JP2005039128A - Heat dissipation structure of electronic apparatus - Google Patents

Heat dissipation structure of electronic apparatus Download PDF

Info

Publication number
JP2005039128A
JP2005039128A JP2003276194A JP2003276194A JP2005039128A JP 2005039128 A JP2005039128 A JP 2005039128A JP 2003276194 A JP2003276194 A JP 2003276194A JP 2003276194 A JP2003276194 A JP 2003276194A JP 2005039128 A JP2005039128 A JP 2005039128A
Authority
JP
Japan
Prior art keywords
heat
conductive member
housing
heat dissipation
hdd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003276194A
Other languages
Japanese (ja)
Inventor
Masaaki Ozaki
正昭 尾崎
Shigemi Asai
重美 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003276194A priority Critical patent/JP2005039128A/en
Publication of JP2005039128A publication Critical patent/JP2005039128A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the heat dissipation structure of an electronic apparatus which carries out heat dissipation of a heat generating member housed in the cabinet of the electronic apparatus and at the same time restrains temperature rise of an outer surface of the cabinet which is in contact with a human body. <P>SOLUTION: A first thermally conductive member 4 is disposed in a space between an HDD1 which is a heat generating member and a cabinet 3 without coming into contact with the HDD1. The first thermally conductive member 4 and the low temperature part (an end part 3a of the cabinet) of the electronic apparatus are connected via a second thermally conductive member 5 arranged in the end 4a of the first thermally conductive member 4 which is not placed opposite to the HDD1. Furthermore, it is preferable to form a high reflectance surface in the surface of the first thermally conductive member 4 in opposition to the HDD1. It is also preferable to form a low reflectance surface in the surface of the first thermally conductive member 4 in opposition to the housing 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、放熱を必要とする発熱部材が筐体に収納された電子機器の放熱構造に関する。   The present invention relates to a heat dissipation structure for an electronic device in which a heat generating member that requires heat dissipation is housed in a casing.

HDD(ハードディスクドライブ)、CPU(中央演算処理ユニット)等が筐体に収納されたパーソナルコンピュータ等の電子機器を連続稼動させると、HDDやCPUはかなりの高温に達する。例えば、強制冷却をしないでノートパソコンを連続稼動させると、筐体内のHDDは約50℃にまで達することがある。一般的な強制冷却の方法としては、HDD、CPU等の発熱部材に放熱部材を接触させて放熱する方法が考えられる。   When an electronic device such as a personal computer in which an HDD (hard disk drive), CPU (central processing unit), etc. are housed in a casing is continuously operated, the HDD and CPU reach a considerably high temperature. For example, when a notebook personal computer is continuously operated without forced cooling, the HDD in the housing may reach about 50 ° C. As a general forced cooling method, a method of dissipating heat by bringing a heat radiating member into contact with a heat generating member such as an HDD or a CPU can be considered.

しかし、特にHDDは、磁気ヘッド、磁気ディスク回転用スピンドルモータ部等といった外部からの振動や衝撃に弱い部品で構成されておりHDDに放熱部材を当接することは困難である。更に、HDDの構成部品のなかで最も発熱する部品はスピンドルモータ部及びドライバ部であるが、これらの部分には放熱部材を当接することができない。   However, the HDD, in particular, is made up of components that are vulnerable to external vibrations and shocks, such as a magnetic head, a magnetic disk rotating spindle motor, and the like, and it is difficult to abut the heat dissipation member on the HDD. Furthermore, the components that generate the most heat among the components of the HDD are the spindle motor portion and the driver portion, but the heat radiating member cannot be brought into contact with these portions.

従って、放熱部材を当接することができる部位がHDDケースの周辺部に限定されている。しかし、HDDケースはステンレス等の剛性の高い金属であるため熱伝導性が低く、ケースの周辺部にのみ熱伝導性部材を当接させても十分な熱量の移動がなされず十分な放熱ができないという問題がある。   Therefore, the portion where the heat radiating member can be contacted is limited to the peripheral portion of the HDD case. However, since the HDD case is made of a highly rigid metal such as stainless steel, its thermal conductivity is low, and even if a thermal conductive member is brought into contact only with the peripheral part of the case, a sufficient amount of heat is not transferred and sufficient heat dissipation cannot be performed. There is a problem.

