JP2005039163A - Circuit board for mounting semiconductor device and manufacturing method thereof - Google Patents

Circuit board for mounting semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP2005039163A
JP2005039163A JP2003302201A JP2003302201A JP2005039163A JP 2005039163 A JP2005039163 A JP 2005039163A JP 2003302201 A JP2003302201 A JP 2003302201A JP 2003302201 A JP2003302201 A JP 2003302201A JP 2005039163 A JP2005039163 A JP 2005039163A
Authority
JP
Japan
Prior art keywords
layer
glass
heat transfer
circuit board
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003302201A
Other languages
Japanese (ja)
Inventor
Shingo Sato
慎吾 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003302201A priority Critical patent/JP2005039163A/en
Publication of JP2005039163A publication Critical patent/JP2005039163A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circuit board capable of preventing malfunctions and operation stops caused by the heat of a semiconductor device by closely joining a thermal via, an Al housing and a radiator and making the function of various kinds of electronic equipment normal and stable using a circuit board for mounting semiconductor devices and an electronic device for a long term. <P>SOLUTION: The circuit board for mounting semiconductor devices comprises the mounting section of the semiconductor device 7 consisting of a conductor layer formed on one main surface of an insulating board; a heat transfer layer 4 that is formed on the other main surface of the insulating board, is connected to the mounting section via a penetrated conductor 3, and contains a glass constituent; a resistor layer 5 that is formed at a part adjacent to the heat transfer layer 4 on the other main surface and contains the glass constituent; and a protection glass layer 6 for covering the resistor layer 5. In this case, the heat transfer layer 4, the resistor layer 5, and the protection glass layer 6 are simultaneously baked and T<SB>1</SB>>T<SB>3</SB>>T<SB>2</SB>is satisfied when the softening point of the glass constituent contained in the heat transfer layer 4, that contained in the resistor layer 5, and that contained in the protection glass layer 6 are set to be T<SB>1</SB>, T<SB>2</SB>, and T<SB>3</SB>, respectively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、搭載される半導体素子および回路基板の機能を長期間にわたり正常かつ安定に作動させることができる半導体素子搭載用回路基板に関する。   The present invention relates to a semiconductor element mounting circuit board capable of operating the functions of a semiconductor element and a circuit board to be mounted normally and stably over a long period of time.

従来、IC,LSI等の半導体素子や電子部品等を搭載するための配線基板としてセラミックスから成る絶縁基体に配線導体を形成したセラミック配線基板がよく知られている。   2. Description of the Related Art Conventionally, a ceramic wiring board in which a wiring conductor is formed on an insulating base made of ceramics is well known as a wiring board for mounting semiconductor elements such as IC and LSI, electronic components, and the like.

このセラミック配線基板は、セラミックグリーンシート(以下、グリーンシートともいう)積層法を採用することによって以下のように製作される。まず、セラミック原料粉末にガラス粉末,有機バインダー,溶剤,可塑剤等を添加混合して泥漿状となし、これをドクターブレード法やカレンダーロール法等によってシート状に成形してグリーンシート(セラミック生シート)を得、グリーンシート表面に金(Au),銀(Ag),パラジウム(Pd),白金(Pt),銅(Cu),タングステン(W),モリブデン(Mo)等の金属粉末に所望のガラス粉末,有機バインダー,溶剤,可塑剤等を添加混合して得られる金属ペーストをスクリーン印刷法により所定パターンに印刷塗布する。しかる後、このグリーンシートを複数枚積層して積層体となすとともに、この積層体を約800〜1600℃の温度で焼成することによって製作される。   This ceramic wiring board is manufactured as follows by employing a ceramic green sheet (hereinafter also referred to as green sheet) lamination method. First, glass powder, organic binder, solvent, plasticizer, etc. are added to the ceramic raw material powder to form a mud, which is then formed into a sheet by the doctor blade method, calendar roll method, etc., and then green sheet (ceramic raw sheet) On the surface of the green sheet, a desired glass as a metal powder such as gold (Au), silver (Ag), palladium (Pd), platinum (Pt), copper (Cu), tungsten (W), molybdenum (Mo) A metal paste obtained by adding and mixing powder, an organic binder, a solvent, a plasticizer and the like is printed and applied in a predetermined pattern by a screen printing method. Thereafter, a plurality of the green sheets are laminated to form a laminate, and the laminate is manufactured by firing at a temperature of about 800 to 1600 ° C.

さらに、抵抗体層を形成するために厚膜印刷法を用いて抵抗体層となるペースを所望の形状で印刷形成し、500〜900℃で焼き付けを行なう。その後、抵抗体層が形成されたセラミック多層基板に保護ガラス層を形成するために、厚膜印刷法を用いてガラスを含むペーストを抵抗体層を覆うようにして印刷塗布し、400〜700℃で焼き付けし形成する。   Further, in order to form the resistor layer, a thick film printing method is used to print and form a pace that becomes the resistor layer in a desired shape, and baking is performed at 500 to 900 ° C. Thereafter, in order to form a protective glass layer on the ceramic multilayer substrate on which the resistor layer is formed, a paste containing glass is printed and applied so as to cover the resistor layer by using a thick film printing method, and 400 to 700 ° C. Bake to form.

また、自動車等用の車載機器等に用いられる配線基板においては、車載機器の高機能化に伴い半導体素子搭載用回路基板(以下、単に回路基板ともいう)に実装されるICチップの発熱量が増加する一途をたどっており、従来よりICチップの発熱を冷却するために回路基板内にサーマルビアを設けてICチップ搭載面と逆の面へ熱を移動させて冷却する方法や、この方法でも熱の放散が不十分な場合は回路基板をグリースを介してアルミニウム(Al)ハウジングや放熱体(ヒートパイプ)等に接着し、Alハウジングや放熱体(ヒートパイプ)等から熱の放散を行なう方法が一般的に採られてきた。   In addition, in a wiring board used in an in-vehicle device for an automobile or the like, the amount of heat generated by an IC chip mounted on a circuit board for mounting a semiconductor element (hereinafter also simply referred to as a circuit board) is increased as the in-vehicle device becomes more sophisticated. In order to cool the heat generation of the IC chip, the method of cooling by moving the heat to the surface opposite to the IC chip mounting surface by providing a thermal via in the circuit board, When heat dissipation is insufficient, the circuit board is bonded to the aluminum (Al) housing or heat radiator (heat pipe) via grease, and heat is dissipated from the Al housing or heat radiator (heat pipe). Has generally been adopted.

このような回路基板は以下のように製造される。まず、焼成されたセラミック多層基板に抵抗体層を形成するために厚膜印刷法を用いて抵抗体層となるペーストを所望の形状に印刷形成し、500〜900℃で焼き付けを行なう。その後、抵抗体層が形成されたセラミック多層基板に保護ガラス層を形成するために、厚膜印刷法を用いてガラスを含むペーストで抵抗体層を覆い所望の形状に印刷塗布し、400〜700℃で焼き付ける。   Such a circuit board is manufactured as follows. First, in order to form a resistor layer on the fired ceramic multilayer substrate, a paste that becomes the resistor layer is printed and formed into a desired shape using a thick film printing method, and is baked at 500 to 900 ° C. Thereafter, in order to form a protective glass layer on the ceramic multilayer substrate on which the resistor layer is formed, the resistor layer is covered with a paste containing glass using a thick film printing method, and is printed and applied in a desired shape. Bake at ℃.

