JP2005038870A - Light emitting diode lamp - Google Patents

Light emitting diode lamp Download PDF

Info

Publication number
JP2005038870A
JP2005038870A JP2003196846A JP2003196846A JP2005038870A JP 2005038870 A JP2005038870 A JP 2005038870A JP 2003196846 A JP2003196846 A JP 2003196846A JP 2003196846 A JP2003196846 A JP 2003196846A JP 2005038870 A JP2005038870 A JP 2005038870A
Authority
JP
Japan
Prior art keywords
light
emitting element
light emitting
emitting diode
diode lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003196846A
Other languages
Japanese (ja)
Inventor
Mitsusachi Hatanaka
三幸 畠中
Takashi Sato
敬 佐藤
Hiroshi Miyairi
洋 宮入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2003196846A priority Critical patent/JP2005038870A/en
Publication of JP2005038870A publication Critical patent/JP2005038870A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting diode lamp which is composed of an optical system and a light source that are formed of parts which are separately formed and combined, equipped with the optical system which is large enough in size so as to improve a large light emitting element in utilization efficiency, and capable of dissipating heat released from a light emitting element efficiently from an element mounting board directly into outside air or to a case. <P>SOLUTION: Light emitted from a light emitting element is controlled by an optical system having only a reflector and has two kinds of optical paths, one is that light is reflected from a reflecting plane, and the other is that light passes through a light extracting window 25 provided to a board where the light emitting element is mounted. The light emitting diode lamp has two independent structures, one is a light emitting element board unit and the other is a light control unit having a reflecting plane. The light emitting element is positioned, connected and configured around the focal point of the reflecting plane confronting the reflecting plane. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は発光ダイオード(LED)ランプに関し、大型発光素子の高度な光制御が可能で、放熱特性に優れた光デバイスに関する。
【0002】
【従来の技術】
従来、単体の発光ダイオードランプにおいて、その光学系の中に反射面を設けたランプは多数案出されている。その中でも図7に示すように、発光素子11の側面からの光を反射面27によって反射し、できるだけ前方へ出射するという構成の使用法が最も多い。図7において、発光素子11は光透過性樹脂13によって封止されている。
【0003】
また近年図8のように、発光素子11からの出射光のうち、ある角度以上の斜め方向の光を一旦全反射させ、それを再び反射面27で反射して前方へ出射するというような反射構造を持った発光ダイオードランプ(特許文献1)も製品化されている。図8において、発光素子11は光透過性樹脂13によって封止されている。
【0004】
図中の矢印は発光素子11から出射された光の光路を表している。これらのランプに共通して言えることは、主となる光学系は発光素子11の前方樹脂レンズ部であり、反射面27によってレンズ部で利用しきれない横方向や斜め方向への光を、できるだけ前方へ出射させる機能を持つということである。また、発光素子11から外部へ照射される光と同一の方向へ反射面27によって反射させる構造となっている。前出のランプはみな光透過性樹脂13によって封止されており、光源部と光学系が一体化されている。
【0005】
【特許文献1】特開2002−94129
【0006】
反射面のみを光学系として利用している発光ダイオードランプには図9に示すような、発光素子11の発光面と凹状反射面16が対向して配置され、光透過性樹脂13で封止し、凹状反射面16には裏面鏡として金属蒸着膜または金属メッキが施されている構成の反射型発光ダイオードランプがある。このランプにおいては、発光素子11から出射された光が一旦凹状反射面16にあたり、光学的制御を受けて前方に照射される。よって凹状反射面16のみが光学系を形成していて、横方向や斜め方向の光も効率よく利用することができる。この構造では、光がすべて凹状反射面16によって前方へ照射されるため、横方向や後ろ方向への不必要な光が照射されることが無くなる。
【0007】
ここで挙げてきた発光ダイオードランプはほとんどのものが直径5〜10mm、搭載発光素子は一辺300μm前後の大きさで構成されている。近年、一部の高出力型発光ダイオードランプにおいて、一辺1mm前後の大きさを持つ発光素子が搭載されているものが発表されている。これにより、従来の数倍から数十倍の電流を印可することが可能になっている。
【0008】
大型の発光素子を搭載したランプにおいては、図10に示すように銅・アルミなどの金属基板上に設けられたパターン上に発光素子11を実装し、基板を通して熱をランプ裏側へ逃がすような構造を取っているものもある。図10において発光素子11は、光透過性樹脂13によって封止されている。
【0009】
【発明が解決しようとする課題】
しかしながら、図7や図8に示すような発光ダイオードランプにおいては、その製造工程もしくは使用環境によって、熱膨張係数の違いから樹脂と反射部材との界面にクラックが生じやすいという問題がある。また、図9に示すような反射型発光ダイオードランプにおいては、金属膜で構成された反射面が、外面に凸状になってさらされているため、ピンホールや剥がれが生じやすいという問題がある。
【0010】
さらに前記した大型の発光素子を用いた場合、現行の光学系では小さすぎ、発光素子を点光源と見なすことができないため出射光を利用しきれず、特に平行光のような非常に制御された光へ変換することが困難である。
それを解決するために大きな光学系を用いた場合、それに伴い封止するための樹脂量が多くなるため、材料費が高くなるとともに工程時間も増え、製造上においてはボイドやクラックなどの不良が増える原因となる。
【0011】
また、光学系と光源部が一体成型されているため、生産においてどちらか一方に不良が発生した場合、デバイス自体が不良となり歩留まりの低下とコスト高を生じる。特に前記した大型の発光素子のような通常より高価な部材を使用した場合や、特殊な技術によって光学系を形成している場合などはその問題が顕著になってくる。製品として出荷された後も発光素子の寿命や光学系の劣化などで同様の問題が発生する。
光学系と光源部が一体成型となっていることから、これらの発光ダイオードランプは単一の照射特性のみを有し、用途に応じて照明効果を変えたい場合には全く別の金型による成型品か、レンズなどの光学系を付加したユニットとしなければならない。これらの問題はコストをあげる原因となってしまう。
【0012】
前記した図7,図8,図9に示した発光ダイオードランプにおいては、発光素子はリードフレーム上に配置され、その周囲はエポキシ樹脂等で覆われている。そのため、発光素子から発生した熱は外気へ発散されるまでに熱伝導性の低い樹脂中を通過しなければならず、発光素子に熱がたまりやすいことからその発光効率の低下を招くことになる。また発生した熱の多くは、リードフレームを介して発光ダイオードランプの実装された回路基板へ放熱される。特に図10に示すランプにおいては更に大量の熱が基板へと伝わっていく。このことによって回路基板部の温度が上昇し、周辺回路部品の誤動作や劣化を招く可能性がある。これらの熱に関する問題点は、前記した大型の発光素子を使用したときにはその消費電力が上がることにより、その解決がさらに重要となる。
【0013】
本発明は上記事情に基づき、光学系と光源部がそれぞれ独立して作製された部品を組み合わせ、光学系が凹状反射面のみで構成され、且つ大型発光素子の利用効率を十分に上げることのできる大きさの光学面を持ち合わせ、発光素子の熱が素子実装基板から直接外気もしくはケースへ、発光ダイオードランプ実装基板と逆方向に効率的に放熱される構造をもつ発光ダイオードランプを提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明は上記の課題を解決するために次ぎの構成としてある。
請求項1に記載の発明は、発光素子からの出射光を凹状反射面のみの光学系で制御し、その光路は少なくとも凹状反射面で反射されることと、発光素子実装基板の光取り出し窓を通過するという二種類の経路をとおり、発光素子実装基板と凹状反射面のある光制御部とがそれぞれ独立した構造を有して構成してある。
また発光素子が凹状反射面と対向するようにしてその焦点周辺に配置されるよう、発光素子実装基板と光制御部が接続して構成してある。
【0015】
請求項2に記載の発明は、前記発光素子が少なくとも一辺500μm以上の大きさを有し、凹状反射面は発光素子を焦点とし、その焦点距離は少なくとも前記発光素子一辺の大きさの10倍以上で設計されて構成してある。
【0016】
請求項3に記載の発明は、前記発光素子をチップ型LEDランプとして構成してある。
【0017】
