JP2005038683A - Inverter circuit for discharge tube - Google Patents

Inverter circuit for discharge tube Download PDF

Info

Publication number
JP2005038683A
JP2005038683A JP2003199387A JP2003199387A JP2005038683A JP 2005038683 A JP2005038683 A JP 2005038683A JP 2003199387 A JP2003199387 A JP 2003199387A JP 2003199387 A JP2003199387 A JP 2003199387A JP 2005038683 A JP2005038683 A JP 2005038683A
Authority
JP
Japan
Prior art keywords
circuit
discharge tube
voltage
transformer
booster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003199387A
Other languages
Japanese (ja)
Other versions
JP3905868B2 (en
Inventor
Shinichi Suzuki
伸一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2003199387A priority Critical patent/JP3905868B2/en
Priority to EP04254206A priority patent/EP1499166B1/en
Priority to DE602004007856T priority patent/DE602004007856T2/en
Priority to US10/891,578 priority patent/US7067988B2/en
Priority to CNA2004100636954A priority patent/CN1578577A/en
Publication of JP2005038683A publication Critical patent/JP2005038683A/en
Application granted granted Critical
Publication of JP3905868B2 publication Critical patent/JP3905868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
    • H05B41/2828Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage using control circuits for the switching elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/285Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2851Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions
    • H05B41/2855Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions against abnormal lamp operating conditions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3927Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inverter circuit for a discharge tube having a simple circuit construction with stable circuit operation of which, efficiency is further improved and power consumption is reduced. <P>SOLUTION: The inverter circuit for the discharge tube is provided with a transformer 1 with a resonance circuit formed by parasitic capacitance of the discharge tube, an H-bridge circuit 17 driving a primary side of the transformer 1 at a frequency less than a resonance frequency of the resonance circuit and yet at a frequency where phase difference with voltage and current of the primary side of the transformer 1 is within a given range from the minimum point, a logic circuit 29 creating gate signals operating the H-bridge circuit 17 by output signals of an oscillation circuit 4 based on power supply voltage, and a booster circuit 100 boosting direct current voltage based on the output signals of the oscillation circuit 4 and supplying the boosted direct current power supply voltage to the logic circuit 29 as power supply voltage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示ユニットなどに使用される放電管用インバータ回路に関し、特に高い電力効率を引き出す放電管用インバータ回路に関する。
