JP2005039150A - Edge-emitting-type semiconductor laser - Google Patents
Edge-emitting-type semiconductor laser Download PDFInfo
- Publication number
- JP2005039150A JP2005039150A JP2003276919A JP2003276919A JP2005039150A JP 2005039150 A JP2005039150 A JP 2005039150A JP 2003276919 A JP2003276919 A JP 2003276919A JP 2003276919 A JP2003276919 A JP 2003276919A JP 2005039150 A JP2005039150 A JP 2005039150A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor laser
- edge
- dbr
- emission
- emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
本発明は、大出力の端面発光型半導体レーザに関する。 The present invention relates to a high-power edge-emitting semiconductor laser.
近年、表面改質や溶接、切断などワークの加工用に大出力のレーザ光源あるいは半導体レーザバーの複数の発光点からのレーザ光を合波して増強したレーザ光が用いられるようになっている。レーザ加工用に用いられる従来の高出力端面出射半導体レーザは、出射端のへき開面もしくは誘電体多層膜によってハーフミラーを形成し、発振条件を満たしている(特許文献1参照)。一方、通信用に用いられる小出力の半導体レーザの中には、発振波長のスペクトル幅を狭くする目的で活性層前面に周期的屈折率分布を持たせた半導体レーザ、あるいは発振波長を可変にするために分布ブラッグ反射領域を持たせた半導体レーザが知られている(特許文献2参照)。 In recent years, a laser beam that has been enhanced by combining laser beams from a plurality of light emitting points of a high-power laser light source or a semiconductor laser bar has been used for workpiece processing such as surface modification, welding, and cutting. A conventional high-power end-face emission semiconductor laser used for laser processing forms a half mirror by a cleavage plane at the emission end or a dielectric multilayer film, and satisfies oscillation conditions (see Patent Document 1). On the other hand, among the low-power semiconductor lasers used for communication, a semiconductor laser having a periodic refractive index distribution on the front surface of the active layer for the purpose of narrowing the spectrum width of the oscillation wavelength, or the oscillation wavelength is made variable. Therefore, a semiconductor laser having a distributed Bragg reflection region is known (see Patent Document 2).
出射端のへき開面や誘電体多層膜でレーザ共振器を構成すると、レーザ出射端面に汚れが付着したりすると発振条件が変化してしまい、レーザ光出力の低減や発光効率の低下を引き起こす。また、出射端面に隣接してレンズ等の光学部品を配置したり、他の誘電体で覆ったりしても発振条件が変化する。出射端に誘電体多層膜を形成する場合には、その膜の劣化・剥離等の問題もある。 When a laser resonator is configured with a cleaved surface of the emission end or a dielectric multilayer film, if dirt is attached to the laser emission end surface, the oscillation condition changes, causing a reduction in laser light output and a reduction in light emission efficiency. Further, the oscillation condition changes even if an optical component such as a lens is disposed adjacent to the emission end face or covered with another dielectric. When a dielectric multilayer film is formed at the emission end, there are problems such as deterioration and peeling of the film.
従来の分布ブラッグ反射領域を有する半導体レーザは、一般に分布ブラッグ反射領域の反射率が90%以上と高い、通信用の小出力半導体レーザである。一方、レーザ加工等に用いる高出力の半導体レーザは、出射端の反射率が10%程度であり、共振器の光学条件が異なるため、従来の小出力半導体レーザの分布ブラッグ反射器の構造をそのまま採用することはできない。 A conventional semiconductor laser having a distributed Bragg reflection region is a small-power semiconductor laser for communication in which the reflectance of the distributed Bragg reflection region is generally as high as 90% or more. On the other hand, a high-power semiconductor laser used for laser processing or the like has a reflectance of about 10% at the emission end and the optical conditions of the resonator are different. It cannot be adopted.
本発明は、出射端面の汚れや光学部品の配置等の外部の光学的条件の変化による発振条件の変動を低減した大出力の半導体レーザを提供することを目的とする。 It is an object of the present invention to provide a high-power semiconductor laser in which fluctuations in oscillation conditions due to changes in external optical conditions such as dirt on the emission end face and arrangement of optical components are reduced.
本発明の端面発光半導体レーザは、活性層内部にDBR(分布型ブラック反射ミラー)構造を付加することによって前記目的を達成する。このDBRの位置と出射端との位置関係を適切に設計することで、レーザ出射端面の汚れの影響を受けづらい所望の反射率の共振ミラーを構成することができる。また、レーザ出射端面に隣接してレンズ等光学部品を配置したり、端面を誘電体等で覆っても発振特性に影響を与えないため、後段の光学系等に制限を与えない。 The edge-emitting semiconductor laser of the present invention achieves the above object by adding a DBR (distributed black reflection mirror) structure inside the active layer. By appropriately designing the positional relationship between the position of the DBR and the emission end, a resonant mirror having a desired reflectance that is not easily affected by dirt on the laser emission end face can be configured. Further, even if an optical component such as a lens is arranged adjacent to the laser emission end face or the end face is covered with a dielectric or the like, the oscillation characteristics are not affected, so that the subsequent optical system is not limited.