上記の理由により、HDDで発生した熱が対向する筐体表面に熱線による放射伝熱と、空気による対流伝熱により移動し、HDDと対向する筐体パームレスト部や筐体底部などの人体と接触する筐体の外表面の温度が上昇し、ユーザーが低温やけどをする恐れが生じている。   For the above reasons, the heat generated by the HDD moves to the opposite housing surface by radiant heat transfer by heat rays and convection heat transfer by air, and contacts the human body such as the palm rest or the bottom of the housing facing the HDD. As a result, the temperature of the outer surface of the casing that rises has risen, causing the user to burn at low temperatures.

このような問題を解決する方法として、電子機器内部に断熱材を設置して熱遮断する技術が開示されている(例えば、特許文献1及び2参照)。特許文献1では、発熱部品の上方の筐体内面に断熱材を貼り付けて、発熱部材からの放射熱が直接発熱部品の上方の筐体内面を熱しないようにする放熱構造が提案されている。また、特許文献2では、装置内部の発熱部材と装置筐体の間の熱伝達を遮断し得る高性能な真空断熱材を配置したノート型コンピュータが提案されている。
特開平10−117078号公報 特開2001−350546号公報
As a method for solving such a problem, a technique for dissipating heat by installing a heat insulating material inside an electronic device has been disclosed (see, for example, Patent Documents 1 and 2). Patent Document 1 proposes a heat dissipation structure in which a heat insulating material is attached to the inner surface of the housing above the heat generating component so that the radiant heat from the heat generating member does not directly heat the inner surface of the housing above the heat generating component. . Patent Document 2 proposes a notebook computer in which a high-performance vacuum heat insulating material capable of interrupting heat transfer between a heat generating member inside the apparatus and the apparatus housing is arranged.
Japanese Patent Laid-Open No. 10-117078 JP 2001-350546 A

しかしながら、特許文献1及び2に示すように発熱部材の放熱に断熱材を用いた場合、筐体表面の局部的な温度上昇は断熱材により低減できるが、発熱部材が発生する放射熱が断熱材で吸収されず反射して発熱部材自体に戻ってくるため、再び発熱部材の温度が上昇してしまうという問題が生じていた。   However, as shown in Patent Documents 1 and 2, when a heat insulating material is used for heat dissipation of the heat generating member, the local temperature rise on the surface of the housing can be reduced by the heat insulating material, but the radiant heat generated by the heat generating member is the heat insulating material. Therefore, there is a problem that the temperature of the heat generating member rises again.

従って、発熱部材の温度を十分に低減させることができず、発熱部材と対向する筐体パームレスト部や筐体底面などの人体と接触する筐体の外表面の温度が上昇する問題は十分解決されていない状態であった。   Therefore, the temperature of the heat generating member cannot be sufficiently reduced, and the problem that the temperature of the outer surface of the housing that comes into contact with the human body such as the housing palm rest or the housing bottom facing the heat generating member is sufficiently solved. It was not in a state.

本発明は、上記課題を解決するためになされたものであり、電子機器の筐体内に収納された発熱部材の放熱を行うと同時に、人体と接触する筐体の外表面の温度上昇を抑えた電子機器の放熱構造を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and at the same time, the heat generation member housed in the housing of the electronic device is radiated, and at the same time, the temperature rise on the outer surface of the housing that contacts the human body is suppressed. An object is to provide a heat dissipation structure for an electronic device.

上記課題を解決すために本発明の電子機器の放熱構造は、放熱を必要とする発熱部材が筐体に収納された電子機器の放熱構造であって、発熱部材と筐体との空隙に発熱部材と接することなく第1の熱伝導性部材が配置され、第1の熱伝導性部材と筐体の間であって、発熱部材と対向しない部分に第2の熱伝導性部材が配置され、第1の熱伝導性部材が第2の熱伝導性部材を介して筐体に取り付けられていることを特徴としている。   In order to solve the above problems, the heat dissipation structure of an electronic device according to the present invention is a heat dissipation structure of an electronic device in which a heat generating member that requires heat dissipation is housed in a housing, and generates heat in a gap between the heat generating member and the housing. The first heat conductive member is disposed without contacting the member, the second heat conductive member is disposed between the first heat conductive member and the housing and not facing the heat generating member, The first heat conductive member is attached to the housing via the second heat conductive member.