【0002】
【従来の技術】
従来の放電管用インバータ回路には、トランスの二次側のリーケージインダクタンスと負荷として接続される放電管の持つ寄生容量とで共振回路が形成され、共振回路の共振周波数でトランスの一次側を駆動するものがあるがある(例えば、特許文献1参照)。この共振周波数で駆動する従来の放電管用インバータ回路は、トランスの一次側の電圧と電流とに位相差を伴うため、必ずしもトランスの電力効率のよいものとはいえなかった。
【0003】
このような問題に対し、トランスの一次側の電圧と電流の位相差が少ない範囲が電力効率の良いことに着目し、その周波数の範囲でトランスを駆動し、トランスの電力効率を向上させた放電管用インバータ回路がある(例えば、特許文献2参照)。
【0004】
この特許文献2の放電管用インバータ回路は、放電管の持つ寄生容量と補助容量とにより共振回路が形成されるトランスと、共振回路の直列共振周波数未満で、かつトランスの一次側の電圧と電流との位相差が最小点より予め定めた範囲内にある周波数でトランスの一次側を駆動するHブリッジ回路とを備えた回路構成となっており、電力効率の向上が行われている。
【0005】
【特許文献1】
米国特許第6,114,814号公報
【特許文献2】
特開2003−168585号公報
【発明が解決しようとする課題】
液晶表示ユニットとして、例えば、液晶テレビがあり、この液晶テレビのバックライトに使用される放電管用インバータ回路の電源電圧は12V〜24Vの範囲であり、特許文献2の放電管用インバータ回路に記載された漏洩磁束型のトランスを使用した他励駆動型インバータを例にとれば、放電管用インバータ回路の制御部を形成するインバータ制御ICは、5.0Vの電源電圧で動作させ、トランスを駆動し放電管を点灯させるFETのHブリッジ回路は、放電管の点灯用として12V〜24Vの電源電圧を供給して動作させている。
【0006】
ところが、近年、液晶テレビの画面の大型化に伴い、放電管の数量も8〜24本と多く使用され、長さも、例えば、1300mmと長くなり、それに伴って消費電力も180Wと大きくなっている。そのため、特に大型の液晶テレビの場合には、消費電力のほとんどが放電管用インバータ回路と放電管で消費されるため、省エネルギーなどの観点から放電管用インバータ回路のさらなる効率改善をして消費電力を削減することが求められている。
【0007】
そこで、放電管用インバータ回路の効率改善をするものとして、Hブリッジ回路に供給される放電管の点灯用の電源電圧を従来の12〜24Vよりも高い、例えば120Vとするものがある。この放電管用インバータ回路では、電源電圧を高くすることによってFETを流れる電流が小さくできるため、FETのオン抵抗による損失を小さくでき、また、トランスの一次巻線に流れる電流を少なくできるため銅損を低減でき、効率改善を行っている。このとき、電源電圧はHブリッジに供給される放電管の点灯用の120Vと、インバータ制御ICに供給される5Vの2つとなる。
【0008】
この場合、Hブリッジ回路のFETの耐圧を従来よりも高くする必要があるが、耐圧の高いFETを駆動するためには大きいゲート−ソース電圧が必要であり、例えば、Hブリッジ回路のFETの耐圧を200Vに設定すると、Hブリッジ回路のFETのゲート−ソース電圧は10V以上が必要となる。そのため、インバータ制御ICに供給される5Vの電源電圧をそのまま用いてもFETを駆動することができず、チャージポンプまたはブートストラップ、あるいは昇圧型DC−DCコンバータ回路を接続して昇圧し、昇圧した電圧でFETを駆動する必要がある。
【0009】
しかしながら、このようなチャージポンプまたはブートストラップ、あるいは昇圧型DC−DCコンバータ回路などの昇圧回路の接続は、回路構成が複雑になると共に部品点数が増えてしまうという問題があり、またHブリッジ回路を動作させるための発振回路の周波数と、昇圧回路を動作させるための発振回路の発振周波数の違いによりインバータ制御ICの基準電圧に干渉が生じて回路動作が安定しなくなるという問題があった。
【0010】
本発明は、このような従来の問題に鑑みてなされたもので、回路動作の安定した簡潔の回路構成でインバータの効率をさらに改善し消費電力を削減する放電管用インバータ回路を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の放電管用インバータ回路は、放電管の持つ寄生容量により共振回路が形成されるトランスと、前記共振回路の共振周波数未満で、かつ前記トランスの一次側の電圧と電流との位相差が最小点より予め定めた範囲内にある周波数で前記トランスの一次側を駆動するHブリッジ回路と、前記Hブリッジ回路を作動するゲート信号を発振回路の出力信号により電源電圧を基に作るロジック回路と、前記発振回路よりの前記出力信号に基づいて直流電圧を昇圧し、前記昇圧した直流電源電圧を前記ロジック回路に前記電源電圧として供給する昇圧回路とを備えることとした。
【0012】
また、前記共振回路は、前記放電管の持つ前記寄生容量と、前記放電管に並列に接続する補助容量とにより形成することとした。
【0013】
また、前記昇圧回路は、前記昇圧回路の出力電圧に応じた電圧を出力するエラーアンプと、前記発振回路よりの前記出力信号に基づき、前記エラーアンプの出力電圧に応じたパルス幅のパルス電圧を出力するPWM回路とを備えることとした。
【0014】
また、前記昇圧回路は、前記PWM回路に接続するスロースタート回路を設けることとした。