本発明によると、DBR反射層の採用により、レーザ出射端面の汚れによる発振特性変動を防止できる。また、レーザ出射端面に隣接してレンズ等光学部品を配置したり、誘電体等で覆っても発振特性への影響がなくなる。 According to the present invention, the adoption of the DBR reflection layer can prevent fluctuations in oscillation characteristics due to contamination of the laser emission end face. Further, even if an optical component such as a lens is arranged adjacent to the laser emission end face or covered with a dielectric or the like, the influence on the oscillation characteristics is eliminated.
本発明によると、出射端の汚れ等による発振状態の変化を低減した大出力半導体レーザが得られる。 According to the present invention, it is possible to obtain a high-power semiconductor laser in which the change in the oscillation state due to contamination of the emission end is reduced.
以下、図面を参照して本発明の実施の形態を説明する。 Embodiments of the present invention will be described below with reference to the drawings.
図1は本発明による端面発光型半導体レーザの模式図であり、図1(a)は全体の概略図、図1(b)はその破線部の断面模式図である。 FIG. 1 is a schematic view of an edge-emitting semiconductor laser according to the present invention, FIG. 1 (a) is a schematic view of the whole, and FIG. 1 (b) is a schematic cross-sectional view of the broken line portion.
この端面発光型半導体レーザは、基板11上に、クラッド層12,13に挟まれて形成された活性層14を有する。活性層14は内部にDBR(分布型ブラック反射ミラー)構造15を有する。DBR15の出射端側の末端と半導体レーザの出射端面16との間には、DBRが形成されていない部分が距離Lだけ存在する。距離Lは、次式(1)が成立するように設定する。λは発振波長、nは活性層の屈折率である。δは出射端からの反射光とDBRからの反射光の位相差である。
This edge-emitting semiconductor laser has an
大出力用に合成反射率を小さくするには、両反射光が打ち消し合うように作用させる必要があるため、位相δは90°より大きく270°より小さい範囲に限定される。(ただし、位相の性質上、これに360°の整数倍を加えた値でも成り立つ)。また、DBRの反射率は、従来は90%以上であるが、本発明では60%以下で用いる。 In order to reduce the combined reflectance for a large output, it is necessary to cause both reflected lights to cancel each other, and therefore the phase δ is limited to a range larger than 90 ° and smaller than 270 °. (However, due to the nature of the phase, a value obtained by adding an integer multiple of 360 ° to this is also valid). Further, the reflectivity of DBR is conventionally 90% or more, but is used at 60% or less in the present invention.
図2に略示するように、本発明による半導体レーザの出射側の共振ミラーは、出射端とDBRが複合して実現される。出射端の合成反射率rは、出射端からの反射光AとDBRからの反射光Bの合成反射率となる。反射光AとBの位相差によって合成反射率は異なるが、この位相差は端面とDBR間の間隔Lに依存する。端面からの反射光Aは、DBRと端面間の多重反射の影響などを受けるため、単純な端面反射率ではない。いま、端面反射率をra、DBR反射率をrb、距離Lによる反射光AとBの位相差をδとすると、合成反射率rは次式(2)で与えられる。 As schematically shown in FIG. 2, the resonant mirror on the output side of the semiconductor laser according to the present invention is realized by combining the output end and the DBR. The combined reflectance r at the exit end is the combined reflectivity of the reflected light A from the exit end and the reflected light B from the DBR. Although the combined reflectance varies depending on the phase difference between the reflected lights A and B, this phase difference depends on the distance L between the end face and the DBR. The reflected light A from the end face is not a simple end face reflectivity because it is affected by multiple reflections between the DBR and the end face. Now, the facet reflectivity r a, the DBR reflectivity r b, When the phase difference between the reflected light A and B [delta] due to the distance L, synthetic reflectance r is given by the following equation (2).
ここで(強度)反射率をRで表す。R=|r|2の関係がある。例えば、Ra=30%、Rb=30%で、δ=101.4°とすると、R=30%となる。この状態で、Raが10%に低下しても、R=26.1%と変化は小さい。このように端面反射光Aが変化しても、合成反射率R(すなわちr)の変化が小さいような設計も可能である。 Here, (strength) reflectance is represented by R. There is a relationship of R = | r | 2 . For example, if R a = 30%, R b = 30%, and δ = 101.4 °, then R = 30%. In this state, even if R a is reduced to 10%, the change is small as R = 26.1%. In this way, even if the end surface reflected light A changes, a design in which the change in the combined reflectance R (ie, r) is small is possible.