この構成によれば、電子機器の発熱部材が発生する放射熱や対流熱が一旦第1の熱伝導性部材で吸熱され、第1の熱伝導性部材の面内を熱伝導で広がり、第1の熱伝導性部材の発熱部材と対向しない部分である低温部分で筐体に接続された第2の熱伝導性部材を介して効率的に熱が逃がされる。従って、第1の熱伝導性部材の温度はかなり低くなり、また温度分布も平坦化される。このように低い温度で温度分布が平坦化された第1の熱伝導性部材と電子機器の筐体の間で、放射熱や対流熱による熱移動が起こり、電子機器の筐体に伝熱されるため、筐体の外表面の温度上昇が抑えられ、かつ温度分布が平坦化されるので局部的な温度上昇も回避される。   According to this configuration, the radiant heat and convection heat generated by the heat generating member of the electronic device are once absorbed by the first heat conductive member, and spread in the surface of the first heat conductive member by heat conduction. Heat is efficiently released through the second heat conductive member connected to the casing at a low temperature portion which is a portion not facing the heat generating member of the heat conductive member. Therefore, the temperature of the first heat conductive member is considerably lowered, and the temperature distribution is flattened. Heat transfer due to radiant heat or convection heat occurs between the first heat conductive member whose temperature distribution is flattened at such a low temperature and the housing of the electronic device, and is transferred to the housing of the electronic device. Therefore, the temperature rise on the outer surface of the housing is suppressed, and the temperature distribution is flattened, so that a local temperature rise is also avoided.

また、本発明の電子機器の放熱構造においては、第1の熱伝導性部材は、発熱部材と対向する表面の少なくとも一部分に放射率の高い面が形成されていることを特徴としている。   In the heat dissipation structure for an electronic device of the present invention, the first heat conductive member is characterized in that a surface having a high emissivity is formed on at least a part of the surface facing the heat generating member.

これによって、第1の熱伝導性部材において、発熱部材からの放射熱に対する吸収率が向上し、電子機器から第1の熱伝導性部材へ移動する熱量が増加し、電子機器の放熱が促進される。   As a result, in the first heat conductive member, the absorption rate of the radiant heat from the heat generating member is improved, the amount of heat transferred from the electronic device to the first heat conductive member is increased, and heat dissipation of the electronic device is promoted. The

また、本発明の電子機器の放熱構造においては、第1の熱伝導性部材は、筐体と対向する表面の少なくとも一部分に放射率の低い面が形成されていることを特徴としている。   In the heat dissipation structure for an electronic device according to the present invention, the first heat conductive member is characterized in that a surface having a low emissivity is formed on at least a part of the surface facing the housing.

これによって、熱伝導性部材から再放射する放射熱量が減少することで、筐体の外表面の温度上昇が更に低減される。   As a result, the amount of radiant heat re-radiated from the heat conductive member is reduced, so that the temperature rise on the outer surface of the housing is further reduced.

また、上記構成の放熱構造においては、放熱部材と発熱部材が当接していないので、発熱部材がハードディスクドライブを含む部材のように放熱部材を当接することが困難な場合により好適である。   In the heat dissipation structure having the above configuration, since the heat dissipation member and the heat generating member are not in contact with each other, it is more suitable for the case where it is difficult for the heat generating member to contact the heat dissipation member like a member including a hard disk drive.

本発明の電子機器の放熱構造は、電子機器の筐体内に収納された発熱部材の放熱を十分に行わせ、電子機器の筐体の外表面の平均温度を下げ、かつ、温度分布が平坦化され、筐体の外表面の局部的な温度上昇も回避される。   The heat dissipation structure of the electronic device according to the present invention sufficiently dissipates the heat generating member housed in the housing of the electronic device, lowers the average temperature of the outer surface of the housing of the electronic device, and flattens the temperature distribution. In addition, a local temperature rise on the outer surface of the housing is also avoided.

また、第1の熱伝導性部材が発熱部材と対向する表面への高放射率面の形成は、発熱部材から第1の熱伝導性部材への熱量の移動を増加させて発熱部材の放熱を促進させる。   In addition, the formation of the high emissivity surface on the surface where the first heat conductive member faces the heat generating member increases the movement of the amount of heat from the heat generating member to the first heat conductive member, thereby radiating heat from the heat generating member. Promote.