請求項4に記載の発明は、前記発光素子実装基板部と凹状反射面のある光制御部との間を、可動式スペーサーにて接続したとき、それによって発光素子が焦点周辺を移動し、多種の照明効果を単一のランプで実現することができるように構成してある。
【0018】
請求項5に記載の発明は、前記発光素子実装基板部において、光取り出し窓を遮ることのないよう金属板を接続し、同金属板が外光の影響を防ぎ、更に放熱フィンの役割も果たすように構成してある。
【0019】
請求項6に記載の発明は、前記発光素子を用いた発光ダイオードランプにおいて、光制御部の光出射方向と逆側の面を回路基板に実装したとき、発光素子実装基板により発光素子より発生した熱が直接外気もしくは外ケースへと放熱され、回路基板側には熱影響を及ぼさないように構成してある。
【0020】
請求項1にあるように構成することで、光学系と光源部を樹脂で一体化する必要が無く、樹脂は発光素子を覆うのに十分な量をポッティングする程度で済み、材料費と工程時間を抑えることができるとともに、発光素子を封止した樹脂と凹状反射面との間のクラック発生の問題を無視でき、金属膜で構成された凹状反射面が内側に構成されているため、回路基板実装時に傷ついたりして凹状反射面の光学的特性を損ねることがなくなる。
【0021】
また請求項1にあるように構成することで、製造中に凹状反射面や発光素子の不良が発生した場合、もしくは長期使用による凹状反射面の劣化や発光素子の寿命といった問題でも、どちらか一方のみの不良であれば片方を取り替えることで使用可能となり、歩留まりの低下やコスト高を防ぐことができる。
【0022】
請求項2のような構成としたとき、大型の発光素子を搭載することで大電流の通電が可能になり、光出力を増大させることができ、充分な焦点距離を取ったことで発光素子を点光源と見なすことが可能となり、光の利用効率を上げることができる。特に略平行光のような非常に制御された光に変換する場合に有効である。またこのような凹状反射面であれば請求項3にあるように、携帯電話用などのチップ型LEDランプを同様にして用いることができ、工程の簡略化へとつながる。
【0023】
請求項4のように構成することにより、発光素子実装基板の位置を可変する事ができる。よって発光素子を凹状反射面の焦点周辺で移動させることにより、出射光を集光したり拡散させたりといった様々な照明効果を単一のランプで実現できることとなる。
【0024】
請求項5の構成とすることで、太陽光や周囲他照明の写り込みといった外光の影響を防ぐことができ、視認性が増すとともに、金属板が放熱フィンの役割も果たすことから、発光素子の熱上昇を抑えることができる。
【0025】
請求項6の構成としたとき、発光ダイオードランプを実装した回路基板と反対の方向へ発光素子からの熱が放熱されるため、回路基板側にある回路部品の温度上昇を防ぐことができ、誤作動や早期劣化を避ける効果がある。
【0026】
【実施例1】
以下、本発明の実施例について図面に基づいて詳しく説明する。図1は本発明の大型発光素子を用いた発光ダイオードランプの構造断面図である。発光素子11を図2に示す光取り出し窓25を有する発光素子実装基板15上のパターン22b上にダイボンドし、ボンディングワイヤ12で発光素子11とパターン22aが接続されている。これに図1に示すように、カップ形状をなすスペーサー14を貼り付け、光透過性樹脂13にてポッティングする。このようにして構成された光源基板を、発光素子11から発した光を反射する凹状反射面16とを具備してなる光制御部17と、発光素子11の発光面と凹状反射面16が対向するように接続する。同発光素子11は少なくとも一辺500μm以上の大きさを有するため、従来の300μm前後の大きさを持つ発光素子に比べ大電流を通電することができ、光出力を増大させることが可能となる。
【0027】
このようにして構成された発光ダイオードランプにおいて、発光素子11より出射された光はすべて凹状反射面16により光学的制御を受けて反射し、発光素子実装基板15の光取り出し窓25を通過して18a、18bに示すような光路を経て照射される。また、図3に示すように、発光素子11より放射された熱は、発光素子実装基板15により回路基板26と反対方向の空気中、もしくは外ケースへと効率よく放熱される。
なお、光制御部17はプラスチックによって成型されており、凹状反射面16は発光素子11を焦点とする光学的形状を有し、金属蒸着膜または金属メッキが施されている。凹状反射面16の光学的形状は、発光素子11をできるだけ点光源に近づけ、光の制御性を上げるため、少なくとも焦点距離が発光素子11の一辺の大きさに対し10倍以上で設計されている。光制御部17を金属により構成する場合は、アルミなどの反射率が高く加工性の良い材料を用い、反射面16を鏡面に仕上げることで同様に使用することができる。スペーサー14においては、カップ部の光取り出し効率向上と発光ダイオードの放熱性向上のため、アルミなどの金属によって加工されている。
【0028】
【実施例2】
図4は実施例1において使用した発光素子を、チップ型LEDランプなどの既製パッケージ発光部品に置き換えた場合の構造断面図である。マウント用パターンの施されたチップ型LEDランプ実装基板20上にチップ型LEDランプ19を実装し、その発光面が凹状反射面16の略焦点位置となるようスペーサー21を介して光制御部17と接続されている。チップ型LEDランプ実装基板20は、図2の発光素子実装基板15と同様に光取り出し窓を有している。
【0029】
【実施例3】
図5は実施例1、実施例2におけるスペーサー部を可動式スペーサー23とした場合の図である。可動部により発光面が凹状反射面16の焦点を前後に移動し、出射光を集光したり拡散したりすることが可能となる。前記機能により、単一の発光ダイオードランプで用途に応じた様々な照明効果をもたらすことができる。
【0030】
【実施例4】
図6は前記実施例1において凹状反射面16が発光素子11を焦点とする放物面などの光学的形状を有し、発光面から出射された光を略平行光として照射するような構造とした場合に、遮光板兼放熱フィン部材となる金属板24を、発光素子実装基板15の光取り出し窓25を遮ることのないように配置し接続した、図2における点線Aでの断面図である。上記構造により、太陽光や周囲他照明の写り込みなどといった外光の影響を受けにくくする事が可能になるとともに、放熱性が上がり、発光素子の温度を低減することで発光効率の向上という効果を得ることができる。
【0031】
【発明の効果】
上記した請求項1に記載の発明によると、光制御部と光源部がそれぞれ独立して接続されているので、樹脂は発光素子を覆うのに充分な量で済み、凹状反射面が樹脂で封止されていないためクラックなどの問題が無くなり、凹状反射面の光学特性を損ねることが無くなる。また、光学系が凹状反射面のみで構成されているため、光の制御性・利用効率が高いという特別な効果がある。
【0032】
上記した請求項2に記載の発明によると、大型の発光素子を搭載することで光出力の増大が計れる。また、充分な焦点距離を取ることで発光素子を点光源と見なすことができ、光の緻密な制御ができるという特別な効果がある。
【0033】
上記した請求項3に記載の発明によると、チップ型LEDランプを搭載した発光ダイオードランプとした場合、工程の大幅な簡略化ができるという特別な効果がある。
【0034】
上記した請求項4に記載の発明によると、単一の発光ダイオードランプとして使用した場合に、可動式スペーサーで発光素子を焦点周辺で移動させることより、様々な照明効果をもたらすことができる特別な効果がある。
【0035】
上記した請求項5に記載の発明によると、金属板が太陽光などの写り込みといった影響を防ぐ遮光板の役割と、放熱フィンとして発光素子の熱上昇を抑える役割をもつ特別な効果がある。
【0036】
上記した請求項6に記載の発明によると、本発明によれば発光素子から発生した熱は発光ダイオードランプを実装した回路基板側の回路部品へは影響を及ぼさず、直接外気もしくは外ケースへと効率よく放熱することができる特別な効果がある。
【図面の簡単な説明】
【図1】本発明の実施例1に係る構造断面図である。
【図2】図1における発光素子実装基板15の素子実装側正面図である。
【図3】本発明の実施例1の放熱に係る構造断面図である。
【図4】本発明の実施例2に係る構造断面図である。
【図5】本発明の実施例3に係る構造断面図である。
【図6】本発明の実施例4に係る構造断面図である。
【図7】従来例の発光ダイオードランプの構造断面図である。
【図8】従来の他の発光ダイオードランプの構造断面図である。
【図9】従来例の反射型発光ダイオードランプの構造断面図である。
【図10】従来例の放熱特性を上げた発光ダイオードランプの構造断面図である。
【符号の説明】
11 発光素子
12 ボンディングワイヤ
13 光透過性樹脂
14 スペーサー
15 発光素子実装基板
16 凹状反射面
17 光制御部
18a、18b 光路
19 チップ型LEDランプ
20 チップ型LEDランプ実装基板
21 スペーサー
22a、22b パターン
23 可動式スペーサー
24 金属板
25 光取り出し窓
26 回路基板
27 反射面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light emitting diode (LED) lamp, and relates to an optical device capable of advanced light control of a large light emitting element and having excellent heat dissipation characteristics.
[0002]
[Prior art]
Conventionally, in a single light emitting diode lamp, many lamps having a reflecting surface in the optical system have been devised. Among them, as shown in FIG. 7, the most frequently used method is a configuration in which light from the side surface of the light emitting element 11 is reflected by the reflecting surface 27 and emitted as far forward as possible. In FIG. 7, the light emitting element 11 is sealed with a light transmissive resin 13.
[0003]
Further, in recent years, as shown in FIG. 8, a reflection in which light in an oblique direction of a certain angle or more out of light emitted from the light emitting element 11 is once totally reflected and then reflected again by the reflection surface 27 and emitted forward. A light-emitting diode lamp having a structure (Patent Document 1) has also been commercialized. In FIG. 8, the light emitting element 11 is sealed with a light transmissive resin 13.
