JP2005039113A - Surface mounting method and hybrid integrated circuit using it - Google Patents

Surface mounting method and hybrid integrated circuit using it Download PDF

Info

Publication number
JP2005039113A
JP2005039113A JP2003275980A JP2003275980A JP2005039113A JP 2005039113 A JP2005039113 A JP 2005039113A JP 2003275980 A JP2003275980 A JP 2003275980A JP 2003275980 A JP2003275980 A JP 2003275980A JP 2005039113 A JP2005039113 A JP 2005039113A
Authority
JP
Japan
Prior art keywords
insulating layer
circuits
hybrid integrated
integrated circuit
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003275980A
Other languages
Japanese (ja)
Inventor
Kenji Kadota
健次 門田
Masahiro Ibukiyama
正浩 伊吹山
Yoichi Ogata
陽一 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003275980A priority Critical patent/JP2005039113A/en
Publication of JP2005039113A publication Critical patent/JP2005039113A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hybrid integrated circuit which can prevent generation of an abnormality such as cracking at or in the vicinity of a joining material such as solder or conductive resin even when undergoing repetitive cycles of temperature increase and decrease. <P>SOLUTION: In a surface mounting method for mounting an electronic component on a plurality of circuits on a circuit substrate so as to straddle the circuits, the electronic component is mounted so that an insulating layer (A) is disposed in a gap between the circuits under the electronic component. A hybrid integrated circuit to which the method is applied and a circuit substrate for it are provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体素子やチップ抵抗、チップコンデンサなどの表面実装型電子部品を搭載した混成集積回路に関し、ことにチップ抵抗やチップコンデンサなどのように、複数の回路に跨って実装される表面実装型電子部品に関して、その接合に用いられる半田や導電樹脂などの導電性接合材の耐久性を向上させるための実装方法とそれを適用した混成集積回路に関する。また、それに用いる回路基板に関するもので、混成集積回路に用いられるプリント基板や金属ベース基板などの各種回路基板に適用して有効であり、特に熱膨張率の大きい金属ベース基板に適用するとき極めて効果的である。   The present invention relates to a hybrid integrated circuit on which surface-mounted electronic components such as semiconductor elements, chip resistors, and chip capacitors are mounted, and in particular, surface mount that is mounted across a plurality of circuits, such as chip resistors and chip capacitors. The present invention relates to a mounting method for improving the durability of a conductive bonding material such as solder or conductive resin used for bonding, and a hybrid integrated circuit using the mounting method. Also, it relates to a circuit board used therefor, and is effective when applied to various circuit boards such as a printed board and a metal base board used in a hybrid integrated circuit, and particularly effective when applied to a metal base board having a large coefficient of thermal expansion. Is.

小型化や実装時の省力化などを可能にする表面実装を実現するために、各種の回路基板が用いられており、これらの回路基板に各種の表面実装電子部品を搭載した混成集積回路が用いられている。特に、高発熱性電子部品を実装する回路基板として、金属板上に無機フィラ−を充填したエポキシ樹脂等からなる絶縁層を設け、該絶縁層上に回路を設けた金属ベース回路基板が用いられている。  Various circuit boards are used to realize surface mounting that enables miniaturization and labor saving during mounting, and hybrid integrated circuits with various surface mount electronic components mounted on these circuit boards are used. It has been. In particular, as a circuit board for mounting a highly heat-generating electronic component, a metal base circuit board in which an insulating layer made of an epoxy resin filled with an inorganic filler is provided on a metal plate and a circuit is provided on the insulating layer is used. ing.

一方、車載用電子機器について、その小型化、省スペ−ス化と共に、電子機器をエンジンル−ム内に設置することが要望されている。エンジンル−ム内は温度が高く、温度変化が大きいなど過酷な環境であり、放熱性に優れ、長期信頼性の高い回路基板が必要とされる。   On the other hand, with respect to in-vehicle electronic devices, there is a demand for installing the electronic devices in an engine room together with downsizing and space saving. The engine room has a harsh environment such as a high temperature and a large temperature change, and a circuit board having excellent heat dissipation and high long-term reliability is required.

回路基板上の回路には各種の電子部品が半田や導電樹脂などを介して接合されている。しかし、実使用下における温度上昇/温度下降の繰り返しを長期に渡って受けていると、電子部品を固定している半田や導電樹脂などの接合材部分或いはその近傍にクラックが発生することがあり、その結果、熱の伝導経路が遮断され、機能が停止してしまう、或いは電気的信頼性が低下するという問題が発生する。   Various electronic components are joined to the circuit on the circuit board via solder, conductive resin, or the like. However, if repeated temperature rise / decrease during actual use is received over a long period of time, cracks may occur in or near the bonding material such as solder or conductive resin that fixes the electronic components. As a result, there is a problem that the heat conduction path is interrupted, the function is stopped, or the electrical reliability is lowered.

特に、金属ベ−ス回路基板は、熱放散性や経済的な理由から金属板としてアルミニウム板を用いることが多く、銅板などを用いる場合もある。しかし、これらの金属板と電子部品、特にチップ抵抗やチップコンデンサなどのセラミックチップ部品との熱膨張率の差が大きいため、同様な問題が発生する。   In particular, a metal base circuit board often uses an aluminum plate as a metal plate for heat dissipation and economical reasons, and sometimes uses a copper plate or the like. However, since the difference in thermal expansion coefficient between these metal plates and electronic components, particularly ceramic chip components such as chip resistors and chip capacitors, is large, similar problems occur.

本発明は、上記の事情に鑑みてなされたものであり、温度上昇/温度下降を繰り返し受けても、半田や導電樹脂などの接合材或いはその近傍でクラック発生等の異常を生じ難い、回路基板並びに混成集積回路を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and even when the temperature rise / fall is repeatedly received, it is difficult to cause abnormalities such as cracks in the bonding material such as solder or conductive resin or in the vicinity thereof. An object of the present invention is to provide a hybrid integrated circuit.