また、その他の製造方法として、焼成されたセラミック多層基板に抵抗体層を形成するために厚膜印刷法を用いて抵抗体層となるペーストを所望の形状に印刷形成し、50〜150℃で乾燥し、引き続き保護ガラス層となるガラスを含むペーストで抵抗体層を覆うようにして印刷塗布し、500〜900℃で抵抗体層および保護ガラス層を同時に焼き付ける方法も広く知られている。
特開平8−153945号公報 特開平8−250623号公報 特開平8−250829号公報
Further, as another manufacturing method, a thick film printing method is used to form a resistor layer on a fired ceramic multilayer substrate, and a paste that becomes the resistor layer is printed and formed in a desired shape at 50 to 150 ° C. A method of drying and coating the resistor layer with a paste containing glass that subsequently becomes a protective glass layer and printing and coating the resistor layer and the protective glass layer simultaneously at 500 to 900 ° C. is also widely known.
JP-A-8-153945 JP-A-8-250623 Japanese Patent Laid-Open No. 8-250829

しかしながら、厚膜印刷法により形成された抵抗体層を有する回路基板においては、抵抗体層を外的な衝撃、湿気、異物から保護するために、抵抗体層を覆う保護ガラス層をコーティングすることが一般的に行なわれている。この構成においては、回路基板をAlハウジングや放熱体に接着した場合、サーマルビアとAlハウジングや放熱体との間に保護ガラス層が存在し熱の伝導を妨げてしまう。一般的な保護ガラス層の熱伝導率は4〜5W/mKであり、サーマルビアの10〜20W/mK、Alハウジングの素材であるAlの40〜50W/mKと比較しても、熱伝導に大きな障害となることが判る。従って、この構成においては、今後の更なるICチップの高発熱化によりICチップから発生する熱を十分に放散できなくなるため、動作中のICチップ自体の温度が上昇してICチップの誤動作や動作停止が生じるという問題点の発生が十分に予想される。   However, in a circuit board having a resistor layer formed by a thick film printing method, a protective glass layer covering the resistor layer is coated to protect the resistor layer from external impact, moisture, and foreign matter. Is generally done. In this configuration, when the circuit board is bonded to the Al housing or the heat radiating body, a protective glass layer exists between the thermal via and the Al housing or the heat radiating body, thereby preventing heat conduction. The thermal conductivity of a general protective glass layer is 4 to 5 W / mK. Compared with 10 to 20 W / mK for thermal vias and 40 to 50 W / mK for Al, which is the material of the Al housing, it is also effective for heat conduction. It turns out that it becomes a big obstacle. Therefore, in this configuration, the heat generated from the IC chip cannot be sufficiently dissipated due to further higher heat generation of the IC chip in the future, so that the temperature of the operating IC chip itself rises and the IC chip malfunctions and operates. The occurrence of the problem of stopping will be fully expected.

また、熱放散を向上させる構成として、サーマルビア下部に保護ガラス層がかからない構成が採用される場合もあるが、この構成では、回路基板をAlハウジングや放熱体に接着した場合、サーマルビアとAlハウジングや放熱体が直接接合されるために熱伝導が比較的良好になる。しかしながら、この構成では、サーマルビア下部に保護ガラス層との段差が生じ凹部が生じる。このため回路基板をAlハウジングや放熱体にグリースで実装する際に、この凹部に気泡を巻き込んでしまう。このため、気泡が巻き込まれた部分に関しては、サーマルビアとAlハウジングや放熱体との間に熱伝導を妨げる気泡が存在することとなり、その結果熱伝導性が大きく低下するという問題点があった。   Moreover, as a configuration for improving heat dissipation, a configuration in which a protective glass layer is not applied to the lower portion of the thermal via may be adopted. However, in this configuration, when the circuit board is bonded to the Al housing or the radiator, the thermal via and the Al Since the housing and the heat radiator are directly joined, heat conduction is relatively good. However, in this configuration, a step with the protective glass layer is formed in the lower portion of the thermal via and a recess is formed. For this reason, when the circuit board is mounted on the Al housing or the heat radiating member with grease, bubbles are caught in the recess. For this reason, there is a problem in that the bubble entrained air bubbles exist between the thermal via and the Al housing or the heat radiating body, and as a result, the heat conductivity is greatly reduced. .

また、サーマルビア下部に保護ガラス層がかからない構成とし、その直下に金属や高熱伝導材料部品を半田等のロウ材やエポキシ樹脂等からなる接着材を介し接合させて凸状部を形成し、気泡を巻込まないようにした構成も取られている。しかしながら、凸状部形成後の伝熱層においては、基板面に複数存在するサーマルビアにそれぞれ取り付けられる伝熱層のコプラナリティー(平坦度)が安定しないため、回路基板がAlハウジングや放熱体に実装された場合、一部の伝熱層がAlハウジングや放熱体に接触せず、その結果熱伝導性が低下するという問題点があった。   In addition, a protective glass layer is not applied to the bottom of the thermal via, and a convex part is formed by joining a metal or a high heat conductive material component directly below it via an adhesive material such as solder or epoxy resin. The structure which did not involve is also taken. However, in the heat transfer layer after the convex portion is formed, the coplanarity (flatness) of the heat transfer layer attached to each of the thermal vias existing on the substrate surface is not stable, so that the circuit board becomes an Al housing or a radiator. When mounted, a part of the heat transfer layer does not come into contact with the Al housing or the radiator, and as a result, there is a problem that the thermal conductivity is lowered.

また、サーマルビア下部直下に金属や高熱伝導材料部品を半田等のロウ材やエポキシ樹脂等からなる接着材を介して予め接合させて凸状部を形成し、その後、抵抗体層を形成する構成も考えられるが、抵抗体層は印刷法で形成されるのが一般的であり、この方法では抵抗体層となるペーストの印刷の際に、伝熱層が凸状部となって突出しているので、抵抗体層となるペーストの印刷厚みが均一にならず、抵抗体層の抵抗値にバラツキを発生させるという問題点がある。   In addition, a configuration in which a metal or high thermal conductive material component is joined in advance via a brazing material such as solder or an adhesive made of an epoxy resin to form a convex portion, and then a resistor layer is formed immediately below the thermal via. However, the resistor layer is generally formed by a printing method, and in this method, the heat transfer layer protrudes as a convex portion when printing the paste to be the resistor layer. Therefore, there is a problem that the printing thickness of the paste serving as the resistor layer is not uniform, and the resistance value of the resistor layer varies.

また、従来の回路基板の製法においては、印刷形成された抵抗体層と、保護ガラス層と、伝熱層とについて、それぞれ焼成を行なうため、エネルギー消費量が大きく環境保護の観点からも適切な製造方法とはいえない。   Further, in the conventional circuit board manufacturing method, the printed resistor body, the protective glass layer, and the heat transfer layer are fired, respectively, so that the energy consumption is large and appropriate from the viewpoint of environmental protection. It is not a manufacturing method.

また、製造工程の流れが抵抗体層の焼成、保護ガラス層の印刷、保護ガラス層の焼成、伝熱層の印刷、伝熱層の焼成となり、印刷工程と焼成工程とが互い違いに進められる。焼成時における印刷された抵抗体層となるペースト、保護ガラス層となるペーストおよび伝熱層となるペーストの挙動は、一般的に収縮や変形を伴うものである。よって、従来の製造方法では焼成された抵抗体層は収縮や変形を起こしており、その上に保護ガラス層を印刷するため、高精度を要求される製品において位置ズレを起こす原因となっていた。   Moreover, the flow of the manufacturing process is firing of the resistor layer, printing of the protective glass layer, firing of the protective glass layer, printing of the heat transfer layer, and firing of the heat transfer layer, and the printing process and the firing process are alternately performed. The behavior of the paste that becomes the printed resistor layer, the paste that becomes the protective glass layer, and the paste that becomes the heat transfer layer during firing is generally accompanied by shrinkage and deformation. Therefore, in the conventional manufacturing method, the fired resistor layer is contracted or deformed, and a protective glass layer is printed thereon, which causes a positional shift in a product requiring high accuracy. .

しかしながら、上記従来の製造方法で製作された回路基板は、今後のICチップの高発熱化によりICチップから発生する熱を十分に放散できなくなることが十分に予想されるため、動作中のICチップ自体の温度が上昇し、ICチップの誤動作や動作停止が発生するという問題点が発生する可能性が高い。その結果、従来の回路基板を用いた機器は、その機能を長期間にわたり正常かつ安定に発揮させることができず、特に車載機器等では人命に関わる事故の原因となる可能性がある。   However, since it is expected that the circuit board manufactured by the above-described conventional manufacturing method cannot sufficiently dissipate the heat generated from the IC chip due to the high heat generation of the IC chip in the future, the IC chip in operation There is a high possibility that the temperature of the device itself rises, causing a problem that the IC chip malfunctions or stops operating. As a result, a device using a conventional circuit board cannot perform its function normally and stably over a long period of time, and may cause a life-threatening accident especially in an in-vehicle device.

本発明は、上記従来技術の問題点を解決すべく完成されたものであり、その目的は、表面に同時焼成された抵抗体層とそれを覆う保護ガラス層とそれに隣接する伝熱層とを有する放熱性が向上した回路基板であって、サーマルビアと熱を放散させるAlハウジングや放熱体とを密接に接合させることによりICチップの熱による誤動作や動作停止を防止することができ、また回路基板を使用した各種電子機器,電子装置の機能を長期間にわたり正常かつ安定にすることができる回路基板を提供することである。   The present invention has been completed to solve the above-mentioned problems of the prior art, and its purpose is to provide a resistor layer co-fired on the surface, a protective glass layer covering the resistor layer, and a heat transfer layer adjacent thereto. It is a circuit board with improved heat dissipation, and it is possible to prevent malfunction and stoppage of operation due to heat of the IC chip by closely bonding the thermal via and the Al housing and heat radiator that dissipate heat. An object of the present invention is to provide a circuit board capable of normalizing and stabilizing the functions of various electronic devices and electronic devices using the board over a long period of time.