[0004]
The arrow in the figure represents the optical path of the light emitted from the light emitting element 11. What can be said in common to these lamps is that the main optical system is the front resin lens portion of the light-emitting element 11, and as much as possible light in a lateral direction or an oblique direction that cannot be used by the lens portion by the reflecting surface 27 as much as possible. This means that it has a function of emitting light forward. Further, the reflection surface 27 reflects the light in the same direction as the light emitted from the light emitting element 11 to the outside. All the above-mentioned lamps are sealed with a light-transmitting resin 13, and the light source unit and the optical system are integrated.
[0005]
[Patent Document 1] JP-A-2002-94129
[0006]
As shown in FIG. 9, the light emitting diode lamp that uses only the reflective surface as an optical system has the light emitting surface of the light emitting element 11 and the concave reflective surface 16 facing each other, and is sealed with a light transmissive resin 13. The concave reflection surface 16 includes a reflection type light emitting diode lamp having a structure in which a metal deposition film or metal plating is applied as a back mirror. In this lamp, the light emitted from the light emitting element 11 once hits the concave reflecting surface 16 and is irradiated forward by receiving optical control. Therefore, only the concave reflecting surface 16 forms an optical system, and light in the lateral direction and the oblique direction can be used efficiently. In this structure, since all the light is irradiated forward by the concave reflecting surface 16, unnecessary light is not irradiated in the lateral direction and the backward direction.
[0007]
Most of the light emitting diode lamps mentioned here have a diameter of 5 to 10 mm, and the mounted light emitting element has a size of about 300 μm on a side. In recent years, some high-power light-emitting diode lamps have been announced that are equipped with light-emitting elements having a size of about 1 mm on a side. As a result, it is possible to apply a current several times to several tens of times the current level.
[0008]
In a lamp equipped with a large light-emitting element, a structure in which the light-emitting element 11 is mounted on a pattern provided on a metal substrate such as copper or aluminum as shown in FIG. 10, and heat is released to the back side of the lamp through the substrate. Some have taken. In FIG. 10, the light emitting element 11 is sealed with a light transmissive resin 13.
[0009]
[Problems to be solved by the invention]
However, the light-emitting diode lamp as shown in FIGS. 7 and 8 has a problem that cracks are likely to occur at the interface between the resin and the reflecting member due to the difference in thermal expansion coefficient depending on the manufacturing process or use environment. Further, in the reflection type light emitting diode lamp as shown in FIG. 9, there is a problem that pinholes and peeling are likely to occur because the reflection surface made of a metal film is exposed in a convex shape on the outer surface. .
[0010]
Furthermore, when using the large light-emitting element described above, the current optical system is too small, and the light-emitting element cannot be regarded as a point light source, so that the emitted light cannot be used, and particularly highly controlled light such as parallel light. It is difficult to convert to
When a large optical system is used to solve this problem, the amount of resin for sealing increases accordingly, which increases the material cost and the process time, and causes defects such as voids and cracks in manufacturing. Causes to increase.
[0011]
In addition, since the optical system and the light source unit are integrally molded, if a defect occurs in one of the production, the device itself becomes defective, resulting in a decrease in yield and an increase in cost. In particular, when a member that is more expensive than usual, such as the large light emitting element described above, is used, or when an optical system is formed by a special technique, the problem becomes significant. Even after being shipped as a product, similar problems occur due to the lifetime of the light emitting element and the deterioration of the optical system.
Since the optical system and the light source unit are integrally molded, these light-emitting diode lamps have only a single irradiation characteristic, and if you want to change the lighting effect according to the application, molding with a completely different mold Or a unit with an optical system such as a lens. These problems cause the cost to increase.
[0012]