本発明者は、有限要素法を用いた熱弾塑性解析において、いろいろな回路基板上に種々の電子部品を半田により接合した混成集積回路について、233Kから423Kの範囲の熱サイクルを負荷する計算を行い、その結果、半田の塑性ひずみ範囲が特定の値以下となるような回路基板構造が好ましく、特定の実装方法を用いて回路基板を用いるときに、耐半田クラック性に富む、高い信頼性を有する混成集積回路が得られることを見出し、そして実験的検証を重ねて、本発明に至ったものである。   In the thermoelastic-plastic analysis using the finite element method, the present inventor performs a calculation to load a thermal cycle in the range of 233K to 423K on a hybrid integrated circuit in which various electronic components are joined to various circuit boards by soldering. As a result, a circuit board structure in which the plastic strain range of the solder is not more than a specific value is preferable, and when using a circuit board by using a specific mounting method, it has high solder crack resistance and high reliability. It has been found that a hybrid integrated circuit can be obtained, and has been experimentally verified to arrive at the present invention.

さらに、本発明者は、上記知見に基づき、いろいろに実験的に検討し、次の知見を得て本発明に至ったものである。即ち、半田或いはその近傍で発生するクラックは、混成集積回路に加熱冷却を繰り返すことにより、回路基板と電子部品との熱膨張差により発生する熱ひずみが半田に負荷されることにより発生すると考えられ、熱ひずみを回路基板の絶縁層で緩和することが重要になってくる。このとき、金属板と電子部品との間で発生する熱ひずみを充分に緩和するためには、絶縁層の配置が重要である。   Furthermore, the present inventor has conducted various experimental studies based on the above knowledge, and has obtained the following knowledge to reach the present invention. That is, it is considered that cracks generated in the solder or in the vicinity thereof are generated by repeatedly applying heating and cooling to the hybrid integrated circuit, and by applying thermal strain generated by the thermal expansion difference between the circuit board and the electronic component to the solder. It is important to alleviate the thermal strain with the insulating layer of the circuit board. At this time, the arrangement of the insulating layer is important for sufficiently relaxing the thermal strain generated between the metal plate and the electronic component.

さらに、本発明者は、電子部品の接合材として導電樹脂を用いた場合についても同様な実験を行い、接合材に半田を用いた場合に耐半田クラック性に富む、高い信頼性を有する混成集積回路となる特定の構造を有する回路基板が、電子部品の接合材として導電樹脂を用いた場合にも、導電性樹脂或いはその近傍のクラック発生の抑制に効果があることを見出した。   Furthermore, the present inventor conducted a similar experiment when using a conductive resin as a bonding material for electronic components, and when using solder as the bonding material, the hybrid integration has high solder crack resistance and high reliability. It has been found that a circuit board having a specific structure to be a circuit is effective in suppressing the generation of cracks in the conductive resin or its vicinity even when a conductive resin is used as a bonding material for electronic components.

即ち、本発明は、回路基板上の複数の回路上に、前記複数の回路を跨るように電子部品を搭載する表面実装法であって、前記電子部品下部の回路間空隙に絶縁層(A)を配置し電子部品を搭載することを特徴とする表面実装方法である。   That is, the present invention is a surface mounting method for mounting electronic components on a plurality of circuits on a circuit board so as to straddle the plurality of circuits, and an insulating layer (A) is formed in an inter-circuit gap below the electronic components. A surface mounting method characterized in that an electronic component is mounted.

また、本発明は、回路基板上の複数の回路上に、導電性接合材を介して、前記複数の回路上に跨るように電子部品を搭載してなる混成集積回路であって、前記電子部品下部の回路間の空隙に絶縁層(A)を配置してなることを特徴とする混成集積回路であり、好ましくは、絶縁層(A)は、貯蔵弾性率と熱膨張率との積が1kPa/K以上10MPa/K以下のものであることを特徴とする前記の混成集積回路であり、更に好ましくは、前記導電性接合材が半田からなることを特徴とする前記の混成集積回路である。   The present invention also provides a hybrid integrated circuit comprising electronic components mounted on a plurality of circuits on a circuit board via a conductive bonding material so as to straddle the plurality of circuits. The hybrid integrated circuit is characterized in that an insulating layer (A) is disposed in a gap between lower circuits, and preferably, the insulating layer (A) has a product of a storage elastic modulus and a thermal expansion coefficient of 1 kPa. The hybrid integrated circuit is characterized in that the hybrid integrated circuit is of / K or more and 10 MPa / K or less, more preferably the conductive bonding material is made of solder.

さらに、本発明は、絶縁基板上に複数の回路を設け、電子部品を搭載する複数の回路の前記回路間の空隙に、絶縁層(A)を前記回路表面高さにまで配置してなることを特徴とする回路基板であり、好ましくは、絶縁基板が、金属板上に絶縁層(B)を設けたものであることを特徴とする前記の回路基板であり、絶縁層(B)は、貯蔵弾性率と熱膨張率との積が1kPa/K以上10MPa/K以下のものであることを特徴とする前記の回路基板である。   Further, according to the present invention, a plurality of circuits are provided on an insulating substrate, and an insulating layer (A) is disposed up to the circuit surface height in the gaps between the circuits of the plurality of circuits on which electronic components are mounted. Preferably, the insulating substrate is a circuit board provided with an insulating layer (B) on a metal plate, and the insulating layer (B) The circuit board according to claim 1, wherein the product of the storage elastic modulus and the thermal expansion coefficient is 1 kPa / K or more and 10 MPa / K or less.