本発明の半導体素子搭載用回路基板は、複数の絶縁層が積層されて成るとともに前記絶縁層間に配線導体が形成された絶縁基板と、該絶縁基板の一主面に形成された導体層から成る半導体素子の搭載部と、前記絶縁基板の他主面に形成されるとともに貫通導体を介して前記搭載部に接続されたガラス成分を含む伝熱層と、前記他主面の前記伝熱層に隣接する部位に形成されたガラス成分を含む抵抗体層と、該抵抗体層を覆う保護ガラス層とを具備している半導体素子搭載用回路基板において、前記伝熱層と前記抵抗体層と前記保護ガラス層とは同時焼成されて形成されており、前記伝熱層に含まれるガラス成分の軟化点をT、前記抵抗体層に含まれるガラス成分の軟化点をT、前記保護ガラス層の軟化点をTとしたときに、T>T>Tであることを特徴とする。 A circuit board for mounting a semiconductor element according to the present invention comprises an insulating substrate in which a plurality of insulating layers are laminated and a wiring conductor is formed between the insulating layers, and a conductor layer formed on one main surface of the insulating substrate. A semiconductor element mounting portion, a heat transfer layer formed on the other main surface of the insulating substrate and including a glass component connected to the mounting portion via a through conductor, and the heat transfer layer on the other main surface In a circuit board for mounting a semiconductor element, comprising a resistor layer containing a glass component formed in an adjacent portion, and a protective glass layer covering the resistor layer, the heat transfer layer, the resistor layer, and the The protective glass layer is formed by co-firing, the softening point of the glass component contained in the heat transfer layer is T 1 , the softening point of the glass component contained in the resistor layer is T 2 , and the protective glass layer When T 3 is the softening point of T 1 > T 3 > T 2

本発明の半導体素子搭載用回路基板において、好ましくは、前記Tと前記Tとの差および前記Tと前記Tとの差がそれぞれ30℃以上であることを特徴とする。 In the circuit board for mounting a semiconductor element of the present invention, preferably, the difference between the T 2 and the T 3 and the difference between the T 3 and the T 1 are each 30 ° C. or more.

本発明の半導体素子搭載用回路基板において、好ましくは、前記伝熱層に含まれるガラス粉末の積算平均粒径をD、前記抵抗体層に含まれるガラス粉末の積算平均粒径をD、前記保護ガラス層の粉末の積算平均粒径をDとしたときに、D,D,Dがそれぞれ1.4乃至10.0μm以下であることを特徴とする。 In the circuit board for mounting a semiconductor element of the present invention, preferably, the cumulative average particle diameter of the glass powder contained in the heat transfer layer is D 1 , and the cumulative average particle diameter of the glass powder contained in the resistor layer is D 2 , wherein the integration average particle size of the powder of the protective glass layer is taken as D 3, characterized in that D 1, is D 2, D 3 is 1.4 to 10.0μm or less, respectively.

本発明の半導体素子搭載用回路基板の製造方法は、上記本発明の半導体素子搭載用回路基板の製造方法であって、
(1)前記貫通導体となる貫通孔を形成するとともに前記配線導体および前記搭載部となる導体ペーストパターンをそれぞれ形成したセラミックグリーンシートを複数積層し、前記貫通孔に導体ペーストを充填し焼成してセラミック多層基板を作製する工程と、
(2)前記セラミック多層基板の他主面に前記貫通導体の端面に接するように前記伝熱層となるガラス成分を含むペースト層を厚膜印刷法で形成するとともに、前記他主面の前記伝熱層に隣接する部位に前記抵抗体層となるガラス成分を含むペースト層を厚膜印刷法で形成した後、前記抵抗体層を覆って前記保護ガラス層となるガラスペースト層を厚膜印刷法で形成する工程と、
(3)前記伝熱層となるガラス成分を含むペースト層、前記抵抗体層となるガラス成分を含むペースト層および前記保護ガラス層となるガラスペースト層を同時焼成する工程と
を具備していることを特徴とする。
A method of manufacturing a circuit board for mounting a semiconductor element of the present invention is a method of manufacturing a circuit board for mounting a semiconductor element of the present invention,
(1) A plurality of ceramic green sheets each having a through-hole to be the through-conductor and formed with a wiring paste and a conductive paste pattern to be the mounting portion are laminated, and the through-hole is filled with a conductor paste and fired. Producing a ceramic multilayer substrate;
(2) A paste layer containing a glass component serving as the heat transfer layer is formed on the other main surface of the ceramic multilayer substrate so as to be in contact with the end surface of the through conductor by a thick film printing method, and the transfer of the other main surface is performed. After forming the paste layer containing the glass component to be the resistor layer on the portion adjacent to the thermal layer by the thick film printing method, the glass paste layer to be the protective glass layer is covered with the thick film printing method. And forming with
(3) A step of co-firing a paste layer containing a glass component serving as the heat transfer layer, a paste layer containing a glass component serving as the resistor layer, and a glass paste layer serving as the protective glass layer. It is characterized by.

本発明の回路基板は、絶縁基板の一主面に形成された導体層から成る半導体素子の搭載部と、絶縁基板の他主面に形成されるとともに貫通導体を介して搭載部に接続されたガラス成分を含む伝熱層と、他主面の伝熱層に隣接する部位に形成されたガラス成分を含む抵抗体層と、抵抗体層を覆う保護ガラス層とを具備していることから、熱の伝導を妨げる保護ガラス層が、サーマルビアとしての貫通導体と熱を放散させる外部のAlハウジングや放熱体との間に存在しないため、半導体素子から発生した熱を効率良く外部に放散することができる。   The circuit board according to the present invention is formed on the other main surface of the insulating substrate, and is connected to the mounting portion via the through conductor while being mounted on the other main surface of the insulating substrate. Because it comprises a heat transfer layer containing a glass component, a resistor layer containing a glass component formed at a site adjacent to the heat transfer layer on the other main surface, and a protective glass layer covering the resistor layer, Since the protective glass layer that prevents heat conduction does not exist between the through conductor as a thermal via and the external Al housing or heat radiator that dissipates heat, the heat generated from the semiconductor element can be efficiently dissipated to the outside. Can do.

また、貫通導体下部に接合された伝熱層表面を保護ガラス層表面よりも突出させることもできることから、回路基板をAlハウジングや放熱体にグリースを用い接合する際に配線導体が気泡を巻込むこともなく、伝熱層とAlハウジングや放熱体とを良好に接合することが可能となり、その結果、半導体素子から発生した熱を効率良く放散することが可能となる。   In addition, since the surface of the heat transfer layer bonded to the lower part of the through conductor can be protruded from the surface of the protective glass layer, the wiring conductor entrains air bubbles when the circuit board is bonded to the Al housing or heat radiator using grease. Without any problem, it is possible to satisfactorily join the heat transfer layer to the Al housing or the heat radiating body. As a result, it is possible to efficiently dissipate the heat generated from the semiconductor element.

また、抵抗体層と保護ガラス層と伝熱層とが同時焼成で形成されており、伝熱層に含まれるガラス成分の軟化点をT、抵抗体層に含まれるガラス成分の軟化点をT、保護ガラス層の軟化点をTとしたときに、T>T>Tであることから、伝熱層を1度の焼成工程で効率良く回路基板に接合できるとともに、抵抗体層および保護ガラス層も同時焼成するため、これらを一体的に形成して強固な接合構造を得ることができる。さらに、厚膜印刷法で複数の伝熱層を形成した場合においても、各々の伝熱層の平坦度は安定しており、回路基板がAlハウジングや放熱体に実装された場合に伝熱層とAlハウジングや放熱体との間に隙間が生じることを防ぐことができる。 Moreover, the resistor layer, the protective glass layer, and the heat transfer layer are formed by simultaneous firing, and the softening point of the glass component contained in the heat transfer layer is T 1 , and the softening point of the glass component contained in the resistor layer is When T 2 is T 3 and the softening point of the protective glass layer is T 3 , T 1 > T 3 > T 2 , so that the heat transfer layer can be efficiently bonded to the circuit board in one baking step, and resistance Since the body layer and the protective glass layer are also fired at the same time, they can be integrally formed to obtain a strong bonding structure. Furthermore, even when multiple heat transfer layers are formed by thick film printing, the flatness of each heat transfer layer is stable, and when the circuit board is mounted on an Al housing or radiator, the heat transfer layer And a gap between the Al housing and the heat radiating body can be prevented.