また、第1の熱伝導性部材が筐体と対向する表面への低放射率面の形成は、第1の熱伝導性部材が再放射する放射熱量を減少させるので筐体の温度を更に下げる効果が得られる。   Further, the formation of the low emissivity surface on the surface where the first heat conductive member faces the housing reduces the amount of radiant heat re-radiated by the first heat conductive member, so that the temperature of the housing is further lowered. An effect is obtained.

以下、本発明の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

以下に説明する実施形態では、説明を簡単にするため、HDDが搭載された記憶装置の放熱構造の実施形態について説明するが、この手法は、HDDが搭載された記憶装置に限らず、CPUをはじめとする放熱を必要とする部材(発熱部材)が搭載されたあらゆる形態の電子機器に適用可能である。   In the embodiment described below, for the sake of simplicity, an embodiment of a heat dissipation structure of a storage device on which an HDD is mounted will be described. However, this technique is not limited to a storage device on which an HDD is mounted, and a CPU is used. The present invention can be applied to electronic devices of any form on which a member (heat generating member) that requires heat dissipation is mounted.

<実施形態1>
図1は、実施形態1に係る記憶装置の放熱構造を示しており、図1(a)は正面から見た断面の構造を、図1(b)は平面から見た構造を示している。
<Embodiment 1>
FIG. 1 shows a heat dissipation structure of a memory device according to the first embodiment. FIG. 1A shows a cross-sectional structure viewed from the front, and FIG. 1B shows a structure viewed from the plane.

図1において、記憶装置の1つであるHDD1は、ノートパソコンのキーボード(図示しない)側の筐体3(31、32)内でパームレスト部31と筐体底部32の間に収納されている。具体的には、直方体形状のHDD1の各角部に、角柱状の衝撃吸収材2の側面角部に形成された断面略コ字状の切欠き部2aが挿入保持されており、この状態で各衝撃吸収材2がパームレスト部31と筐体底部32との間に挟持固定されることによって、HDD1がパームレスト部31と筐体底部32の間に安定的に収納保持されている。すなわち、HDD1は、衝撃吸収材2によって、パームレスト部31との間にそれぞれ所定幅の隙間P1、P2を存して配置されている。衝撃吸収材2の材料としては、例えば柔らかいエラストマー樹脂、スポンジ状のウレタンゴム等が使用可能である。   In FIG. 1, an HDD 1 that is one of storage devices is housed between a palm rest 31 and a housing bottom 32 in a housing 3 (31, 32) on a keyboard (not shown) side of a notebook computer. Specifically, a notch 2a having a substantially U-shaped cross section formed at a side corner of the prismatic shock absorber 2 is inserted and held in each corner of the rectangular parallelepiped HDD 1. Each shock absorber 2 is sandwiched and fixed between the palm rest 31 and the housing bottom 32, so that the HDD 1 is stably housed and held between the palm rest 31 and the housing bottom 32. That is, the HDD 1 is disposed with the gaps P1 and P2 having a predetermined width between the HDD 1 and the palm rest portion 31 by the shock absorber 2. As a material of the shock absorber 2, for example, soft elastomer resin, sponge-like urethane rubber, or the like can be used.

また、HDD1とパームレスト部31との間、及びHDD1と筐体底部32との間にはそれぞれ第1の熱伝導性部材4が配置されている。第1の熱伝導性部材4は、直方形状の板状体であって、長手方向の両側端部4a(図1では左右方向の両側端部4a)がHDD1よりも外方側まで延設されており、その延設された両側端部4aが第2の熱伝導部材5を介してパームレスト部31と筐体底部32にそれぞれ取り付け固定されている。   Further, the first heat conductive member 4 is disposed between the HDD 1 and the palm rest portion 31 and between the HDD 1 and the housing bottom portion 32. The first heat conductive member 4 is a rectangular plate-like body, and both side end portions 4a in the longitudinal direction (both side end portions 4a in the left-right direction in FIG. 1) are extended outward from the HDD 1. The extended side end portions 4a are attached and fixed to the palm rest portion 31 and the housing bottom portion 32 via the second heat conducting member 5, respectively.