本発明の表面実装方法によれば、実使用条件下で受ける厳しい温度変化によっても電子部品の接合材及びその周辺部にクラックを生じることがなく、信頼性の高い特徴を有する本発明の混成集積回路を提供することができる。また、本発明の回路基板は、前記特徴のある混成集積回路を容易に得られるように予め特定な構造を有しているので、これを用いて得られる混成集積回路は、実使用条件下で受ける厳しい温度変化によっても半田や導電樹脂などの接合材及びその周辺部にクラックを生じることがなく信頼性の高い特徴を容易に達成できる。 According to the surface mounting method of the present invention, there is no generation of cracks in the bonding material of the electronic component and its peripheral part even under severe temperature changes under actual use conditions, and the hybrid integration of the present invention having a highly reliable feature A circuit can be provided. In addition, since the circuit board of the present invention has a specific structure in advance so that a hybrid integrated circuit having the above characteristics can be easily obtained, the hybrid integrated circuit obtained by using the circuit board is under actual use conditions. Even with severe temperature changes, it is possible to easily achieve highly reliable characteristics without causing cracks in the bonding material such as solder and conductive resin and in the periphery thereof.

本発明の実装方法は、回路基板上の複数の回路上に、前記複数の回路を跨るように、チップ抵抗やチップコンデンサなどの電子部品が半田或いは導電樹脂等の接合材により固定される時、或いは固定された後に、前記電子部品下部の回路間空隙のみに絶縁層(A)を配置することを技術上の手段とし、これにより電子部品の接合に用いられる半田や導電樹脂などの接合材の耐久性を従来に比べて格別に向上させる効果を達成することができる。   In the mounting method of the present invention, when electronic components such as a chip resistor and a chip capacitor are fixed on a plurality of circuits on a circuit board by a bonding material such as solder or conductive resin so as to straddle the plurality of circuits, Alternatively, after fixing, it is a technical means to dispose the insulating layer (A) only in the gap between the circuits under the electronic component, and thereby, the bonding material such as solder or conductive resin used for bonding the electronic component It is possible to achieve the effect of significantly improving the durability as compared with the conventional case.

本発明の回路基板は、絶縁基板上に複数の回路が設けられた構造を有し、前記複数の回路に跨るように電子部品が搭載されるものである。更に、前記回路基板の回路上に、例えば半導体チップや抵抗チップなどの電子部品が半田或いは導電樹脂等の接合材により固定されており、特に、チップ抵抗やチップコンデンサなどのように、複数の回路に跨って用いられる表面実装型電子部品の接合に用いられる半田や導電樹脂などの接合材の耐久性を向上させたものは、本発明の混成集積回路に含まれる。
前記混成集積回路は、PPS(ポリフェニレンサルファイド)等からなる各種樹脂ケース等に取り付けられる場合もあれば、エポキシ樹脂等に包埋される場合もあるし、電子部品は一つの回路に設けられていても構わないし、一つの電子部品が二つ以上の回路上に跨って設けられていても構わない。
また、本発明において、回路が単一の金属箔で構成されているものであっても、2つ以上の複数の金属層を積層したクラッド箔から構成されているものでも構わない。さらに、本発明において、絶縁層(B)は1層以上の単位絶縁層から構成され、単位絶縁層が一層であっても、複数の単位絶縁層から構成されていても構わない。
The circuit board of the present invention has a structure in which a plurality of circuits are provided on an insulating substrate, and an electronic component is mounted so as to straddle the plurality of circuits. Furthermore, electronic components such as semiconductor chips and resistor chips are fixed on the circuit of the circuit board by a bonding material such as solder or conductive resin, and in particular, a plurality of circuits such as chip resistors and chip capacitors. A hybrid integrated circuit according to the present invention includes an improved durability of a bonding material such as a solder or a conductive resin used for bonding surface-mounted electronic components used across the board.
The hybrid integrated circuit may be attached to various resin cases made of PPS (polyphenylene sulfide) or the like, or may be embedded in an epoxy resin or the like, and the electronic components are provided in one circuit. Alternatively, one electronic component may be provided across two or more circuits.
In the present invention, the circuit may be composed of a single metal foil or may be composed of a clad foil in which two or more metal layers are laminated. Further, in the present invention, the insulating layer (B) is composed of one or more unit insulating layers, and the unit insulating layer may be a single layer or a plurality of unit insulating layers.

本発明に於いて、絶縁層(A)は、電子部品をしっかり固定し半田の耐久性を維持するために、いろいろな無機充填剤を含有することが好ましい。また、絶縁層(A)が多層構造を有する場合には、樹脂の種類、無機充填剤の種類、樹脂への添加剤等の種類、或いはそれらの量的割合を変更した少なくとも2種類以上の単位絶縁層で構成されている。例えば、単位絶縁層が3層以上で構成されている場合、いずれの単位絶縁層が異なる組成であっても、また隣り合う単位絶縁層が異なる組成で、隣り合わない単位絶縁層が同一組成であっても構わない。   In the present invention, the insulating layer (A) preferably contains various inorganic fillers in order to firmly fix the electronic component and maintain the durability of the solder. Further, when the insulating layer (A) has a multilayer structure, at least two or more types of units in which the type of resin, the type of inorganic filler, the type of additive to the resin, or the quantitative ratio thereof is changed It is composed of an insulating layer. For example, when the unit insulating layer is composed of three or more layers, even if any unit insulating layer has a different composition, adjacent unit insulating layers have different compositions and non-adjacent unit insulating layers have the same composition. It does not matter.

一方、絶縁層(B)は、回路基板の熱放散性を高く維持するために、いろいろな無機充填剤を含有することが好ましい。また、絶縁層(B)が多層構造を有する場合には、樹脂の種類、無機充填剤の種類、樹脂への添加剤等の種類、或いはそれらの量的割合を変更した少なくとも2種類以上の単位絶縁層で構成されている。例えば、単位絶縁層が3層以上で構成されている場合、いずれの単位絶縁層が異なる組成であっても、また隣り合う単位絶縁層が異なる組成で、隣り合わない単位絶縁層が同一組成であっても構わない。尚、絶縁層(B)と絶縁層(A)とは前記した通りに必ずしも同一の機能を有するものではないが、同一の材料を適用することも可能であるし、かえって、絶縁層(B)と絶縁層(A)との両者の界面の強度が高くすることができること、生産しやすいこと等の理由から好ましい。   On the other hand, the insulating layer (B) preferably contains various inorganic fillers in order to maintain high heat dissipation of the circuit board. Further, when the insulating layer (B) has a multilayer structure, at least two or more types of units in which the type of resin, the type of inorganic filler, the type of additive to the resin, etc., or the quantitative ratio thereof are changed are used. It is composed of an insulating layer. For example, when the unit insulating layer is composed of three or more layers, even if any unit insulating layer has a different composition, adjacent unit insulating layers have different compositions and non-adjacent unit insulating layers have the same composition. It does not matter. Although the insulating layer (B) and the insulating layer (A) do not necessarily have the same function as described above, it is possible to apply the same material, and instead, the insulating layer (B). It is preferable because the strength of the interface between the insulating layer (A) and the insulating layer (A) can be increased and the production is easy.