本発明の半導体素子搭載用回路基板は、好ましくはTとTとの差およびTとTとの差がそれぞれ30℃以上であることから、保護ガラス層が抵抗体層中へ流れ込むことによる抵抗値上昇や、伝熱層中のフィラーが保護ガラス層内に流れ込み保護ガラス層の絶縁抵抗値を低下させることを防ぐことができる。 In the circuit board for mounting a semiconductor element of the present invention, preferably, the difference between T 1 and T 3 and the difference between T 3 and T 2 are 30 ° C. or more, respectively, so that the protective glass layer flows into the resistor layer. It is possible to prevent the resistance value from increasing and the filler in the heat transfer layer from flowing into the protective glass layer and decreasing the insulation resistance value of the protective glass layer.

また本発明の半導体素子搭載用回路基板は、好ましくは伝熱層に含まれるガラス粉末の積算平均粒径をD、前記抵抗体層に含まれるガラス粉末の積算平均粒径をD、前記保護ガラス層の粉末の積算平均粒径をDとしたときに、D,D,Dがそれぞれ1.4μm以上であることから、ガラス粉末の表面エネルギーが特異的に増大し、より低温で軟化することが無い。またガラス粉末のD,D,Dそれぞれ10.0μm以下であることから、セラミック配線基板で一般的に形成される30〜500μm幅の配線をスクリーン印刷法で印刷する場合にも凸凹の無い配線面が得られる。ここでの積算平均粒径とは、ガラス粉末の粒径を細かい方から数えて数量50%になったときの粒径を示す。その結果、半導体素子から発生する熱を十分に放散できるため、動作している半導体素子自体の温度が上昇して半導体素子の誤動作や動作停止が発生するという問題も防止できる回路基板を製造できるので、この回路基板を用いた各種電子機器,電子装置を長期間にわたり正常かつ安定に作動させることが可能となる。 In the circuit board for mounting a semiconductor element of the present invention, preferably, the integrated average particle diameter of the glass powder contained in the heat transfer layer is D 1 , the integrated average particle diameter of the glass powder contained in the resistor layer is D 2 , the cumulative average particle size of the powder of the protective glass layer is taken as D 3, since the D 1, D 2, D 3 is respectively 1.4μm or more, the surface energy of the glass powder is specifically increased, more No softening at low temperatures. Further, since each of D 1 , D 2 , and D 3 of the glass powder is 10.0 μm or less, it is uneven even when a 30 to 500 μm wide wiring generally formed on a ceramic wiring substrate is printed by a screen printing method. No wiring surface is obtained. The cumulative average particle diameter here indicates the particle diameter when the particle diameter of the glass powder is counted from the finer and the quantity reaches 50%. As a result, since the heat generated from the semiconductor element can be sufficiently dissipated, it is possible to manufacture a circuit board that can prevent problems such as a malfunction of the semiconductor element and a stoppage of operation due to a rise in the temperature of the operating semiconductor element itself. Various electronic devices and electronic devices using this circuit board can be operated normally and stably over a long period of time.

本発明の半導体素子搭載用回路基板の製造方法は、
(1)貫通導体となる貫通孔を形成するとともに配線導体および搭載部となる導体ペーストパターンをそれぞれ形成したセラミックグリーンシートを複数積層し、貫通孔に導体ペーストを充填し焼成してセラミック多層基板を作製する工程と、
(2)セラミック多層基板の他主面に貫通導体の端面に接するように伝熱層となるガラス成分を含むペースト層を厚膜印刷法で形成するとともに、他主面の伝熱層に隣接する部位に抵抗体層となるガラス成分を含むペースト層を厚膜印刷法で形成した後、抵抗体層を覆って保護ガラス層となるガラスペースト層を厚膜印刷法で形成する工程と、
(3)伝熱層となるガラス成分を含むペースト層、抵抗体層となるガラス成分を含むペースト層および保護ガラス層となるガラスペースト層を同時焼成する工程と
を具備しており、伝熱層となるガラス成分を含むペースト層、抵抗体層となるガラス成分を含むペースト層および保護ガラス層となるガラスペースト層を同時焼成する工程を有していることから、焼成工程が1回で済み、エネルギー消費量が削減でき今後の環境保護の流れにそった製造方法である。また、焼成による収縮変形や寸法変化の影響がない状態で、抵抗体層と保護ガラス層と伝熱層との位置決めができ、これらの位置精度の高い回路基板を製造し得る製造方法である。
The method for manufacturing a circuit board for mounting a semiconductor element of the present invention includes:
(1) A ceramic multilayer substrate is formed by stacking a plurality of ceramic green sheets in which a through hole to be a through conductor is formed and a conductor paste pattern to be a wiring conductor and a mounting portion, respectively, and filling the through hole with a conductor paste and firing. A manufacturing process;
(2) A paste layer containing a glass component serving as a heat transfer layer is formed on the other main surface of the ceramic multilayer substrate so as to be in contact with the end surface of the through conductor, and is adjacent to the heat transfer layer on the other main surface. Forming a paste layer containing a glass component to be a resistor layer at a site by a thick film printing method, and then forming a glass paste layer to be a protective glass layer by covering the resistor layer by a thick film printing method;
(3) a step of co-firing a paste layer containing a glass component to be a heat transfer layer, a paste layer containing a glass component to be a resistor layer, and a glass paste layer to be a protective glass layer; Since there is a step of co-firing a paste layer containing a glass component to become, a paste layer containing a glass component to be a resistor layer and a glass paste layer to be a protective glass layer, the firing step is only once, This is a manufacturing method that can reduce energy consumption and follow the trend of environmental protection in the future. In addition, the resistor layer, the protective glass layer, and the heat transfer layer can be positioned without being affected by shrinkage deformation or dimensional change due to firing, and a manufacturing method capable of manufacturing a circuit board with high positional accuracy.

次に、本発明の半導体素子搭載用回路基板を添付図面に基づき説明する。   Next, a circuit board for mounting a semiconductor device according to the present invention will be described with reference to the accompanying drawings.

図1は本発明の回路基板の実施の形態の一例を示す断面図である。また、図2は従来の回路基板の一例を示す断面図である。また、図3は本発明の回路基板がAlハウジングに実装された場合の実施の形態の一例を示す断面図である。図1〜図3において、1は絶縁層、2は配線導体、3は貫通導体、4は伝熱層、5は抵抗体層、6は抵抗体層を保護する保護ガラス層、7は半導体素子、8はAlハウジングや放熱体である。   FIG. 1 is a sectional view showing an example of an embodiment of a circuit board according to the present invention. FIG. 2 is a cross-sectional view showing an example of a conventional circuit board. FIG. 3 is a cross-sectional view showing an example of an embodiment in which the circuit board of the present invention is mounted on an Al housing. 1 to 3, 1 is an insulating layer, 2 is a wiring conductor, 3 is a through conductor, 4 is a heat transfer layer, 5 is a resistor layer, 6 is a protective glass layer for protecting the resistor layer, and 7 is a semiconductor element. , 8 is an Al housing or a radiator.

本発明の回路基板は、複数の絶縁層1が積層されて成るとともに絶縁層1間に配線導体2が形成された絶縁基板と、絶縁基板の一主面に形成された導体層から成る半導体素子7の搭載部と、絶縁基板の他主面に形成されるとともに貫通導体3を介して搭載部に接続されたガラス成分を含む伝熱層4と、他主面の伝熱層4に隣接する部位に形成されたガラス成分を含む抵抗体層5と、抵抗体層5を覆う保護ガラス層6とを具備し、伝熱層4と抵抗体層5と保護ガラス層6とは同時焼成されて形成されており、伝熱層4に含まれるガラス成分の軟化点をT、抵抗体層5に含まれるガラス成分の軟化点をT、保護ガラス層6の軟化点をTとしたときに、T>T>Tである。 A circuit board according to the present invention comprises a semiconductor element comprising a plurality of insulating layers 1 laminated and an insulating substrate having a wiring conductor 2 formed between the insulating layers 1 and a conductor layer formed on one main surface of the insulating substrate. 7, adjacent to the heat transfer layer 4 formed on the other main surface of the insulating substrate and including the glass component connected to the mount portion through the through conductor 3, and the heat transfer layer 4 on the other main surface. The resistor layer 5 containing the glass component formed in the part and the protective glass layer 6 covering the resistor layer 5 are provided, and the heat transfer layer 4, the resistor layer 5 and the protective glass layer 6 are simultaneously fired. When the softening point of the glass component contained in the heat transfer layer 4 is T 1 , the softening point of the glass component contained in the resistor layer 5 is T 2 , and the softening point of the protective glass layer 6 is T 3. T 1 > T 3 > T 2 .