In the light-emitting diode lamps shown in FIGS. 7, 8, and 9, the light-emitting element is disposed on the lead frame, and its periphery is covered with an epoxy resin or the like. Therefore, the heat generated from the light emitting element must pass through a resin having low thermal conductivity before being dissipated to the outside air, and heat tends to accumulate in the light emitting element, leading to a decrease in light emission efficiency. . In addition, most of the generated heat is dissipated through the lead frame to the circuit board on which the light emitting diode lamp is mounted. In particular, a larger amount of heat is transferred to the substrate in the lamp shown in FIG. As a result, the temperature of the circuit board increases, which may cause malfunctions and deterioration of peripheral circuit components. These thermal problems are more important to solve because the power consumption increases when the large light-emitting elements described above are used.
[0013]
Based on the above circumstances, the present invention combines components in which the optical system and the light source unit are independently manufactured, the optical system is configured only by the concave reflecting surface, and can sufficiently increase the utilization efficiency of the large light emitting element. An object of the present invention is to provide a light emitting diode lamp having an optical surface of a size and having a structure in which heat of the light emitting element is efficiently radiated from the element mounting substrate directly to the outside air or case in the opposite direction to the light emitting diode lamp mounting substrate. And
[0014]
[Means for Solving the Problems]
The present invention has the following configuration in order to solve the above problems.
According to the first aspect of the present invention, the light emitted from the light emitting element is controlled by the optical system having only the concave reflecting surface, and the optical path is reflected at least by the concave reflecting surface, and the light extraction window of the light emitting element mounting substrate is provided. The light-emitting element mounting substrate and the light control unit having the concave reflecting surface have independent structures through two types of paths that pass through.
Further, the light emitting element mounting substrate and the light control unit are connected so that the light emitting element is arranged around the focal point so as to face the concave reflecting surface.
[0015]
According to a second aspect of the present invention, the light emitting element has a size of at least 500 μm on a side, the concave reflecting surface has the light emitting element as a focal point, and the focal length is at least 10 times the size of the side of the light emitting element. Designed and configured with
[0016]
According to a third aspect of the present invention, the light emitting element is configured as a chip type LED lamp.
[0017]
According to a fourth aspect of the present invention, when the light emitting element mounting substrate part and the light control part having the concave reflecting surface are connected by a movable spacer, the light emitting element moves around the focal point, thereby The lighting effect can be realized with a single lamp.
[0018]
In the light-emitting element mounting substrate, the metal plate is connected so as not to block the light extraction window, the metal plate prevents the influence of external light, and further serves as a radiation fin. It is constituted as follows.
[0019]
According to a sixth aspect of the present invention, in the light emitting diode lamp using the light emitting element, when the surface opposite to the light emitting direction of the light control unit is mounted on the circuit board, the light emitting element mounting substrate generates the light emitting element. The heat is directly radiated to the outside air or the outer case, and the circuit board side is not affected by heat.
[0020]
By configuring as in claim 1, it is not necessary to integrate the optical system and the light source part with resin, and the resin only needs to be potted in an amount sufficient to cover the light emitting element, and the material cost and process time are sufficient. In addition, the problem of crack generation between the resin sealing the light emitting element and the concave reflection surface can be ignored, and the concave reflection surface made of a metal film is formed on the inner side. The optical characteristics of the concave reflecting surface are not damaged by being damaged during mounting.
[0021]
Further, by configuring as in claim 1, either when the concave reflecting surface or the light emitting element is defective during manufacturing, or when the concave reflecting surface is deteriorated or the life of the light emitting element is deteriorated due to long-term use. If only one of them is defective, it can be used by replacing one of them, and a reduction in yield and high cost can be prevented.