すなわち、第1の熱伝導性部材4は、HDD1に接触せず所定の間隔を存して配置されており、また、パームレスト部31と筐体底部32とも直接接触せず若干の隙間を存して配置されている。また、図1(b)からも分かるように、第1の熱伝導部材4は衝撃吸収材2とも接触していない。   That is, the first thermal conductive member 4 is arranged at a predetermined interval without contacting the HDD 1, and the palm rest portion 31 and the housing bottom portion 32 are not in direct contact with each other and have a slight gap. Are arranged. Further, as can be seen from FIG. 1B, the first heat conducting member 4 is not in contact with the shock absorbing material 2.

次に、HDD1の発生する熱が第1の熱伝導性部材4及び第2の熱伝導性部材5によって放熱される様子を説明する。   Next, how the heat generated by the HDD 1 is radiated by the first heat conductive member 4 and the second heat conductive member 5 will be described.

図1(a)に、HDD1から生じた熱の移動を矢印で示している。HDD1の発生する放射熱や対流熱は、対向して設けられた第1の熱伝導性部材4で受け止められ吸熱されることになる。   In FIG. 1A, the movement of heat generated from the HDD 1 is indicated by arrows. The radiant heat and convective heat generated by the HDD 1 are received and absorbed by the first heat conductive member 4 that is provided facing the HDD 1.

吸熱された熱量は、第1の熱伝導性部材4の面内を通してHDD1とは対向していない衝撃吸収材2より外側の低温部である第1の熱伝導性部材4の端部4aに向けて移動する。   The amount of heat absorbed is directed toward the end portion 4a of the first thermal conductive member 4 that is a low temperature portion outside the shock absorber 2 that does not face the HDD 1 through the surface of the first thermal conductive member 4. Move.

更に熱伝導性部材4の端部4aに移動した熱量は、第2の熱伝導性部材5を介して低温部である筐体3の端部3aに移動する。従って、第1の熱伝導性部材4の面内の温度は低く保たれ、第1の熱伝導性部材4の温度分布も、面全体に渡って平坦化されることになる。   Further, the amount of heat transferred to the end portion 4 a of the heat conductive member 4 moves to the end portion 3 a of the housing 3, which is a low temperature portion, via the second heat conductive member 5. Therefore, the in-plane temperature of the first heat conductive member 4 is kept low, and the temperature distribution of the first heat conductive member 4 is also flattened over the entire surface.

このように第1の熱伝導性部材4において、温度が低く抑えられ、かつ、温度分布が平坦化した筐体3の間で、放射熱や対流熱による熱移動が起こるので、筐体3表面3bの温度分布も平坦化され、局部的な温度上昇が回避される。   In this way, in the first thermal conductive member 4, heat transfer by radiant heat or convection heat occurs between the casings 3 in which the temperature is kept low and the temperature distribution is flattened. The temperature distribution of 3b is also flattened, and a local temperature rise is avoided.

本実施形態1において、第1の熱伝導性部材4は、熱伝導率が高いこと以外にできるだけ薄くて軽量であることが好ましい。金属系のものとしては、銅フィルム、アルミフィルムが挙げられる。また、樹脂系のものとしては、シリコン系樹脂をマトリックスとして高熱伝導材料を添加したシリコンシートを挙げることができる。また、セラミック系のものとしては、ポリイミド樹脂を黒鉛化して得られる黒鉛シートや天然黒鉛等を膨張させてシート状にした膨張黒鉛の黒鉛シートを挙げることができる。また、第1の熱伝導性部材4の構造としては、面状構造、メッシュ状構造又は鎧戸構造等がある。また、第1の熱伝導性部材4は特に面方向の熱伝導率が高い構造を有することが好ましい。   In this Embodiment 1, it is preferable that the 1st heat conductive member 4 is as thin and lightweight as possible besides having high heat conductivity. Examples of metal-based materials include copper films and aluminum films. Moreover, as a resin-type thing, the silicon sheet which added the high heat conductive material by using silicon-type resin as a matrix can be mentioned. Moreover, as a ceramic type thing, the graphite sheet obtained by graphitizing a polyimide resin, the graphite sheet of the expanded graphite which expanded natural graphite etc. into the sheet form can be mentioned. Moreover, as a structure of the 1st heat conductive member 4, there exist a planar structure, a mesh-like structure, or an armor door structure. Moreover, it is preferable that the 1st heat conductive member 4 has a structure with especially high thermal conductivity of a surface direction.