なお、本発明において、Tは720℃程度、Tは560℃程度、Tは630℃程度である。 In the present invention, T 1 is about 720 ° C., T 2 is about 560 ° C., and T 3 is about 630 ° C.

本発明において、絶縁層1は、酸化アルミニウム質焼結体,窒化アルミニウム質焼結体,ムライト質焼結体,炭化珪素質焼結体,窒化珪素質焼結体,ガラスセラミックス質焼結体等のセラミックスから成る電気絶縁材料である。   In the present invention, the insulating layer 1 includes an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, a silicon carbide sintered body, a silicon nitride sintered body, a glass ceramic sintered body, and the like. It is an electrically insulating material made of ceramics.

ガラスセラミックス質焼結体はガラス成分とフィラー成分とから成るが、ガラス成分としては、例えばSiO−B系、SiO−B−Al系、SiO−B−Al−MO系(但し、MはCa,Sr,Mg,BaまたはZnを示す)、SiO−Al−MO−MO系(但し、MおよびMは同一または異なっており、Ca,Sr,Mg,BaまたはZnを示す)、SiO−B−Al−MO−MO系(但し、MおよびMは上記と同じである)、SiO−B−M O系(但し、MはLi、NaまたはKを示す)、SiO−B−Al−M O系(但し、Mは上記と同じである)、Pb系ガラス、Bi系ガラス等が挙げられる。 The glass ceramic sintered body is composed of a glass component and a filler component. Examples of the glass component include SiO 2 —B 2 O 3 , SiO 2 —B 2 O 3 —Al 2 O 3 , and SiO 2 —B. 2 O 3 —Al 2 O 3 —MO system (wherein M represents Ca, Sr, Mg, Ba or Zn), SiO 2 —Al 2 O 3 —M 1 O—M 2 O system (where M 1 And M 2 are the same or different and represent Ca, Sr, Mg, Ba or Zn), SiO 2 —B 2 O 3 —Al 2 O 3 —M 1 O—M 2 O system (where M 1 and M 2 is the same as above), SiO 2 —B 2 O 3 —M 3 2 O system (where M 3 represents Li, Na or K), SiO 2 —B 2 O 3 —Al 2 O 3 -M 3 2 O system (where M 3 is the same as above), Pb system gas Glass, Bi glass, and the like.

また、フィラー成分としては、例えばAl,SiO,ZrOとアルカリ土類金属酸化物との複合酸化物、TiOとアルカリ土類金属酸化物との複合酸化物、AlおよびSiOから選ばれる少なくとも1種を含む複合酸化物(例えばスピネル,ムライト,コージェライト)等が挙げられる。 Examples of the filler component include a composite oxide of Al 2 O 3 , SiO 2 , ZrO 2 and an alkaline earth metal oxide, a composite oxide of TiO 2 and an alkaline earth metal oxide, Al 2 O 3. And composite oxides containing at least one selected from SiO 2 (for example, spinel, mullite, cordierite) and the like.

配線導体2および貫通導体(サーマルビア)3は、例えば、タングステン(W),モリブデン(Mo),金(Au),銀(Ag),パラジウム(Pd),白金(Pt),ニッケル(Ni),銅(Cu),等の金属材料粉末を主成分とするメタライズ金属からなる。このメタライズ金属は導体ペーストを焼結させることにより得られるが、導体ペーストの焼成収縮とガラスセラミックスの焼成収縮とを合わせたり、ガラスセラミックス質焼結体から成る絶縁層1との接合強度を確保したりするために、導体ペースト中にガラス粉末やセラミック粉末を添加してもよく、配線導体2,貫通導体3は、それぞれ添加するガラス粉末やセラミック粉末の種類および添加量が異なっていてもよい。   The wiring conductor 2 and the through conductor (thermal via) 3 are, for example, tungsten (W), molybdenum (Mo), gold (Au), silver (Ag), palladium (Pd), platinum (Pt), nickel (Ni), It consists of the metallized metal which has metal material powders, such as copper (Cu), as a main component. This metallized metal can be obtained by sintering a conductor paste. The metallized metal is combined with the firing shrinkage of the conductor paste and the firing shrinkage of the glass ceramic, and ensures the bonding strength with the insulating layer 1 made of a glass ceramic sintered body. Therefore, glass powder or ceramic powder may be added to the conductor paste, and the wiring conductor 2 and the through conductor 3 may have different types and amounts of glass powder and ceramic powder added.

抵抗体層5は、配線導体2に接続されてその抵抗値を調整するためのものであり、二酸化ルテニウム(RuO)や銀パラジウム(Ag−Pd)合金、ランタンボライト(LaB)、二酸化錫(SnO)、銅ニッケル(Cu−Ni)合金等を主成分とし、バインダーと、SiO−B系、SiO−B−Al系、Bi−SiO系、ZnO−SiO−B系、SiO−B系ガラスを混練してペーストとし、厚膜印刷法を用いて所望の形状に形成して予め50〜150℃で乾燥させる。 The resistor layer 5 is connected to the wiring conductor 2 to adjust its resistance value, and includes ruthenium dioxide (RuO 2 ), silver palladium (Ag—Pd) alloy, lanthanum bolite (LaB 5 ), dioxide dioxide. Main component is tin (SnO 2 ), copper nickel (Cu—Ni) alloy, etc., binder, SiO 2 —B 2 O 3 system, SiO 2 —B 2 O 3 —Al 2 O 3 system, Bi 2 O 3 -SiO 2 -based, ZnO-SiO 2 -B 2 O 3 -based, SiO 2 -B 2 O 3 -based glass are kneaded to form a paste, formed into a desired shape using a thick film printing method, and 50 to 150 in advance. Dry at ℃.

保護ガラス層6は、SiO−B系、SiO−B−Al系、Bi−SiO系、ZnO−SiO−B系、SiO−B系ガラスを主成分とし、バインダーと混練してペースト状とし、厚膜印刷法を用いて所望の形状に形成して予め乾燥させる。 The protective glass layer 6 is composed of SiO 2 —B 2 O 3 system, SiO 2 —B 2 O 3 —Al 2 O 3 system, Bi 2 O 3 —SiO 2 system, ZnO—SiO 2 —B 2 O 3 system, SiO 2 The main component is 2- B 2 O 3 -based glass, which is kneaded with a binder to form a paste, is formed into a desired shape using a thick film printing method, and is dried in advance.

伝熱層4は、銅(Cu)や銀(Ag)、アルミナ(Al)、ダイヤモンド(C)等を主成分とし、バインダーと、SiO−B系、SiO−B−Al系、Bi−SiO系、ZnO−SiO−B系、SiO−B系ガラスとを混練してペーストとし、厚膜印刷法を用いて所望の形状に形成する。 The heat transfer layer 4 is mainly composed of copper (Cu), silver (Ag), alumina (Al 2 O 3 ), diamond (C), etc., and includes a binder, a SiO 2 —B 2 O 3 system, and SiO 2 —B. 2 O 3 —Al 2 O 3 series, Bi 2 O 3 —SiO 2 series, ZnO—SiO 2 —B 2 O 3 series, SiO 2 —B 2 O 3 series glass are kneaded to form a paste and thick film printing The desired shape is formed using a method.

そして、抵抗体層5と保護ガラス層6と伝熱層4とは、約850℃で同時焼成によって形成される。   The resistor layer 5, the protective glass layer 6, and the heat transfer layer 4 are formed by simultaneous firing at about 850 ° C.

