005-02-17

Family

ID=34260385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003199707A Pending JP2005040646A (en) 2003-07-22 2003-07-22 Filtering member for collecting dust

Country Status (1)

Country Link
JP (1) JP2005040646A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303785A (en) * 2007-06-07 2008-12-18 Honda Motor Co Ltd Diesel particulate filter
JP2009172550A (en) * 2008-01-28 2009-08-06 Fujifilm Corp Toxic substance removal material and method for removing toxic substance
CN103362604A (en) * 2012-04-03 2013-10-23 揖斐电株式会社 Retaining seal material and exhaust gas purifying apparatus
JP2017177004A (en) * 2016-03-30 2017-10-05 津田 博之 Particulate matter suction apparatus
KR20190104734A (en) * 2018-03-02 2019-09-11 경희대학교 산학협력단 A method for manufacturing fine-dust separator using 3-dimensional printer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303785A (en) * 2007-06-07 2008-12-18 Honda Motor Co Ltd Diesel particulate filter
JP2009172550A (en) * 2008-01-28 2009-08-06 Fujifilm Corp Toxic substance removal material and method for removing toxic substance
CN103362604A (en) * 2012-04-03 2013-10-23 揖斐电株式会社 Retaining seal material and exhaust gas purifying apparatus
US8974570B2 (en) 2012-04-03 2015-03-10 Ibiden Co., Ltd. Retaining seal material and exhaust gas purifying apparatus
JP2017177004A (en) * 2016-03-30 2017-10-05 津田 博之 Particulate matter suction apparatus
KR20190104734A (en) * 2018-03-02 2019-09-11 경희대학교 산학협력단 A method for manufacturing fine-dust separator using 3-dimensional printer
KR102060135B1 (en) 2018-03-02 2019-12-27 경희대학교 산학협력단 A method for manufacturing fine-dust separator using 3-dimensional printer

Similar Documents

Publication Publication Date Title
JP4889873B2 (en) Exhaust gas purification system, exhaust gas purification catalyst used therefor, and exhaust purification method
KR100602923B1 (en) Filter catalyst for purifying exhaust gas
JP3874270B2 (en) Exhaust gas purification filter catalyst and method for producing the same
US20070140928A1 (en) Low pressure drop coated diesel exhaust filter
KR101457238B1 (en) Improved soot filter
JP2008510605A (en) Catalyst coated particle filter, process for its production and use thereof
JP2001190916A (en) Honeycomb structure
JP2009165922A (en) Exhaust gas purification catalyst
KR20080057336A (en) Exhaust gas purifying apparatus
KR20080046650A (en) Diesel exhaust article and catalyst compositions therefor
JP4715032B2 (en) Diesel exhaust gas purification filter
JP4006645B2 (en) Exhaust gas purification device
JP4174976B2 (en) Exhaust purification device and method for manufacturing the same
JP2004058013A (en) Purification catalyst for exhaust gas
JP5519208B2 (en) Exhaust gas purification device for internal combustion engine
JP5501978B2 (en) Improved catalyzed soot filters and methods for producing them
JP2005040646A (en) Filtering member for collecting dust
JP4218559B2 (en) Diesel exhaust gas purification device
KR100985489B1 (en) Metal Fiber Filter for Purifying Diesel Engine Exhaust Gas Having Slot Type By-Passing Part and Exhaust Gas Purifying System
JP2009228618A (en) Exhaust emission control device
JP2003080031A (en) Filter element and filter for purification of exhaust gas
JP2006525866A (en) Exhaust gas aftertreatment device
JP2006077672A (en) Exhaust emission control filter and exhaust emission control device
JP5453759B2 (en) FIBER ASSEMBLY WITH CATALYST, ITS MANUFACTURING METHOD, AND EXHAUST GAS PURIFICATION DEVICE
JP2006159020A (en) Filter and catalyst for purification of exhaust gas