また、第2の熱伝導性部材5は、熱伝導率の高い銅やアルミ材からなるブロック状のスペーサで形成されている。しかし、これらの材料に限定されるものではなく他の高熱伝導材料を使用してもよい。また、第2の熱伝導性部材5は、第1の熱伝導性部材4と筐体3との熱移動が重要であるので、特に第2の熱伝導性部材の厚み5a方向の熱伝導率が高い構造を有することが好ましい。   Moreover, the 2nd heat conductive member 5 is formed with the block-shaped spacer which consists of copper or aluminum material with high heat conductivity. However, the present invention is not limited to these materials, and other high heat conductive materials may be used. In addition, since the heat transfer between the first heat conductive member 4 and the housing 3 is important for the second heat conductive member 5, the heat conductivity in the direction of the thickness 5a of the second heat conductive member is particularly important. It is preferable to have a high structure.

<実施形態2>
図2は、実施形態2に係る記憶装置の正面から見た断面図であり、記憶装置の放熱構造を示している。尚、本実施形態2においては、実施形態1における同一部分については、同一符号を付して詳しい説明を省略し、実施形態1と異なる点を中心に説明する。
<Embodiment 2>
FIG. 2 is a cross-sectional view of the storage device according to the second embodiment as viewed from the front, and shows a heat dissipation structure of the storage device. In the second embodiment, the same parts as those in the first embodiment will be denoted by the same reference numerals, detailed description thereof will be omitted, and differences from the first embodiment will be mainly described.

本実施形態2に係る記憶装置の放熱構造では、第1の熱伝導性部材4のHDD1と対向する表面に高放射率面41を更に形成している。また、図2では第1の熱伝導性部材4の全面に渡って高放射率面41を形成しているが、HDD1と対向する面の一部に形成してもよい。   In the heat dissipation structure of the storage device according to the second embodiment, the high emissivity surface 41 is further formed on the surface of the first thermal conductive member 4 facing the HDD 1. In FIG. 2, the high emissivity surface 41 is formed over the entire surface of the first thermal conductive member 4, but it may be formed on a part of the surface facing the HDD 1.

高放射率面41を形成する具体的方法としては、エンボス加工によって表面を赤外線の波長以上に粗くする方法がある。又は、赤外線放射率(ε)が0.9以上であるセラミック含有塗料を塗布乾燥させて形成してもかまわない。   As a specific method of forming the high emissivity surface 41, there is a method of making the surface rougher than the wavelength of infrared rays by embossing. Alternatively, it may be formed by applying and drying a ceramic-containing paint having an infrared emissivity (ε) of 0.9 or more.

また、第1の熱伝導性部材4に厚さが100μm以上のアルミ合金を用いた場合には、表面にアルマイト処理加工を施すことで、放射率が0.9以上の高放射率面が得られる。   In addition, when an aluminum alloy having a thickness of 100 μm or more is used for the first heat conductive member 4, a high emissivity surface having an emissivity of 0.9 or more is obtained by subjecting the surface to alumite treatment. It is done.

高放射率面41を形成することにより、HDD1が発生する放射熱に対する吸収率が向上してHDD1から第1の熱伝導性部材4への移動熱量が増加し、HDD1の放熱性が高くなる。   By forming the high emissivity surface 41, the absorption rate for the radiant heat generated by the HDD 1 is improved, the amount of heat transferred from the HDD 1 to the first thermal conductive member 4 is increased, and the heat dissipation of the HDD 1 is enhanced.

<実施形態3>
図3は、実施形態3に係る記憶装置の正面から見た断面図であり、記憶装置の放熱構造を示している。尚、実施形態3においても、実施形態1における同一部分については、同一符号を付して詳しい説明を省略し、実施形態1と異なる点を中心に説明する。
<Embodiment 3>
FIG. 3 is a cross-sectional view of the storage device according to the third embodiment viewed from the front, and shows a heat dissipation structure of the storage device. In the third embodiment, the same portions as those in the first embodiment are denoted by the same reference numerals, detailed description thereof is omitted, and different points from the first embodiment will be mainly described.