ここで、下記の表1は、本発明の回路基板を構成するガラスセラミックス質焼結体から成る絶縁基板のガラス成分の組成の種類を示すものである。また表2は、本発明の回路基板に形成した抵抗体層5と保護ガラス層6とのガラス成分の組成(表1の種類A〜Lを使用)の組み合わせによる抵抗体層5の抵抗値上昇について確認した結果を示すものである。また表3は、本発明の回路基板に形成した伝熱層4と保護ガラス層6とのガラス成分の組成(表1の種類A〜Lを使用)の組み合わせによる、保護ガラス層6内に伝熱層4中のフィラーの溶出有無の確認、および伝熱層4中のフィラーの溶出の影響によって抵抗体層5の所望の抵抗値が良好か否かについて確認した結果を示すものである。   Here, the following Table 1 shows the types of compositions of the glass components of the insulating substrate made of the glass ceramic sintered body constituting the circuit board of the present invention. Table 2 also shows an increase in the resistance value of the resistor layer 5 depending on the combination of the glass component compositions (using types A to L in Table 1) of the resistor layer 5 and the protective glass layer 6 formed on the circuit board of the present invention. The result confirmed about is shown. Table 3 also shows that the heat transfer layer 4 and the protective glass layer 6 formed on the circuit board of the present invention are transferred into the protective glass layer 6 by the combination of the glass component compositions (use types A to L in Table 1). The result of having confirmed whether the desired resistance value of the resistor layer 5 was favorable by the confirmation of the elution presence or absence of the filler in the heat layer 4, and the influence of the elution of the filler in the heat transfer layer 4 is shown.

また、表4は、伝熱層4と抵抗体層5と保護ガラス層6のガラス成分について、ガラス粉末の積算平均粒径と軟化温度の変化を示差熱分析(DTA)で測定および算出したものである。表5は、伝熱層4と抵抗体層5と保護ガラス層6のガラス成分について、ガラス粉末の積算平均粒径と、それぞれのスクリーン印刷後に80℃程度で乾燥を行い、その後の表面粗さ(最大高さ:Rmax)を測定したものである。   Table 4 shows the glass components of the heat transfer layer 4, the resistor layer 5, and the protective glass layer 6, measured and calculated by differential thermal analysis (DTA) for changes in the cumulative average particle size and softening temperature of the glass powder. It is. Table 5 shows the accumulated average particle diameter of the glass powder and the surface roughness after the screen printing for the glass components of the heat transfer layer 4, the resistor layer 5, and the protective glass layer 6, and the subsequent surface roughness. (Maximum height: Rmax) is measured.

なお、表3において、抵抗体層5の抵抗値変化が所望の抵抗値に対して10%以下となった場合を○とし、10%を超える場合を×とした。

Figure 2005039163
In Table 3, the case where the change in the resistance value of the resistor layer 5 was 10% or less with respect to the desired resistance value was marked with ◯, and the case where it exceeded 10% was marked with x.
Figure 2005039163

Figure 2005039163
Figure 2005039163

Figure 2005039163
Figure 2005039163

Figure 2005039163
Figure 2005039163

Figure 2005039163
Figure 2005039163

そして、本発明の回路基板は以下のようにして作製される。まず、本発明の回路基板の製造方法は、
(1)貫通導体3となる貫通孔を形成するとともに配線導体2および搭載部となる導体ペーストパターンをそれぞれ形成したセラミックグリーンシートを複数積層し、貫通孔に導体ペーストを充填し焼成してセラミック多層基板を作製する工程と、
(2)セラミック多層基板の他主面に貫通導体3の端面に接するように伝熱層4となるガラス成分を含むペースト層を厚膜印刷法で形成するとともに、他主面の伝熱層4に隣接する部位に抵抗体層5となるガラス成分を含むペースト層を厚膜印刷法で形成した後、抵抗体層5を覆って保護ガラス層6となるガラスペースト層を厚膜印刷法で形成する工程と、
(3)伝熱層4となるガラス成分を含むペースト層、抵抗体層5となるガラス成分を含むペースト層および保護ガラス層6となるガラスペースト層を同時焼成する工程とを具備しているものである。
And the circuit board of this invention is produced as follows. First, a method for manufacturing a circuit board according to the present invention includes:
(1) A ceramic multilayer in which a plurality of ceramic green sheets each having a through hole to be a through conductor 3 and a wiring paste 2 and a conductive paste pattern to be a mounting portion are stacked, the conductive paste is filled in the through hole, and fired. Producing a substrate;
(2) A paste layer containing a glass component to be the heat transfer layer 4 is formed on the other main surface of the ceramic multilayer substrate so as to be in contact with the end surface of the through conductor 3 by a thick film printing method, and the heat transfer layer 4 on the other main surface After forming the paste layer containing the glass component that becomes the resistor layer 5 in the portion adjacent to the thick film printing method, the glass paste layer that covers the resistor layer 5 and becomes the protective glass layer 6 is formed by the thick film printing method. And a process of
(3) A step of co-firing a paste layer containing a glass component to be the heat transfer layer 4, a paste layer containing a glass component to be the resistor layer 5, and a glass paste layer to be the protective glass layer 6 It is.

そして、例えば絶縁層1がガラスセラミックス質焼結体から成る場合、まずセラミック粉末,ガラス粉末等の原料粉末に所望の有機バインダー,可塑剤,有機溶剤等を添加混合して泥漿状となし、これを従来周知のドクターブレード法やカレンダーロール法によりシート状に成形してグリーンシートを作製する。また、銅や銀等の低融点金属粉末に所望の有機溶剤,溶媒を添加混合して導体ペーストを作製する。   For example, when the insulating layer 1 is made of a glass ceramic sintered body, first, a desired organic binder, plasticizer, organic solvent, etc. are added to and mixed with raw material powders such as ceramic powder and glass powder to form a slurry. Is formed into a sheet shape by a conventionally known doctor blade method or calendar roll method to produce a green sheet. Also, a conductor paste is prepared by adding and mixing a desired organic solvent and solvent to a low melting point metal powder such as copper or silver.

次に、グリーンシートに、例えば打ち抜き法により層間貫通導体や貫通導体3を形成するための貫通孔および配線パターン状の溝を形成し、例えばスクリーン印刷法により、その貫通孔に導体ペーストを充填し、続いてその他の配線導体2について各層表部に所定の回路パターンとなるように導体ペーストを印刷する。これら導体ペーストが印刷されたグリーンシートを積層し、必要に応じて50〜100℃の温度で3〜200MPaの圧力で圧着し、約800〜1000℃の温度で焼成する。   Next, through holes and wiring pattern-like grooves for forming interlayer through conductors and through conductors 3 are formed on the green sheet, for example, by punching, and the through holes are filled with a conductive paste, for example, by screen printing. Subsequently, a conductor paste is printed so that a predetermined circuit pattern is formed on the surface of each layer of the other wiring conductors 2. The green sheets on which these conductor pastes are printed are stacked, and if necessary, pressed at a temperature of 50 to 100 ° C. and a pressure of 3 to 200 MPa, and fired at a temperature of about 800 to 1000 ° C.

さらに、セラミック多層基板の表面に、二酸化ルテニウム(RuO)や銀パラジウム(Ag−Pd)合金等を主成分としガラス成分を含む抵抗体層5となるペーストを、所望の形状に厚膜印刷法を用いてペースト層を形成し、50〜150℃で乾燥させる。その後、抵抗体層5が形成されたセラミック多層基板に保護ガラス層6を形成するために、厚膜印刷法を用いてガラスを主成分とするガラスペーストを抵抗体層5を覆うようにして印刷形成し、50〜150℃で乾燥させる。さらに、銅(Cu)、銀(Ag)、アルミナ(Al)、ダイヤモンド(C)等を主成分としガラス成分を含む伝熱層4となるペーストを、所望の形状に厚膜印刷法を用いて形成し、500〜900℃で焼成する。 Furthermore, a thick film printing method is applied to the surface of the ceramic multilayer substrate to form a resistor layer 5 containing a glass component mainly composed of ruthenium dioxide (RuO 2 ), silver palladium (Ag—Pd) alloy or the like in a desired shape. A paste layer is formed using and dried at 50 to 150 ° C. Thereafter, in order to form the protective glass layer 6 on the ceramic multilayer substrate on which the resistor layer 5 is formed, a glass paste mainly composed of glass is printed so as to cover the resistor layer 5 by using a thick film printing method. Form and dry at 50-150 ° C. Furthermore, a thick film printing method is used to paste a paste that becomes the heat transfer layer 4 containing a glass component mainly composed of copper (Cu), silver (Ag), alumina (Al 2 O 3 ), diamond (C) or the like into a desired shape. And baked at 500 to 900 ° C.

その後、回路基板の表面に露出する配線導体2や貫通導体3の表面に、腐食防止等のためにニッケルめっき、パラジウムめっきおよび金めっき等を被着させるとよい。   Thereafter, nickel plating, palladium plating, gold plating, or the like may be applied to the surface of the wiring conductor 2 or the through conductor 3 exposed on the surface of the circuit board to prevent corrosion.