本発明において、接合材としては、半田であっても、導電樹脂であっても、電子部品と回路材とを接合するものであれば構わないが、接合材が半田であるときには、電子部品と金属ベース回路基板との接合力が高く、従って電子部品から発生する熱が容易に放散しやすいので、好ましい。接合材が半田の場合、その半田は、鉛−錫を含む各種の2元、3元系半田であっても、鉛を含まない各種の2元、3元系半田、例えば金、銀、銅、錫、亜鉛、ビスマス、インジウム、アンチモンなどを含む半田であっても構わない。   In the present invention, the bonding material may be solder or conductive resin as long as it joins an electronic component and a circuit material. When the bonding material is solder, The bonding strength with the metal base circuit board is high, and therefore heat generated from the electronic component is easily dissipated, which is preferable. When the bonding material is solder, the solder may be various binary and ternary solders containing lead-tin, but various binary and ternary solders not containing lead, such as gold, silver, and copper. , Solder containing tin, zinc, bismuth, indium, antimony, or the like.

接合材が導電樹脂の場合、エポキシ或いはアクリル等の樹脂に、金、銀、銅などの金属或いは黒鉛などの導電性材料を1種類含むものであっても、これら金属或いは黒鉛などの導電性材料を2種類以上含むものであっても構わない。   When the bonding material is a conductive resin, even if the epoxy or acrylic resin contains one kind of conductive material such as metal such as gold, silver or copper, or graphite, conductive material such as these metal or graphite It may contain two or more types.

本発明者らは、接合部或いはその近傍の耐クラック性に優れる表面実装方法を見いだすべく、実装方法、回路基板構造、材料について鋭意検討した結果、回路基板上の複数の回路上に、前記複数の回路を跨るように、チップ抵抗やチップコンデンサなどの電子部品が半田或いは導電樹脂等の接合材により固定される時或いは固定された後に、前記電子部品下部の回路間空隙に、ことに回路間空隙のみに絶縁層(A)を配置するときに、電子部品の接合部或いはその近傍の耐クラック性に優れる回路基板が得られるという知見を得て、本発明に至ったものである。   In order to find a surface mounting method with excellent crack resistance at or near the joint, the present inventors have intensively studied a mounting method, a circuit board structure, and a material. When the electronic components such as chip resistors and chip capacitors are fixed with a bonding material such as solder or conductive resin so as to straddle the circuit of the circuit, in the inter-circuit gap below the electronic components, particularly between the circuits. The inventor has obtained the knowledge that when the insulating layer (A) is disposed only in the gap, a circuit board having excellent crack resistance at or near the joint portion of the electronic component can be obtained.

即ち、本発明は、回路基板の複数の回路上に、複数の回路を跨るように接合材を介して電子部品を搭載して混成集積回路を得るときに、前記電子部品下部の回路間空隙に、特に回路間空隙のみに、絶縁層(A)を配置することにより、実使用下での繰り返しの熱履歴を受けても前記接合層或いはその近傍にクラックが生じ難い、耐クラック性に優れた混成集積回路が得られるという知見に基づいたものである。   That is, according to the present invention, when an electronic component is mounted on a plurality of circuits on a circuit board through a bonding material so as to straddle the plurality of circuits, a hybrid integrated circuit is obtained. In particular, by disposing the insulating layer (A) only in the inter-circuit gap, cracks are unlikely to occur in the bonding layer or in the vicinity thereof even when subjected to repeated thermal history under actual use, and excellent in crack resistance. This is based on the knowledge that a hybrid integrated circuit can be obtained.

以下、図をもって、本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to the drawings.

図1は、本発明の混成集積回路の一例を示す平面図で、図2は図1中のA−A’部分での断面図を示す。本発明の混成集積回路は、絶縁基板1の一主面上に回路2が設けられている回路基板の回路2の所望部分に接合材3を介して表面実装型電子部品4が、複数の回路を跨るように搭載され、電子部品下部の回路間空隙に絶縁層(A)5を配置した構造を有している。   FIG. 1 is a plan view showing an example of a hybrid integrated circuit according to the present invention, and FIG. 2 is a cross-sectional view taken along the line A-A 'in FIG. In the hybrid integrated circuit of the present invention, a surface mount electronic component 4 is connected to a desired portion of the circuit 2 of the circuit board on which the circuit 2 is provided on one main surface of the insulating substrate 1 through the bonding material 3. The insulating layer (A) 5 is disposed in the space between the circuits below the electronic component.

図3は、本発明の混成集積回路の別の一例を示す断面図である。本発明の混成集積回路は、金属板6の一主面上に絶縁層(B)7を介して回路2が設けられてなる回路基板の回路2の所望部分に接合材3を介して表面実装型電子部品4が、複数の回路を跨るように搭載され、電子部品下部の回路間空隙に絶縁層(A)5を配置した構造を有している。   FIG. 3 is a cross-sectional view showing another example of the hybrid integrated circuit of the present invention. The hybrid integrated circuit according to the present invention is mounted on a surface of a circuit board on a desired surface of a circuit board 2 in which a circuit 2 is provided on one main surface of a metal plate 6 with an insulating layer (B) 7 interposed therebetween. The mold electronic component 4 is mounted so as to straddle a plurality of circuits, and has a structure in which an insulating layer (A) 5 is disposed in an inter-circuit gap below the electronic component.