本実施形態3に係る記憶装置の放熱構造では、第1の熱伝導性部材4の筐体3と対向する表面に低放射率面42を更に形成している。また、図3では第1の熱伝導性部材4の全面に渡って低放射率面42を形成しているが、筐体3と対向する面の一部に形成してもよい。   In the heat dissipation structure of the storage device according to the third embodiment, a low emissivity surface 42 is further formed on the surface of the first thermal conductive member 4 facing the housing 3. In FIG. 3, the low emissivity surface 42 is formed over the entire surface of the first thermal conductive member 4, but it may be formed on a part of the surface facing the housing 3.

具体的には、鏡面研磨加工や金属鍍金等の表面処理を行うことで0.1以下の放射率を有する低放射率面42が形成される。   Specifically, the low emissivity surface 42 having an emissivity of 0.1 or less is formed by performing a surface treatment such as mirror polishing or metal plating.

低放射率面42を形成することにより、第1の熱伝導性部材4が再放射する放射熱量が減少し、筐体3の外表面3bの温度が更に下がる。   By forming the low emissivity surface 42, the amount of radiant heat re-radiated by the first heat conductive member 4 is reduced, and the temperature of the outer surface 3b of the housing 3 is further lowered.

本発明の実施形態1に係る記憶装置の放熱構造を示しており、(a)は、正面から見た記憶装置の断面図、(b)は、記憶装置の平面図である。1 shows a heat dissipation structure for a storage device according to Embodiment 1 of the present invention, where (a) is a cross-sectional view of the storage device viewed from the front, and (b) is a plan view of the storage device. 本発明の実施形態2に係る記憶装置の放熱構造を示しており、正面から見た記憶装置の断面図である。FIG. 5 is a cross-sectional view of the storage device as viewed from the front, showing the heat dissipation structure of the storage device according to the second embodiment of the present invention. 本発明の実施形態3に係る記憶装置の放熱構造を示しており、正面から見た記憶装置の断面図である。FIG. 7 is a cross-sectional view of the storage device as viewed from the front, showing the heat dissipation structure of the storage device according to Embodiment 3 of the present invention.

符号の説明Explanation of symbols

1 ハードディスクドライブ(HDD)
2 衝撃緩衝部材
2a 衝撃緩衝部材の切欠き部
3 筐体
3a 筐体の端部
3b 筐体の外表面
31 パームレスト部
32 筐体底部
4 第1の熱伝導性部材
4a 第1の熱伝導性部材の端部
41 高放射率面
42 低放射率面
5 第2の熱伝導性部材
5a 第2の熱伝導性部材の厚み
1 Hard disk drive (HDD)
DESCRIPTION OF SYMBOLS 2 Shock absorbing member 2a Notch part of impact buffering member 3 Housing | casing 3a End part of housing | casing 3b Outer surface of a housing | casing 31 Palm rest part 32 Housing | casing bottom part 4 1st heat conductive member 4a 1st heat conductive member End portion 41 high emissivity surface 42 low emissivity surface 5 second heat conductive member 5a thickness of second heat conductive member

Claims (4)

放熱を必要とする発熱部材が筐体に収納された電子機器の放熱構造であって、
前記発熱部材と前記筐体との空隙に前記発熱部材と接することなく第1の熱伝導性部材が配置され、
前記第1の熱伝導性部材と前記筐体の間であって、前記発熱部材と対向しない部分に第2の熱伝導性部材が配置され、
前記第1の熱伝導性部材が前記第2の熱伝導性部材を介して前記筐体に取り付けられていることを特徴とする電子機器の放熱構造。
A heat dissipation structure of an electronic device in which a heat generating member that requires heat dissipation is housed in a housing,
The first heat conductive member is disposed in the gap between the heat generating member and the housing without being in contact with the heat generating member,
A second heat conductive member is disposed between the first heat conductive member and the housing, and the second heat conductive member is disposed in a portion not facing the heat generating member;
The heat dissipation structure for an electronic device, wherein the first thermal conductive member is attached to the housing via the second thermal conductive member.
前記第1の熱伝導性部材は、前記発熱部材と対向する表面の少なくとも一部分に放射率の高い面が形成されていることを特徴とする請求項1に記載の電子機器の放熱構造。   2. The heat dissipation structure for an electronic device according to claim 1, wherein the first heat conductive member has a high emissivity surface formed on at least a part of a surface facing the heat generating member. 前記第1の熱伝導性部材は、前記筐体と対向する表面の少なくとも一部分に放射率の低い面が形成されていることを特徴とする請求項1又は請求項2に記載の電子機器の放熱構造。   3. The heat dissipation of the electronic device according to claim 1, wherein the first heat conductive member has a surface having a low emissivity formed on at least a part of a surface facing the housing. 4. Construction. 前記発熱部材がハードディスクドライブからなる請求項1乃至請求項3のいずれかに記載の電子機器の放熱構造。
4. The heat dissipation structure for an electronic device according to claim 1, wherein the heat generating member is a hard disk drive.
JP2003276194A 2003-07-17 2003-07-17 Heat dissipation structure of electronic apparatus Pending JP2005039128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003276194A JP2005039128A (en) 2003-07-17 2003-07-17 Heat dissipation structure of electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003276194A JP2005039128A (en) 2003-07-17 2003-07-17 Heat dissipation structure of electronic apparatus