[0022]
When configured as described in claim 2, it is possible to energize a large current by mounting a large light-emitting element, increase the light output, and the light-emitting element by taking a sufficient focal length. It can be regarded as a point light source, and the light utilization efficiency can be increased. This is particularly effective when the light is converted into highly controlled light such as substantially parallel light. Moreover, if it is such a concave reflective surface, as described in claim 3, a chip-type LED lamp for a cellular phone or the like can be used in the same manner, leading to simplification of the process.
[0023]
By configuring as in claim 4, the position of the light emitting element mounting substrate can be varied. Therefore, by moving the light emitting element around the focal point of the concave reflecting surface, various illumination effects such as condensing or diffusing the emitted light can be realized with a single lamp.
[0024]
By adopting the structure of claim 5, it is possible to prevent the influence of external light such as sunlight and reflection of ambient illumination, and the visibility is increased, and the metal plate also serves as a radiation fin. The rise in heat can be suppressed.
[0025]
With the configuration of claim 6, since heat from the light emitting element is dissipated in the direction opposite to the circuit board on which the light emitting diode lamp is mounted, it is possible to prevent the temperature rise of the circuit components on the circuit board side. It has the effect of avoiding operation and premature deterioration.
[0026]
[Example 1]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view of a structure of a light-emitting diode lamp using a large light-emitting element of the present invention. The light emitting element 11 is die-bonded on the pattern 22 b on the light emitting element mounting substrate 15 having the light extraction window 25 shown in FIG. 2, and the light emitting element 11 and the pattern 22 a are connected by the bonding wire 12. As shown in FIG. 1, a spacer 14 having a cup shape is pasted thereon and potted with a light transmissive resin 13. The light source substrate configured in this manner includes the light control unit 17 including the concave reflection surface 16 that reflects the light emitted from the light emitting element 11, and the light emission surface of the light emitting element 11 and the concave reflection surface 16 face each other. Connect as you want. Since the light emitting element 11 has a size of at least 500 μm on a side, a larger current can be applied compared to a conventional light emitting element having a size of about 300 μm, and the light output can be increased.
[0027]
In the light emitting diode lamp configured as described above, all the light emitted from the light emitting element 11 is reflected by optical control by the concave reflecting surface 16 and passes through the light extraction window 25 of the light emitting element mounting substrate 15. Irradiation is performed through an optical path as indicated by 18a and 18b. Further, as shown in FIG. 3, the heat radiated from the light emitting element 11 is efficiently radiated by the light emitting element mounting substrate 15 to the air in the direction opposite to the circuit board 26 or to the outer case.
The light control unit 17 is molded of plastic, and the concave reflecting surface 16 has an optical shape with the light emitting element 11 as a focal point, and is provided with a metal vapor deposition film or metal plating. The optical shape of the concave reflecting surface 16 is designed so that the focal length is at least 10 times the size of one side of the light emitting element 11 in order to bring the light emitting element 11 as close to the point light source as possible and improve the light controllability. . When the light control unit 17 is made of metal, it can be used in the same manner by using a material with high reflectivity such as aluminum and good workability, and finishing the reflecting surface 16 into a mirror surface. The spacer 14 is processed with a metal such as aluminum in order to improve the light extraction efficiency of the cup portion and the heat dissipation of the light emitting diode.
[0028]
[Example 2]
FIG. 4 is a cross-sectional view of the structure when the light-emitting element used in Example 1 is replaced with a ready-made package light-emitting component such as a chip-type LED lamp. A chip-type LED lamp 19 is mounted on a chip-type LED lamp mounting substrate 20 provided with a mounting pattern, and the light controller 17 and the light control unit 17 are interposed via a spacer 21 so that the light-emitting surface thereof is substantially the focal position of the concave reflecting surface 16. It is connected. The chip-type LED lamp mounting substrate 20 has a light extraction window, similar to the light-emitting element mounting substrate 15 of FIG.