Raは、端面での反射率であるので、端面に特に加工を施さなければ、活性層の屈折率nと外部の屈折率no(空気の場合no=1)で、次式のように決まる。
Ra=|(n−no)/(n+no)|2
したがって、ごみ等による外乱で、noが変化するとRaも変化してしまう。
R a is, since the reflectance at the end face, if subjected to particular processing on the end surface, the refractive index of the active layer n and the outside of the refractive index n o (for air n o = 1), the following equation It is decided.
R a = | (n−n o ) / (n + n o ) | 2
Therefore, if the value of n o changes due to a disturbance such as dust, Ra also changes.
近赤外光のハイパワーレーザでの例をあげると、材料のGaAsの屈折率は約3.6であるため、特に外乱がなければRa=31.9%である。これにRb=30%、δ=137°となるようにDBRを取り付けると、合成反射率Rは10%となりハイパワー用に適した値となる(このRbとδの組み合わせはいろいろ考えられる)。この時、外乱によって端面反射率Raが変化した場合の合成反射率Rは図3のようになり、端面反射率Raに対する変化量を小さく抑えることができる。 Taking an example of a near-infrared high-power laser, the refractive index of GaAs, which is a material, is about 3.6. Therefore, if there is no particular disturbance, R a = 31.9%. If the DBR is attached so that R b = 30% and δ = 137 °, the combined reflectance R becomes 10%, which is a value suitable for high power (this R b and δ can be combined in various ways). ). In this case, synthesized reflectivity R in the case of facet reflectivity R a by disturbance has changed is as shown in FIG. 3, it is possible to reduce the amount of change with respect to an end face reflectance R a.
11:基板、12,13:クラッド層、14:活性層、15:DBR、16:出射端 11: substrate, 12, 13: clad layer, 14: active layer, 15: DBR, 16: emitting end
Claims (2)
前記活性層は出射側にDBR反射層を有し、出射端と前記DBR反射層の出射端側の端部との間にDBR反射層が形成されていない位相調整用の領域を設けたことを特徴とする端面発光型半導体レーザ。 In an edge-emitting semiconductor laser having an active layer on a substrate and a cladding layer sandwiching the active layer,
The active layer has a DBR reflection layer on the output side, and a phase adjustment region in which no DBR reflection layer is formed is provided between the output end and the end of the DBR reflection layer on the output end side. A featured edge-emitting semiconductor laser.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003276919A JP2005039150A (en) | 2003-07-18 | 2003-07-18 | Edge-emitting-type semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003276919A JP2005039150A (en) | 2003-07-18 | 2003-07-18 | Edge-emitting-type semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005039150A true JP2005039150A (en) | 2005-02-10 |
Family
ID=34213095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003276919A Pending JP2005039150A (en) | 2003-07-18 | 2003-07-18 | Edge-emitting-type semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005039150A (en) |
-
2003
- 2003-07-18 JP JP2003276919A patent/JP2005039150A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3729170B2 (en) | Semiconductor laser | |
JP2007103576A (en) | Surface light emitting laser module | |
US6700904B2 (en) | Light source for an external cavity laser | |
KR101257850B1 (en) | High efficient laser chip and vertical external cavity surface emitting laser using the same | |
CN107819270B (en) | Wide semiconductor laser element | |
KR20050120483A (en) | High efficient surface emitting laser device, laser pumping unit for the laser device and method for fabricating the laser pumping unit | |
JP4402030B2 (en) | External cavity semiconductor laser | |
US20070189349A1 (en) | Single mode laser | |
JP2011086714A (en) | Wavelength tunable laser | |
JP2005039150A (en) | Edge-emitting-type semiconductor laser | |
JP2006128475A (en) | Semiconductor laser | |
JP2004356571A (en) | Distributed feedback semiconductor laser device | |
US9490607B2 (en) | External cavity laser with single mode-hop-free tuning | |
US20030165296A1 (en) | Optical coupling element and optical device | |
JP2003229630A (en) | Laser diode module | |
JP2006521018A (en) | High SMSR unidirectional etching laser and low back reflection optical functional device | |
JP3595677B2 (en) | Optical isolator, distributed feedback laser and optical integrated device | |
JPH11163471A (en) | External cavity type semiconductor laser | |
KR100767698B1 (en) | Laser Diode | |
JPH11307856A (en) | Distributed feedback laser and manufacture thereof | |
WO2015190385A1 (en) | External resonator-type light-emitting device | |
KR100264775B1 (en) | Semiconductor laser | |
JP2011077076A (en) | External resonance type semiconductor laser | |
JP4582289B2 (en) | Semiconductor laser | |
WO2024172751A1 (en) | Laser device |