Publications (1)

Publication Number Publication Date
JP2005039128A true JP2005039128A (en) 2005-02-10

Family

ID=34212595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003276194A Pending JP2005039128A (en) 2003-07-17 2003-07-17 Heat dissipation structure of electronic apparatus

Country Status (1)

Country Link
JP (1) JP2005039128A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010165276A (en) * 2009-01-19 2010-07-29 Nec Corp Electronic device
JP2011124609A (en) * 2011-02-23 2011-06-23 Toshiba Corp Electronic apparatus
US8194400B2 (en) 2009-12-11 2012-06-05 Kabushiki Kaisha Toshiba Electronic device
JP2021501468A (en) * 2017-10-27 2021-01-14 エル3 テクノロジーズ インコーポレイテッド Thermal insulation of the memory core of the flight recorder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010165276A (en) * 2009-01-19 2010-07-29 Nec Corp Electronic device
US8194400B2 (en) 2009-12-11 2012-06-05 Kabushiki Kaisha Toshiba Electronic device
JP2011124609A (en) * 2011-02-23 2011-06-23 Toshiba Corp Electronic apparatus
JP2021501468A (en) * 2017-10-27 2021-01-14 エル3 テクノロジーズ インコーポレイテッド Thermal insulation of the memory core of the flight recorder
JP7203103B2 (en) 2017-10-27 2023-01-12 エル3 テクノロジーズ インコーポレイテッド Thermal insulation of flight recorder memory cores
US11751345B2 (en) 2017-10-27 2023-09-05 L3 Technologies, Inc. Thermal isolation of flight recorder memory core

Similar Documents

Publication Publication Date Title
JP4706125B2 (en) Information processing device with heat dissipation buffer structure for functional unit
US9715904B2 (en) Dissipating heat during device operation
CN109074140B (en) Passive thermal management system with phase change material
JP4144983B2 (en) Thin electromagnetic interference shield with heat spreading plate
US7480145B2 (en) Thin, passive cooling system
JP4421963B2 (en) Electronics
US7177147B2 (en) Heat dissipation device for computer hard drive
JP6885194B2 (en) Electronics
US7940528B2 (en) Electronic device and heat sink thereof
CN108811432B (en) Electronic device and heat dissipation module thereof
JP2007049015A (en) Electronic device structure and electronic device using the same
JP2005039128A (en) Heat dissipation structure of electronic apparatus
JP2006339223A (en) Heat dissipation structure of cpu
JP2007266518A (en) Heat dissipating structure, and information processing apparatus
JP2006114860A (en) Heat sink device
JP2006286757A (en) Heat dissipation structure of electronic apparatus
CN114610127A (en) Casing structure with high-efficient thermal management function
JP2002319652A (en) Internal structure for electrical/electronic appliance
TW201418955A (en) Heat dissipating assembly
KR20090079449A (en) Radiation structure for electronic module and electronic equipment having the same
JP4529703B2 (en) Heat dissipation structure and heat dissipation parts
JP2012129379A (en) Radiation fin
JP2000148307A (en) Keyboard
JP2007088368A (en) Cooling structure of heat-generating member
US6062300A (en) Evenly heat-dissipating apparatus