[0029]
[Example 3]
FIG. 5 is a diagram in the case where the spacer portion in the first and second embodiments is a movable spacer 23. The movable portion moves the focal point of the concave reflecting surface 16 back and forth by the movable portion, so that the emitted light can be condensed or diffused. With the function, a single light emitting diode lamp can provide various lighting effects depending on the application.
[0030]
[Example 4]
FIG. 6 shows a structure in which the concave reflecting surface 16 has an optical shape such as a paraboloid focusing on the light emitting element 11 in the first embodiment, and the light emitted from the light emitting surface is irradiated as substantially parallel light. 2 is a cross-sectional view taken along a dotted line A in FIG. 2 in which the metal plate 24 serving as a light shielding plate and a heat radiating fin member is arranged and connected so as not to block the light extraction window 25 of the light emitting element mounting substrate 15. . With the above structure, it is possible to make it less susceptible to external light such as sunlight and ambient lighting, and it also increases heat dissipation and reduces the temperature of the light emitting element, thereby improving luminous efficiency. Can be obtained.
[0031]
【The invention's effect】
According to the first aspect of the present invention, since the light control unit and the light source unit are independently connected to each other, a sufficient amount of resin is sufficient to cover the light emitting element, and the concave reflecting surface is sealed with the resin. Since it is not stopped, problems such as cracks are eliminated, and the optical characteristics of the concave reflecting surface are not impaired. In addition, since the optical system is composed only of the concave reflecting surface, there is a special effect that the controllability and utilization efficiency of light is high.
[0032]
According to the invention described in claim 2, the light output can be increased by mounting a large light emitting element. Further, by taking a sufficient focal length, the light emitting element can be regarded as a point light source, and there is a special effect that light can be precisely controlled.
[0033]
According to the third aspect of the present invention, when the light emitting diode lamp is mounted with the chip type LED lamp, there is a special effect that the process can be greatly simplified.
[0034]
According to the fourth aspect of the present invention, when used as a single light-emitting diode lamp, the light-emitting element is moved around the focal point by a movable spacer, so that various illumination effects can be provided. effective.
[0035]
According to the fifth aspect of the present invention, the metal plate has a special effect of having a role of a light shielding plate for preventing the influence of reflection of sunlight and the like and a role of suppressing a heat rise of the light emitting element as a radiating fin.
[0036]
According to the invention described in claim 6 above, according to the present invention, the heat generated from the light emitting element does not affect the circuit components on the circuit board side on which the light emitting diode lamp is mounted, but directly into the outside air or the outer case. There is a special effect that can dissipate heat efficiently.
[Brief description of the drawings]
FIG. 1 is a structural cross-sectional view according to a first embodiment of the present invention.
2 is a front view of the element mounting side of the light emitting element mounting substrate 15 in FIG. 1. FIG.
FIG. 3 is a structural cross-sectional view related to heat dissipation in Example 1 of the present invention.
FIG. 4 is a structural cross-sectional view according to a second embodiment of the present invention.
FIG. 5 is a structural cross-sectional view according to Embodiment 3 of the present invention.
FIG. 6 is a structural cross-sectional view according to Embodiment 4 of the present invention.
FIG. 7 is a structural cross-sectional view of a conventional light emitting diode lamp.
FIG. 8 is a structural cross-sectional view of another conventional light emitting diode lamp.
FIG. 9 is a structural cross-sectional view of a conventional reflective light emitting diode lamp.
FIG. 10 is a cross-sectional view of a structure of a light emitting diode lamp with improved heat dissipation characteristics of a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Light emitting element 12 Bonding wire 13 Light transmissive resin 14 Spacer 15 Light emitting element mounting board 16 Concave reflective surface 17 Light control part 18a, 18b Optical path 19 Chip type LED lamp 20 Chip type LED lamp mounting board 21 Spacer 22a, 22b Pattern 23 Movable Type spacer 24 metal plate 25 light extraction window 26 circuit board 27 reflecting surface