本発明において、絶縁層(A)、絶縁層(B)に用いられる樹脂としては、耐熱性、電気絶縁性に優れた樹脂であればどのようなものであっても良いが、耐熱性や寸法安定性の点から熱硬化性樹脂が好ましく、更に熱硬化性樹脂の中では、常温または加熱下で比較的低粘度で取扱い易く、硬化後に耐熱性や電気絶縁性や接着性等に優れるエポキシ樹脂が好ましい。   In the present invention, the resin used for the insulating layer (A) and the insulating layer (B) may be any resin as long as it is excellent in heat resistance and electrical insulation. Thermosetting resins are preferred from the standpoint of stability, and among these thermosetting resins, they are easy to handle with a relatively low viscosity at room temperature or under heating, and are excellent in heat resistance, electrical insulation and adhesiveness after curing. Is preferred.

エポキシ樹脂としてはビスフェノールF型エポキシ樹脂などの可撓性を有しないエポキシ樹脂やダイマー酸エポキシ樹脂などの可撓性を有するエポキシ樹脂が使用できる。またアクリルゴムなどで予め変性したエポキシ樹脂も使用できる。硬化剤についてはフェノール樹脂などの可撓性を有しない硬化剤や脂肪族系炭化水素のジアミンなどの可撓性を有する硬化剤が使用でき、これらの硬化剤とエポキシ樹脂を組み合わせてよい。また、硬化促進剤についても必要に応じて使用してもよいし、これらの硬化剤以外にポリイミド樹脂、フェノキシ樹脂などの樹脂成分を使用してもよい。   As the epoxy resin, a flexible epoxy resin such as a non-flexible epoxy resin such as a bisphenol F type epoxy resin or a dimer acid epoxy resin can be used. An epoxy resin previously modified with acrylic rubber or the like can also be used. As the curing agent, a non-flexible curing agent such as a phenol resin or a flexible curing agent such as an aliphatic hydrocarbon diamine may be used, and these curing agents may be combined with an epoxy resin. Moreover, you may use a hardening accelerator as needed, and you may use resin components, such as a polyimide resin and a phenoxy resin, besides these hardening | curing agents.

絶縁層(A)、絶縁層(B)に用いられる無機充填剤としては、電気絶縁性が良好で、しかも高熱伝導率のものが用いられ、このようなものとして酸化アルミニウム、窒化アルミニウム、窒化珪素、窒化ホウ素等があげられ、これらの単独でも複数を組み合わせても用いることができる。特に、酸化アルミニウムは粒子形状が球状で高充填可能なものが安価に、容易に入手できるという理由から好ましく、窒化アルミニウムは熱伝導率が高いという理由から好ましく、更に、窒化ホウ素は誘電率が低いという理由で好ましい。   As the inorganic filler used in the insulating layer (A) and the insulating layer (B), those having good electrical insulation and high thermal conductivity are used, such as aluminum oxide, aluminum nitride, silicon nitride. Boron nitride and the like, and these can be used alone or in combination. In particular, aluminum oxide is preferable because it has a spherical particle shape and can be highly filled because it is inexpensive and easily available. Aluminum nitride is preferable because of its high thermal conductivity, and boron nitride has a low dielectric constant. This is preferable.

又、前記無機充填剤の添加量は絶縁層(A)、絶縁層(B)をなす樹脂組成物中40〜75体積%が好ましい。40体積%未満では放熱性の効果が低下し実用上用途が制限されることがあるし、75体積%を超えると樹脂中への分散が難しくなるし、また接着性の低下やボイド残存による耐電圧の低下をきたすためである。   The amount of the inorganic filler added is preferably 40 to 75% by volume in the resin composition forming the insulating layer (A) and the insulating layer (B). If it is less than 40% by volume, the effect of heat dissipation may be reduced, and the practical use may be limited. If it exceeds 75% by volume, dispersion in the resin becomes difficult, and the resistance to adhesion due to lowering of adhesiveness or remaining voids may be reduced. This is to reduce the voltage.

さらに、絶縁層(A)と絶縁層(B)は、同じ組成であっても、異なる組成であっても構わないが、200Kから450Kの温度範囲において、貯蔵弾性率と熱膨張率との積が1kPa/K以上10MPa/K以下のものが好ましく、10kPa/K以上1MPa/K以下のものが特に好ましい。この値が小さいと扱いにくくなり、大きいと接合材への負担が大きくなるからである。   Further, the insulating layer (A) and the insulating layer (B) may have the same composition or different compositions, but in the temperature range of 200K to 450K, the product of the storage elastic modulus and the thermal expansion coefficient. Is preferably from 1 kPa / K to 10 MPa / K, particularly preferably from 10 kPa / K to 1 MPa / K. This is because if this value is small, it becomes difficult to handle, and if it is large, the burden on the bonding material increases.

本発明において、絶縁層(B)全体の厚みは10〜500μm程度あれば充分であるが、20〜150μmとするときは金属ベース回路基板を生産性高く製造できるという利点も有することから好ましい。   In the present invention, it is sufficient that the total thickness of the insulating layer (B) is about 10 to 500 μm. However, the thickness of 20 to 150 μm is preferable because it has an advantage that the metal base circuit board can be manufactured with high productivity.

回路を構成する金属箔としては、銅、アルミニウム、ニッケル、鉄、錫、金、銀、モリブデン、チタニウムのいずれか、これらの金属を2種類以上含む合金、或いは前記金属又は合金を使用したクラッド箔等を用いることができる。尚、前記金属箔の製造方法は電解法でも圧延法で作製したものでもよく、また、金属箔上にはNiメッキ、Ni−Auメッキ、半田メッキなどの金属メッキがほどこされていてもかまわない。尚、絶縁層(B)との接着性の点から、前記金属箔の絶縁層(B)に接する側の表面はエッチングやメッキ等により予め粗化処理されていることが一層好ましい。   As the metal foil constituting the circuit, any one of copper, aluminum, nickel, iron, tin, gold, silver, molybdenum, titanium, an alloy containing two or more of these metals, or a clad foil using the metal or alloy Etc. can be used. In addition, the manufacturing method of the said metal foil may be what was produced by the electrolytic method or the rolling method, and metal plating, such as Ni plating, Ni-Au plating, and solder plating, may be applied on the metal foil. . From the viewpoint of adhesiveness with the insulating layer (B), it is more preferable that the surface of the metal foil on the side in contact with the insulating layer (B) is roughened in advance by etching or plating.