上記のように製造された本発明の回路基板は、熱の伝導を妨げる保護ガラス層6が、貫通導体3と外部の熱放散用のAlハウジングや放熱体8との間に存在しない構成となるため、半導体素子7から発生した熱を効率良く放散することが可能となる。   The circuit board of the present invention manufactured as described above has a configuration in which the protective glass layer 6 that prevents heat conduction does not exist between the through conductor 3 and the external heat dissipation Al housing or the radiator 8. Therefore, the heat generated from the semiconductor element 7 can be efficiently dissipated.

また、貫通導体3下端面に接合された伝熱層4が保護ガラス層6面に対し凸になることが可能なことから、Alハウジングや放熱体8にグリースを用いて接合する場合に貫通導体3下部が気泡を巻込むことも無く、伝熱層4とAlハウジングや放熱体8とを良好に接合することができ、その結果、半導体素子7から発生した熱を効率良く放散することが可能となる。   Further, since the heat transfer layer 4 bonded to the lower end surface of the through conductor 3 can be convex with respect to the surface of the protective glass layer 6, the through conductor is used when bonding to the Al housing or the radiator 8 using grease. 3 The lower part does not entrap air bubbles, and the heat transfer layer 4 and the Al housing or the heat radiating body 8 can be joined well, and as a result, the heat generated from the semiconductor element 7 can be efficiently dissipated. It becomes.

また、抵抗体層5と保護ガラス層6と伝熱層4とが同時焼成され、伝熱層に含まれるガラス成分の軟化点をT、抵抗体層に含まれるガラス成分の軟化点をT、保護ガラス層の軟化点をTとしたときに、T>T>Tであることにより、伝熱層4を1度の焼成工程で効率良く接合できるとともに、抵抗体層5と保護ガラス層6と伝熱層4とが同時焼成により一体的に形成されて強固な接合構造を得ることができる。さらに、厚膜印刷法で複数の伝熱層4を形成した場合においても、各々の伝熱層4の平坦度は安定しており、回路基板がAlハウジングや放熱体に実装された場合に伝熱層4とAlハウジングや放熱体との間に隙間が生じることを防ぐことができる。 Also, is the resistor layer 5 and the protective glass layer 6 and the heat transfer layer 4 is co-fired, the softening point of the glass component contained in the heat transfer layer T 1, the softening point of the glass component contained in the resistive layer T 2. When T 1 > T 3 > T 2 when the softening point of the protective glass layer is T 3 , the heat transfer layer 4 can be efficiently joined in one firing step, and the resistor layer 5 Further, the protective glass layer 6 and the heat transfer layer 4 are integrally formed by simultaneous firing, so that a strong bonding structure can be obtained. Further, even when the plurality of heat transfer layers 4 are formed by the thick film printing method, the flatness of each heat transfer layer 4 is stable, and when the circuit board is mounted on an Al housing or a heat radiator, the heat transfer is performed. It is possible to prevent a gap from being generated between the heat layer 4 and the Al housing or the heat radiator.

本発明の回路基板において、TとTとの差およびTとTとの差がそれぞれ30℃以上であることが好ましく、この場合、保護ガラス層6が抵抗体層5中へ流れ込むことによる抵抗値上昇や、伝熱層4中のフィラーが保護ガラス層6内に流れ込み保護ガラス層6の絶縁抵抗値を低下させることもなくなる。 In the circuit board of the present invention, the difference between T 1 and T 3 and the difference between T 3 and T 2 are each preferably 30 ° C. or more. In this case, the protective glass layer 6 flows into the resistor layer 5. Therefore, the resistance value is not increased, and the filler in the heat transfer layer 4 does not flow into the protective glass layer 6 to reduce the insulation resistance value of the protective glass layer 6.

一方、TとTとの差が30℃未満の場合、抵抗体層5中のガラスが粉末状の非常に疎の状態で保護ガラス層6が溶融する。これにより、保護ガラス層6が抵抗体層5中に含まれる金属粒子間に溶け込むため、抵抗体層5の抵抗値を上昇させることとなる。また、溶け込み量が多い場合、抵抗体層5の導電性が劣化して絶縁体に近くなることがある。 On the other hand, when the difference between T 2 and T 3 is less than 30 ° C., the protective glass layer 6 melts in a very sparse state where the glass in the resistor layer 5 is powdery. Thereby, since the protective glass layer 6 melt | dissolves between the metal particles contained in the resistor layer 5, the resistance value of the resistor layer 5 will be raised. Moreover, when there is much penetration amount, the electroconductivity of the resistor layer 5 may deteriorate and it may become close to an insulator.

また、TとTとの差が30℃未満の場合、保護ガラス層6中のガラスが粉末状の非常に疎の状態で伝熱層4中のガラスが溶融する。これにより、伝熱層4中のガラスがフィラーと共に保護ガラス層6内に溶け込むため、保護層として絶縁を保つための保護ガラス層6の絶縁抵抗値が低下する。また、溶け込み量が多い場合、保護ガラス層6で保護されている回路基板表面の配線導体2同士の間で電気的短絡が発生しやすくなる。 When the difference between T 3 and T 1 is less than 30 ° C., the glass in the heat transfer layer 4 is melted in a very sparse state where the glass in the protective glass layer 6 is powdery. Thereby, since the glass in the heat-transfer layer 4 melts in the protective glass layer 6 together with the filler, the insulation resistance value of the protective glass layer 6 for maintaining insulation as the protective layer is lowered. Moreover, when there is much melt | dissolution amount, it becomes easy to generate | occur | produce an electrical short circuit between the wiring conductors 2 of the circuit board surface protected with the protective glass layer 6. FIG.

本発明の回路基板において、好ましくはTとTとの差およびTとTとの差がそれぞれ30℃以上であることにより、今後半導体素子7が高発熱化したとしても、半導体素子7から発生する熱を十分に放散できるため、動作している半導体素子7自体の温度が上昇してその誤動作や動作停止が発生するという問題を防止することができる。 In the circuit board of the present invention, preferably, the difference between T 2 and T 3 and the difference between T 3 and T 1 are 30 ° C. or more, respectively. 7 can sufficiently dissipate heat, so that it is possible to prevent a problem that the temperature of the operating semiconductor element 7 itself rises to cause malfunction or stoppage of operation.

一般的にこのような回路基板に使用される粉末ガラスの積算平均粒径は1.0〜20.0μm程度であるが、本発明の回路基板においては、好ましくはD,D,Dがそれぞれ1.4μm以上であることにより、ガラス粉末の表面エネルギーが特異的に増大して、T,T,Tがより低温になり、その結果、保護ガラス層6が抵抗体層5中へ流れ込むことによる抵抗値上昇や、伝熱層4中のフィラーが保護ガラス層6内に流れ込み保護ガラス層6の絶縁抵抗値を低下させることがなくなる。 Generally, the cumulative average particle size of the powder glass used for such a circuit board is about 1.0 to 20.0 μm. However, in the circuit board of the present invention, D 1 , D 2 , D 3 are preferable. Is 1.4 μm or more, the surface energy of the glass powder is specifically increased, and T 1 , T 2 , T 3 become lower temperature. As a result, the protective glass layer 6 becomes the resistor layer 5. The resistance value is not increased by flowing in, and the filler in the heat transfer layer 4 does not flow into the protective glass layer 6 and the insulation resistance value of the protective glass layer 6 is not reduced.

また、ガラス粉末のD,D,Dがそれぞれ10.0μm以下であることから、セラミック配線基板で一般的に形成される30〜500μm幅の配線をスクリーン印刷法で印刷する場合にも凸凹の無い配線面が得られる。その結果、本発明の回路基板を用いた電子機器,電子装置を長期間にわたり正常かつ安定に作動させることが可能となる。 In addition, since D 1 , D 2 , and D 3 of the glass powder are each 10.0 μm or less, even when a 30 to 500 μm wide wiring generally formed on a ceramic wiring substrate is printed by a screen printing method. A wiring surface without irregularities can be obtained. As a result, it is possible to operate electronic devices and electronic devices using the circuit board of the present invention normally and stably over a long period of time.