Claims (6)

発光素子からの出射光を凹状反射面のみの光学系で制御し、その光路は少なくとも凹状反射面で反射されることと、発光素子実装基板の光取り出し窓を通過するという二種類の経路をとおり、発光素子実装基板と凹状反射面のある光制御部とがそれぞれ独立した構造を有し、発光素子が凹状反射面と対向するようにしてその焦点周辺に配置され接続されたことを特徴とする発光ダイオードランプ。The light emitted from the light emitting element is controlled by an optical system having only a concave reflecting surface, and the optical path is reflected by at least the concave reflecting surface and passes through two types of paths: passing through the light extraction window of the light emitting element mounting substrate. The light-emitting element mounting substrate and the light control unit having the concave reflection surface have independent structures, and the light-emitting element is arranged and connected around the focal point so as to face the concave reflection surface. Light emitting diode lamp. 前記発光素子が少なくとも一辺500μm以上の大きさを有し、凹状反射面は発光素子を焦点とし、その焦点距離は少なくとも前記発光素子一辺の大きさの10倍以上で設計されていることを特徴とする請求項1に記載の発光ダイオードランプ。The light emitting element has a size of at least 500 μm on a side, the concave reflecting surface is designed to focus on the light emitting element, and the focal length is designed to be at least 10 times the size of the side of the light emitting element. The light-emitting diode lamp according to claim 1. 前記発光素子をチップ型LEDランプとすることを特徴とする請求項1及び請求項2に記載の発光ダイオードランプ。The light-emitting diode lamp according to claim 1 or 2, wherein the light-emitting element is a chip-type LED lamp. 前記発光素子実装基板と凹状反射面のある光制御部との間を、可動式スペーサーにて接続したとき、それによって発光素子が焦点周辺を移動することができ、多種の照明効果を単一のランプで実現することができることを特徴とした請求項1乃至請求項3に記載の発光ダイオードランプ。When the light-emitting element mounting substrate and the light control unit having the concave reflecting surface are connected by a movable spacer, the light-emitting element can move around the focal point, and various lighting effects can be obtained in a single manner. 4. The light emitting diode lamp according to claim 1, wherein the light emitting diode lamp can be realized by a lamp. 前記発光素子実装基板部において、光取り出し窓を遮ることのないよう金属板を接続し、同金属板が外光の影響を防ぎ、更に放熱フィンの役割も果たすように構成したことを特徴とした請求項1乃至請求項4に記載の発光ダイオードランプ。In the light emitting element mounting substrate portion, a metal plate is connected so as not to block the light extraction window, and the metal plate prevents the influence of external light and further serves as a heat radiating fin. The light-emitting diode lamp according to claim 1. 前記発光素子を用いた発光ダイオードランプにおいて、光制御部の光出射方向と逆側の面を回路基板に実装したとき、発光素子実装基板により発光素子より発生した熱が直接外気もしくはケースへと放熱され、回路基板側には熱影響を及ぼさないように構成したことを特徴とする請求項1乃至請求項5記載の発光ダイオードランプ。In the light emitting diode lamp using the light emitting element, when the surface opposite to the light emitting direction of the light control unit is mounted on the circuit board, the heat generated from the light emitting element by the light emitting element mounting substrate is directly radiated to the outside air or the case. 6. The light-emitting diode lamp according to claim 1, wherein the light-emitting diode lamp is configured so as not to have a thermal effect on the circuit board side.
JP2003196846A 2003-07-15 2003-07-15 Light emitting diode lamp Pending JP2005038870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003196846A JP2005038870A (en) 2003-07-15 2003-07-15 Light emitting diode lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003196846A JP2005038870A (en) 2003-07-15 2003-07-15 Light emitting diode lamp