金属板は、アルミニウム、鉄、銅およびそれらの合金、もしくはこれらのクラッド材等からなり、その厚みは特に規定するものではないが、熱放散性に富みしかも経済的であることから、厚み0.5〜5.0mmのアルミニウムが一般的に選択される。
尚、本発明の回路基板の製造方法に関しては、無機充填剤を含有する樹脂に適宜硬化剤等の添加剤を添加した絶縁材料を複数準備し、金属板及び/又は金属箔上に1層又は多層塗布しながら、必要に応じて加熱処理等を施して、硬化させ、その後金属箔よりエッチング等により回路形成する方法、或いは予め絶縁材料からなるシ−トを作製しておき、前記シートを介して金属板や金属箔を張り合わせた後エッチング等により回路形成する方法等の従来公知の方法で得ることができる。
The metal plate is made of aluminum, iron, copper and alloys thereof, or a clad material thereof. The thickness of the metal plate is not particularly specified. However, since the metal plate is rich in heat dissipation and economical, it has a thickness of 0. Aluminum of 5 to 5.0 mm is generally selected.
In addition, regarding the manufacturing method of the circuit board of this invention, several insulating materials which added additives, such as a hardening | curing agent, to the resin containing an inorganic filler suitably were prepared, and one layer or on metal plate and / or metal foil A method of forming a circuit by etching or the like from a metal foil, or preparing a sheet made of an insulating material in advance, or applying a heat treatment or the like as needed while applying a multilayer, Then, it can be obtained by a conventionally known method such as a method of forming a circuit by etching or the like after laminating metal plates or metal foils.

〔実施例1〜3、比較例1〜3〕
厚さ1.0mmの銅箔内蔵積層プリント基板の回路銅箔をエッチングしてパッド部を有する所望の回路を形成して、回路基板を作成した。
[Examples 1-3, Comparative Examples 1-3]
A circuit board was created by etching a circuit copper foil of a 1.0 mm thick copper foil built-in laminated printed board to form a desired circuit having a pad portion.

〔実施例4〜6、比較例4〜6〕
2.0mmの厚さのアルミニウム板上に、酸化アルミニウムを60体積%含有するビスフェノールF型エポキシ樹脂(油化シェルエポキシ(株)製)からなる樹脂組成物Bにより、硬化後の厚さが120μmの絶縁層(B)を形成し、423Kで15分加熱して半硬化させた。
[Examples 4-6, Comparative Examples 4-6]
The thickness after curing is 120 μm by resin composition B made of bisphenol F type epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd.) containing 60% by volume of aluminum oxide on an aluminum plate having a thickness of 2.0 mm. An insulating layer (B) was formed and heated at 423 K for 15 minutes to be semi-cured.

更に、半硬化した樹脂組成物Bの上に、厚さ70μmの銅箔をプレス積層した後、423Kで5時間の条件で樹脂組成物Bを更に硬化させ、次に、銅箔をエッチングしてパッド部を有する所望の回路を形成して、回路基板を作成した。   Further, a 70 μm thick copper foil was press-laminated on the semi-cured resin composition B, and then the resin composition B was further cured at 423 K for 5 hours, and then the copper foil was etched. A desired circuit having a pad portion was formed to produce a circuit board.

次に、前記操作で得た各々の回路基板の銅箔パッド間にチップサイズ2.0mm×1.25mm、3.2mm×2.5mmの2種類のチップ抵抗を各5個ずつ搭載し図1に示すような混成集積回路とした。チップ抵抗の搭載に際しては、実施例1、4および比較例1、4については、鉛−錫共晶半田を用い、500Kの温度でリフローにより半田付けを行なった。また、実施例2、5、比較例2、5については、錫−銅−銀からなる半田を用い、550Kの温度でリフローにより半田付けを行った。さらに、実施例3、6、比較例3、6については、銀−エポキシからなる導電性接着剤を用い、385Kの温度でリフローにより接合した。   Next, two types of chip resistors each having a chip size of 2.0 mm × 1.25 mm and 3.2 mm × 2.5 mm are mounted between the copper foil pads of each circuit board obtained by the above operation. A hybrid integrated circuit as shown in FIG. When mounting the chip resistor, Examples 1 and 4 and Comparative Examples 1 and 4 were soldered by reflow at a temperature of 500 K using lead-tin eutectic solder. In Examples 2 and 5 and Comparative Examples 2 and 5, solder made of tin-copper-silver was used and soldered by reflow at a temperature of 550K. Further, Examples 3 and 6 and Comparative Examples 3 and 6 were joined by reflow using a conductive adhesive made of silver-epoxy at a temperature of 385K.

次に、実施例1〜6については、酸化珪素−エポキシからなる樹脂組成物Aを電子部品下部の回路間の空隙に充填し、435Kの温度で硬化させ、絶縁層(A)とした。   Next, for Examples 1 to 6, the resin composition A composed of silicon oxide-epoxy was filled in the gaps between the circuits under the electronic component and cured at a temperature of 435K to form an insulating layer (A).