なお、本発明は上述の実施の形態に限定されず、本発明の要旨を逸脱しない範囲内で種々の変更は可能である。例えば、上述した回路基板の製造方法においては、抵抗体層5、保護ガラス層6、伝熱層4が回路基板の同一面に形成される場合について述べたが、伝熱層4が抵抗体層5、保護ガラス層6と逆の面に存在する場合にも本発明の製造方法は適用できる。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. For example, in the above-described method for manufacturing a circuit board, the case where the resistor layer 5, the protective glass layer 6, and the heat transfer layer 4 are formed on the same surface of the circuit board has been described. 5. The manufacturing method of the present invention can also be applied to the case where the protective glass layer 6 is on the opposite side of the protective glass layer 6.

本発明の半導体素子搭載用回路基板の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the circuit board for semiconductor element mounting of this invention. 従来の半導体素子搭載用回路基板の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the conventional circuit board for semiconductor element mounting. 本発明の半導体素子搭載用回路基板がAlハウジングに実装された場合の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment when the circuit board for semiconductor element mounting of this invention is mounted in Al housing.

符号の説明Explanation of symbols

1:絶縁層
2:配線導体
3:貫通導体
4:伝熱層
5:抵抗体層
6:保護ガラス層
7:半導体素子
1: Insulating layer 2: Wiring conductor 3: Through conductor 4: Heat transfer layer 5: Resistor layer 6: Protective glass layer 7: Semiconductor element

Claims (4)

複数の絶縁層が積層されて成るとともに前記絶縁層間に配線導体が形成された絶縁基板と、該絶縁基板の一主面に形成された導体層から成る半導体素子の搭載部と、前記絶縁基板の他主面に形成されるとともに貫通導体を介して前記搭載部に接続されたガラス成分を含む伝熱層と、前記他主面の前記伝熱層に隣接する部位に形成されたガラス成分を含む抵抗体層と、該抵抗体層を覆う保護ガラス層とを具備している半導体素子搭載用回路基板において、前記伝熱層と前記抵抗体層と前記保護ガラス層とは同時焼成されて形成されており、前記伝熱層に含まれるガラス成分の軟化点をT、前記抵抗体層に含まれるガラス成分の軟化点をT、前記保護ガラス層の軟化点をTとしたときに、T>T>Tであることを特徴とする半導体素子搭載用回路基板。 An insulating substrate having a plurality of insulating layers stacked and wiring conductors formed between the insulating layers; a semiconductor element mounting portion comprising a conductor layer formed on one main surface of the insulating substrate; and A heat transfer layer including a glass component formed on the other main surface and connected to the mounting portion via a through conductor, and a glass component formed on a portion adjacent to the heat transfer layer on the other main surface is included. In a circuit board for mounting a semiconductor element comprising a resistor layer and a protective glass layer covering the resistor layer, the heat transfer layer, the resistor layer, and the protective glass layer are formed by simultaneous firing. and, the softening point of the glass component contained in the heat transfer layer T 1, the softening point of the glass component contained in the resistive layer T 2, the softening point of the protective glass layer is taken as T 3, T 1 > T 3 > T 2 Circuit board for mounting conductor elements. 前記Tと前記Tとの差および前記Tと前記Tとの差がそれぞれ30℃以上であることを特徴とする請求項1記載の半導体素子搭載用回路基板。 2. The circuit board for mounting a semiconductor element according to claim 1 , wherein a difference between the T 1 and the T 3 and a difference between the T 3 and the T 2 are each 30 ° C. or more. 前記伝熱層に含まれるガラス粉末の積算平均粒径をD、前記抵抗体層に含まれるガラス粉末の積算平均粒径をD、前記保護ガラス層の粉末の積算平均粒径をDとしたときに、D,D,Dがそれぞれ1.4乃至10.0μmであることを特徴とする請求項1記載の半導体素子搭載用回路基板。 The accumulated average particle diameter of the glass powder contained in the heat transfer layer is D 1 , the accumulated average particle diameter of the glass powder contained in the resistor layer is D 2 , and the accumulated average particle diameter of the powder of the protective glass layer is D 3. 2. The circuit board for mounting a semiconductor element according to claim 1, wherein D 1 , D 2 , and D 3 are 1.4 to 10.0 μm, respectively. 請求項1または請求項2記載の半導体素子搭載用回路基板の製造方法であって、
(1)前記貫通導体となる貫通孔を形成するとともに前記配線導体および前記搭載部となる導体ペーストパターンをそれぞれ形成したセラミックグリーンシートを複数積層し、前記貫通孔に導体ペーストを充填し焼成してセラミック多層基板を作製する工程と、
(2)前記セラミック多層基板の他主面に前記貫通導体の端面に接するように前記伝熱層となるガラス成分を含むペースト層を厚膜印刷法で形成するとともに、前記他主面の前記伝熱層に隣接する部位に前記抵抗体層となるガラス成分を含むペースト層を厚膜印刷法で形成した後、前記抵抗体層を覆って前記保護ガラス層となるガラスペースト層を厚膜印刷法で形成する工程と、
(3)前記伝熱層となるガラス成分を含むペースト層、前記抵抗体層となるガラス成分を含むペースト層および前記保護ガラス層となるガラスペースト層を同時焼成する工程と
を具備していることを特徴とする半導体素子搭載用回路基板の製造方法。
A method for manufacturing a circuit board for mounting a semiconductor element according to claim 1 or 2,
(1) A plurality of ceramic green sheets each having a through-hole to be the through-conductor and formed with a wiring paste and a conductive paste pattern to be the mounting portion are laminated, and the through-hole is filled with a conductor paste and fired. Producing a ceramic multilayer substrate;
(2) A paste layer containing a glass component serving as the heat transfer layer is formed on the other main surface of the ceramic multilayer substrate so as to be in contact with the end surface of the through conductor by a thick film printing method, and the transfer of the other main surface is performed. After forming the paste layer containing the glass component to be the resistor layer on the portion adjacent to the thermal layer by the thick film printing method, the glass paste layer to be the protective glass layer is covered with the thick film printing method. And forming with
(3) A step of co-firing a paste layer containing a glass component serving as the heat transfer layer, a paste layer containing a glass component serving as the resistor layer, and a glass paste layer serving as the protective glass layer. A method of manufacturing a circuit board for mounting a semiconductor element, comprising:
JP2003302201A 2003-06-25 2003-08-26 Circuit board for mounting semiconductor device and manufacturing method thereof Pending JP2005039163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003302201A JP2005039163A (en) 2003-06-25 2003-08-26 Circuit board for mounting semiconductor device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003181687 2003-06-25
JP2003302201A JP2005039163A (en) 2003-06-25 2003-08-26 Circuit board for mounting semiconductor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2005039163A true JP2005039163A (en) 2005-02-10

Family

ID=34220271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003302201A Pending JP2005039163A (en) 2003-06-25 2003-08-26 Circuit board for mounting semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2005039163A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101089840B1 (en) 2009-04-01 2011-12-05 삼성전기주식회사 Circuit board module and manufacturing method for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101089840B1 (en) 2009-04-01 2011-12-05 삼성전기주식회사 Circuit board module and manufacturing method for the same

Similar Documents

Publication Publication Date Title
JP5014642B2 (en) Leaded metallized ceramic substrate and package
US6667256B2 (en) Glass-ceramic composition for ceramic electronic part, ceramic electronic part, and method for manufacturing multilayer ceramic electronic part
JP4942862B1 (en) Multilayer sintered ceramic wiring board and semiconductor package including the wiring board
JP2002198660A (en) Circuit board and method of manufacturing the same
JP3574738B2 (en) Wiring board
JP2005039163A (en) Circuit board for mounting semiconductor device and manufacturing method thereof
JP3630372B2 (en) Multilayer ceramic substrate and manufacturing method thereof
JP5248941B2 (en) Ceramic parts and manufacturing method thereof
JP4070198B2 (en) Wiring board
JP2004228410A (en) Wiring board
JP5265256B2 (en) Ceramic wiring board
JP4535801B2 (en) Ceramic wiring board
JP2013516771A (en) Mixed metal system conductors for use in low temperature cofired ceramic circuits and devices
JP2015141952A (en) semiconductor power module
JP2004006993A (en) Multilayer substrate
JP2001143527A (en) Conductive paste and ceramic wiring substrate using the same
JP4261953B2 (en) Multilayer wiring board
JP2874686B2 (en) Multilayer board
JP3909285B2 (en) Wiring board
JP4658465B2 (en) Glass ceramic multilayer wiring board with built-in capacitor
JP2011029534A (en) Multilayer wiring board
JP4502977B2 (en) Unsintered laminated sheet
JP2004119547A (en) Ceramic wiring board and its manufacturing method
JP2005057095A (en) Ceramic multilayer circuit board
JP3071514B2 (en) Multilayer circuit board