Publications (1)

Publication Number Publication Date
JP2005038870A true JP2005038870A (en) 2005-02-10

Family

ID=34207160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003196846A Pending JP2005038870A (en) 2003-07-15 2003-07-15 Light emitting diode lamp

Country Status (1)

Country Link
JP (1) JP2005038870A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310204A (en) * 2005-04-28 2006-11-09 Toyoda Gosei Co Ltd Led lamp
JP2009206428A (en) * 2008-02-29 2009-09-10 Stanley Electric Co Ltd Semiconductor light emitting device
CN102969434A (en) * 2012-11-23 2013-03-13 京东方科技集团股份有限公司 LED (Light Emitting Diode) assembly
JP2013120916A (en) * 2011-12-09 2013-06-17 Iwasaki Electric Co Ltd Light source unit
JP2020198398A (en) * 2019-06-04 2020-12-10 浜松ホトニクス株式会社 Light-emitting device and manufacturing method of the same
JP2021044563A (en) * 2020-11-11 2021-03-18 浜松ホトニクス株式会社 Light-receiving device and manufacturing method of the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230274A (en) * 1987-11-13 1989-09-13 Iwasaki Electric Co Ltd Light emitting diode
JPH0545811U (en) * 1991-11-15 1993-06-18 株式会社小糸製作所 Vehicle marker light
JPH08320657A (en) * 1995-05-24 1996-12-03 Sharp Corp Display device and its production
JPH09223822A (en) * 1996-02-19 1997-08-26 Sony Corp Optical device with variable directivity
JPH10335706A (en) * 1997-05-30 1998-12-18 Toyoda Gosei Co Ltd Light emitting diode lamp
JP2001228400A (en) * 2000-02-17 2001-08-24 Dowa Mining Co Ltd Lamp device for optical communication and optical communication system by this lamp device
JP2003115204A (en) * 2001-10-04 2003-04-18 Toyoda Gosei Co Ltd Shading reflection type device and light source

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230274A (en) * 1987-11-13 1989-09-13 Iwasaki Electric Co Ltd Light emitting diode
JPH0545811U (en) * 1991-11-15 1993-06-18 株式会社小糸製作所 Vehicle marker light
JPH08320657A (en) * 1995-05-24 1996-12-03 Sharp Corp Display device and its production
JPH09223822A (en) * 1996-02-19 1997-08-26 Sony Corp Optical device with variable directivity
JPH10335706A (en) * 1997-05-30 1998-12-18 Toyoda Gosei Co Ltd Light emitting diode lamp
JP2001228400A (en) * 2000-02-17 2001-08-24 Dowa Mining Co Ltd Lamp device for optical communication and optical communication system by this lamp device
JP2003115204A (en) * 2001-10-04 2003-04-18 Toyoda Gosei Co Ltd Shading reflection type device and light source

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310204A (en) * 2005-04-28 2006-11-09 Toyoda Gosei Co Ltd Led lamp
JP2009206428A (en) * 2008-02-29 2009-09-10 Stanley Electric Co Ltd Semiconductor light emitting device
JP2013120916A (en) * 2011-12-09 2013-06-17 Iwasaki Electric Co Ltd Light source unit
CN102969434A (en) * 2012-11-23 2013-03-13 京东方科技集团股份有限公司 LED (Light Emitting Diode) assembly
JP2020198398A (en) * 2019-06-04 2020-12-10 浜松ホトニクス株式会社 Light-emitting device and manufacturing method of the same
WO2020246345A1 (en) * 2019-06-04 2020-12-10 浜松ホトニクス株式会社 Light-emitting device and method for manufacturing light-emitting device
CN113906576A (en) * 2019-06-04 2022-01-07 浜松光子学株式会社 Light emitting device and method for manufacturing light emitting device
CN113906576B (en) * 2019-06-04 2024-01-30 浜松光子学株式会社 Light emitting device and method for manufacturing light emitting device
JP2021044563A (en) * 2020-11-11 2021-03-18 浜松ホトニクス株式会社 Light-receiving device and manufacturing method of the same
JP7138149B2 (en) 2020-11-11 2022-09-15 浜松ホトニクス株式会社 Light-receiving device and method for manufacturing light-receiving device

Similar Documents

Publication Publication Date Title
JP4960099B2 (en) Light emitting device and lighting apparatus or liquid crystal display device using the same
JP5510646B2 (en) Vehicle lighting
US7777405B2 (en) White LED headlight
JP5634657B2 (en) Method for fabricating optoelectronic elements
JP5606922B2 (en) Light emitting module and lamp unit
US8500315B2 (en) Light emitting module and automotive headlamp
US8253143B2 (en) Light emitting module and method of manufacturing the same
US20080291675A1 (en) Light emitting diode lamp
US20110216550A1 (en) Vehicle light
JP2012064962A (en) High powered solid light emitter packages with compact optics
JP3872490B2 (en) Light emitting element storage package, light emitting device, and lighting device
JP2004206947A (en) Light emitting diode, lighting fixture and their process of manufacture
JP2009290180A (en) Led package, and method of manufacturing the same
JP2012038698A (en) Light source unit of semiconductor type light source for vehicular lamp and vehicular lamp
JP2012043750A (en) Light source unit of semiconductor type light source of lamp fitting for vehicle, and lamp fitting for vehicle
JP2006019745A (en) Light emitting semiconductor chip and beam shaping element
JP5491691B2 (en) Light emitting device and lighting apparatus
TWM514537U (en) Light emitting diode headlamp for vehicle
JP3649939B2 (en) Line light source device and manufacturing method thereof
JP2005038870A (en) Light emitting diode lamp
JP2006066657A (en) Light emitting device and lighting device
JP2004342791A (en) Led lamp and led lighting device
JP2001036149A (en) Light source device
JP2011198498A (en) Led unit and headlamp unit using the same
JP2007184377A (en) High power reflection type light-emitting diode and method of manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100420