尚、上記樹脂組成物A並びに樹脂組成物Bのそれぞれについて、上述の樹脂組成物の硬化条件と同一の条件で硬化させた試片を用意し、貯蔵弾性率と熱膨張率を測定した。貯蔵弾性率は、動的粘弾性測定器(東洋ボールドウィン社製;RHEOVIBRON DDV−3−EP型)を用い、周波数11Hz、昇温速度2℃/分の条件で、熱膨張率は、熱機械的分析装置(セイコー電子工業社製;TMA120)により測定した。   In addition, about each of the said resin composition A and the resin composition B, the test piece hardened on the same conditions as the hardening conditions of the above-mentioned resin composition was prepared, and the storage elastic modulus and the thermal expansion coefficient were measured. The storage elastic modulus is a dynamic viscoelasticity measuring instrument (manufactured by Toyo Baldwin; RHEOVIBRON DDV-3-EP type), and the thermal expansion coefficient is thermomechanical under the conditions of a frequency of 11 Hz and a heating rate of 2 ° C./min. It was measured with an analyzer (Seiko Electronics Co., Ltd .; TMA120).

樹脂組成物Aの230K、300K、420Kの貯蔵弾性率は、それぞれ、22GPa、18GPa,6GPaであった。また、熱膨張率は同様に15ppm/K、15ppm/K、60ppm/Kであり、各温度の貯蔵弾性率と熱膨張率の積は、330kPa/K、270kPa/K、360kPa/Kであった。   The storage elastic moduli of 230K, 300K, and 420K of the resin composition A were 22 GPa, 18 GPa, and 6 GPa, respectively. Similarly, the thermal expansion coefficients were 15 ppm / K, 15 ppm / K, and 60 ppm / K, and the product of the storage elastic modulus and the thermal expansion coefficient at each temperature was 330 kPa / K, 270 kPa / K, and 360 kPa / K. .

また、樹脂組成物Bの230K、300K、420Kの貯蔵弾性率は、それぞれ、14GPa、8.6GPa,77MPaであった。また、熱膨張率は同様に18ppm/K、18ppm/K、67ppm/Kであり、各温度の貯蔵弾性率と熱膨張率の積は、252kPa/K、155kPa/K、5.2kPa/Kであった。   In addition, the storage elastic moduli of 230K, 300K, and 420K of the resin composition B were 14 GPa, 8.6 GPa, and 77 MPa, respectively. Similarly, the thermal expansion coefficients are 18 ppm / K, 18 ppm / K, and 67 ppm / K, and the product of the storage elastic modulus and the thermal expansion coefficient at each temperature is 252 kPa / K, 155 kPa / K, and 5.2 kPa / K. there were.

上記各々の混成集積回路に関して、液相中において233K7分保持後423K7分保持を1サイクルとして所定回数処理するヒートサイクル試験を行い、試験後に各々の混成集積回路を光学顕微鏡で主に接合部分のクラックの発生の有無を観察した。その結果は、表1に示した通り、比較例1〜6では、クラックの発生が認められたのに対し、実施例1〜6は、2000回のヒートサイクルでもクラックの発生は少ないことが確認された。さらに、実施例4〜5は、3000回のヒートサイクルでもクラックの発生はなく、異常のないことが確認され、本発明のものが耐クラック性に優れていることが明瞭である。   With respect to each of the above hybrid integrated circuits, a heat cycle test is performed in which a predetermined number of cycles are performed in the liquid phase after holding for 233 K7 minutes and then holding for 423 K7 minutes, and after the test, each of the hybrid integrated circuits is mainly cracked in an optical microscope. The presence or absence of the occurrence of was observed. As a result, as shown in Table 1, in Comparative Examples 1 to 6, the occurrence of cracks was observed, whereas in Examples 1 to 6, it was confirmed that the occurrence of cracks was small even after 2000 heat cycles. It was done. Further, in Examples 4 to 5, it was confirmed that no crack was generated even after 3000 heat cycles and no abnormality was observed, and that the present invention was excellent in crack resistance.

Figure 2005039113
Figure 2005039113

本発明の表面実装方法を用いれば、実使用条件下で受ける厳しい温度変化によっても電子部品の接合材及びその周辺部にクラックを生じることがなく信頼性の高い混成集積回路を提供することができる。   By using the surface mounting method of the present invention, it is possible to provide a highly reliable hybrid integrated circuit without causing cracks in the bonding material of the electronic component and its peripheral part even under severe temperature changes under actual use conditions. .

さらに、本発明の回路基板は、実使用条件下で受ける厳しい温度変化によっても半田や導電樹脂などの接合材及びその周辺部にクラックを生じることがなく信頼性の高い混成集積回路を提供することができる。   Furthermore, the circuit board of the present invention provides a highly reliable hybrid integrated circuit that does not cause cracks in the bonding material such as solder and conductive resin and its peripheral part even under severe temperature changes under actual use conditions. Can do.

また、本発明の混成集積回路は、例えば、233K〜423Kの繰り返しのような厳しい温度変化を受けた際にも、接合材及びその周辺部にクラックを生じることがなく、信頼性が高く産業上有用である。   In addition, the hybrid integrated circuit of the present invention has high reliability and high reliability without causing cracks in the bonding material and its peripheral part even when subjected to severe temperature changes such as repetition of 233K to 423K. Useful.

本発明の実施例に係る混成集積回路の平面図。1 is a plan view of a hybrid integrated circuit according to an embodiment of the present invention. 図1におけるA−A’断面図。FIG. 2 is a cross-sectional view taken along line A-A ′ in FIG. 1. 本発明の混成集積回路の他の一例を示す断面図。Sectional drawing which shows another example of the hybrid integrated circuit of this invention.

符号の説明Explanation of symbols

1 絶縁基板
2 回路
3 接合材
4 表面実装電子部品
5 絶縁層(A)
6 金属板
7 絶縁層(B)
DESCRIPTION OF SYMBOLS 1 Insulation board 2 Circuit 3 Bonding material 4 Surface mount electronic component 5 Insulation layer (A)
6 Metal plate 7 Insulation layer (B)

Claims (7)

回路基板上の複数の回路上に、前記複数の回路を跨るように電子部品を搭載する表面実装法であって、前記電子部品下部の回路間空隙に絶縁層(A)を配置し電子部品を搭載することを特徴とする表面実装方法。 A surface mounting method in which electronic components are mounted on a plurality of circuits on a circuit board so as to straddle the plurality of circuits, and an insulating layer (A) is disposed in an inter-circuit gap below the electronic components to dispose the electronic components. A surface mounting method characterized by mounting. 回路基板上の複数の回路上に、導電性接合材を介して、前記複数の回路上に跨るように電子部品を搭載してなる混成集積回路であって、前記電子部品下部の回路間の空隙に絶縁層(A)を配置してなることを特徴とする混成集積回路。 A hybrid integrated circuit in which electronic components are mounted on a plurality of circuits on a circuit board via a conductive bonding material so as to straddle the plurality of circuits, and a gap between circuits below the electronic components An insulating layer (A) is disposed on the hybrid integrated circuit. 絶縁層(A)は、貯蔵弾性率と熱膨張率との積が1kPa/K以上10MPa/K以下のものであることを特徴とする請求項2記載の混成集積回路。 The hybrid integrated circuit according to claim 2, wherein the insulating layer (A) has a product of a storage elastic modulus and a thermal expansion coefficient of 1 kPa / K or more and 10 MPa / K or less. 導電性接合材が半田からなることを特徴とする請求項2、または請求項3記載の混成集積回路。 4. The hybrid integrated circuit according to claim 2, wherein the conductive bonding material is made of solder. 絶縁基板上に複数の回路を設け、電子部品を搭載する複数の回路の前記回路間の空隙に、絶縁層(A)を前記回路表面高さにまで設けていることを特徴とする回路基板。 A circuit board, wherein a plurality of circuits are provided on an insulating substrate, and an insulating layer (A) is provided up to a height of the circuit surface in a space between the circuits of the plurality of circuits on which electronic components are mounted. 絶縁基板が、金属板上に絶縁層(B)を設けたものであることを特徴とする請求項5記載の回路基板。 6. The circuit board according to claim 5, wherein the insulating substrate is a metal plate provided with an insulating layer (B). 絶縁層(B)は、貯蔵弾性率と熱膨張率との積が1kPa/K以上10MPa/K以下のものであることを特徴とする請求項6記載の回路基板。 The circuit board according to claim 6, wherein the insulating layer (B) has a product of a storage elastic modulus and a thermal expansion coefficient of 1 kPa / K or more and 10 MPa / K or less.
JP2003275980A 2003-07-17 2003-07-17 Surface mounting method and hybrid integrated circuit using it Pending JP2005039113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003275980A JP2005039113A (en) 2003-07-17 2003-07-17 Surface mounting method and hybrid integrated circuit using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003275980A JP2005039113A (en) 2003-07-17 2003-07-17 Surface mounting method and hybrid integrated circuit using it

Publications (1)

Publication Number Publication Date
JP2005039113A true JP2005039113A (en) 2005-02-10

Family

ID=34212446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003275980A Pending JP2005039113A (en) 2003-07-17 2003-07-17 Surface mounting method and hybrid integrated circuit using it

Country Status (1)

Country Link
JP (1) JP2005039113A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072065A (en) * 2006-09-15 2008-03-27 Toyota Industries Corp Surface-mounting structure adapted for electronic component for surface-mounting
WO2009116488A1 (en) * 2008-03-18 2009-09-24 電気化学工業株式会社 Insulating metal base circuit board and hybrid integrated circuit module using the same
JP2009231498A (en) * 2008-03-21 2009-10-08 Furukawa Electric Co Ltd:The Metal core multilayer printed wiring board
WO2009123125A1 (en) * 2008-04-04 2009-10-08 電気化学工業株式会社 Insulating metal base circuit board and hybrid integrated circuit module using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072065A (en) * 2006-09-15 2008-03-27 Toyota Industries Corp Surface-mounting structure adapted for electronic component for surface-mounting
US8263875B2 (en) 2006-09-15 2012-09-11 Kabushiki Kaisha Toyota Jidoshokki Surface mounting structure for a surface mounting electronic component
WO2009116488A1 (en) * 2008-03-18 2009-09-24 電気化学工業株式会社 Insulating metal base circuit board and hybrid integrated circuit module using the same
JP2009231498A (en) * 2008-03-21 2009-10-08 Furukawa Electric Co Ltd:The Metal core multilayer printed wiring board
WO2009123125A1 (en) * 2008-04-04 2009-10-08 電気化学工業株式会社 Insulating metal base circuit board and hybrid integrated circuit module using the same

Similar Documents

Publication Publication Date Title
US7038313B2 (en) Semiconductor device and method of manufacturing the same
JP4893096B2 (en) Circuit board and semiconductor module using the same
JP4893095B2 (en) Circuit board and semiconductor module using the same
JP2011060927A (en) Semiconductor apparatus
JP5370460B2 (en) Semiconductor module
JP2004274035A (en) Module having built-in electronic parts and method of manufacturing same
JP5218621B2 (en) Circuit board and semiconductor module using the same
JP2005109307A (en) Board with built-in circuit part, and manufacturing method of the same
JP2004356625A (en) Semiconductor device and method for manufacturing the same
JP2003142809A (en) Metal base circuit board and module using the same
JP2012074591A (en) Circuit board and electronic divice
JP2005235968A (en) Adhesion high heat conductive resin sheet and electronic equipment using the same
JP2005039113A (en) Surface mounting method and hybrid integrated circuit using it
JP2006041071A (en) Resin mold type module and manufacturing method thereof
JP3801576B2 (en) Cooling method of module structure
JP2010040651A (en) Semiconductor device and method of manufacturing the same
JP4667154B2 (en) Wiring board, electrical element device and composite board
JP4635977B2 (en) Heat dissipation wiring board
JP3606750B2 (en) Metal base circuit board and module using the same
JP4296684B2 (en) Metal base circuit board and module using the same
JP2006237653A (en) Adhesive for bonding semiconductor device, and method of bonding the semiconductor device
JPWO2007139101A1 (en) Electronic component mounting structure
JP4876612B2 (en) Insulated heat transfer structure and power module substrate
JP2004349561A (en) Method of bonding semiconductor device and adhesive to be used for the same
JP2005286100A (en) Ceramics two layer circuit board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070206

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070226

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070316