【0015】
また、前記昇圧回路に設けたスロースタート回路は、前記Hブリッジ回路をスロースタートさせるスロースタート回路より短い立ち上がり時間とすることとした。
【0016】
さらに、前記トランスの前記放電管側の異常を検出したとき、前記昇圧回路の動作を停止するプロテクト回路を備えることとした。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態について、図面に基づいて説明する。
【0018】
図1は、本発明の実施の形態の放電管用インバータ回路のブロック図である。
【0019】
説明を分かりやすくするため、まず、端子28aの所定電圧Vaがエラーアンプ11の反転入力部11aに入力されず調光が行なわれない場合について説明する。
【0020】
図1に示すように、発振回路4の三角波7の出力はPWM回路8に入力する。トランス1の二次側の液晶表示ユニット2には液晶のバックライト用の放電管9が設置され、この放電管9に流れる電流を電圧に変換する電流電圧変換回路10によってその電圧9aをエラーアンプ11の反転入力部11aに入力する。放電管9の持つ寄生容量3と、放電管9に並列に接続されたコンデンサ(容量)31、32と、トランス1の漏れインダクタンスとにより直列共振回路が形成されている。なお、コンデンサ31、32は寄生容量3に対する補助容量として機能する。
【0021】
エラーアンプ11は放電管9の電流に応じた出力電圧12をPWM回路8に出力し、PWM回路8は三角波7とエラーアンプ11の出力電圧12を比較し、パルス信号13をカウンタ回路14に入力する。
【0022】
スロースタート回路34は、比較的なだらかな立ち上げのスタート駆動信号56の出力信号をPWM回路8に出力し、スタート時に瞬間的な過電圧が発生することを防止している。
【0023】
また、発振回路4の出力信号の三角波7は、抵抗5とコンデンサ6の値により設定され、三角波7と同期した発振回路4の出力パルス信号16は、カウンタ回路14、15とロジック回路29に入力する。発振回路4の出力パルス信号16とカウンタ回路14、15の出力パルス信号により、ロジック回路29は、昇圧回路100より供給される10Vの電源電圧76を基に、Hブリッジ回路17へ入力するパルス振幅10Vのゲート信号18、19、20、21を作る。
【0024】
Hブリッジ回路17は、PMOS(A1)とNMOS(B2)の直列回路と、PMOS(A2)とNMOS(B1)の直列回路が並列に接続されて構成され、ゲート信号18、19、20、21により作動する。Hブリッジ回路17は、供給される放電管の点灯用の120Vの直流の電源電圧Vbが、パルス振幅10Vのゲート信号18、19、20、21により変換され、トランス1を介し放電管9を点灯する。
【0025】
したがって、バースト回路22が動作せず、端子28aから所定電圧Vaがエラーアンプ11の反転入力部11aに入力されない場合には、調光は行われず、放電管9の電流がエラーアンプ11の反転入力部11aに入力され、放電管9はフィードバック制御され点灯する。
【0026】
図2は、本発明の実施の形態の放電管用インバータ回路における、二次側に共振回路が形成されたときのトランス一次側のアドミタンス|Y|の周波数特性と、電圧と電流の位相差θの周波数特性である。
【0027】
図2に示すように、トランス1の一次側を周波数Aの範囲の交流電流が流れ、電力効率のよい範囲で定電流制御が行なわれて図1に示す放電管9を点灯する。
【0028】
次に昇圧回路100の動作について説明する。
【0029】
昇圧回路100は、5Vの直流の電源電圧Vccを昇圧し、昇圧した直流電圧をロジック回路29に電源電圧76として供給する。この昇圧回路100を制御するために、Hブリッジ回路17の制御に用いられる発振回路4からの出力信号の三角波7が昇圧回路100にも入力されている。
【0030】
図3は、本発明の実施の形態の放電管用インバータ回路における昇圧回路のブロック図である。
【0031】
図3に示すように、昇圧回路100は、5Vの直流電圧の電源電圧Vccが供給され、この電源電圧Vccが、三角波7を基に作動するトランジスタ73と、インダクタ74と、ダイオード77とからなる昇圧型チョッパー回路によって昇圧される。さらにコンデンサ78で平滑されて10Vの直流電圧になり、ロジック回路29の直流の電源電圧76として昇圧回路100から出力される。
【0032】
昇圧回路100では、エラーアンプ71とPWM回路72を用いてPWM制御を行い、定電圧出力を得るようにしている。昇圧回路100の出力電圧は抵抗81、82によって検出されてエラーアンプ71で基準電圧Veと比較され、エラーアンプ71は昇圧回路100の出力電圧に応じた電圧を出力する。PWM回路72ではエラーアンプ71の出力と発振回路4から出力する三角波7が比較され、パルス幅がフィードバック制御されたパルス信号がPWM回路72から出力する。このパルス信号によりトランジスタ73がスイッチングされ一定電圧の直流の電源電圧76の出力が得られる。
【0033】
したがって、ロジック回路29は、電源電圧76が供給され、Hブリッジ回路17に用いられる高耐圧のFETを駆動できる高い電圧のゲート信号18、19、20、21を出力することができる。
【0034】
また、発振回路4から出力する三角波7は、Hブリッジ回路17の制御と昇圧回路100の制御とに共通して用いられており、両方の回路で共有されているため、昇圧回路100には独立した発振回路を設ける必要がなく、昇圧回路100の回路構成を簡略化することができる。また、Hブリッジ回路17と昇圧回路100は発振回路4から出力される三角波7を共通して用いているため両方の回路の動作周波数は同一となり、動作周波数が異なる場合に基準電圧に発生する干渉を避け回路動作の不安定を解消し、安定した回路動作を得ることができる。
【0035】
スロースタート回路75は、昇圧回路100が動作を開始するときに比較的緩やかに立ち上がる出力信号をPWM回路72に出力し、PWM回路72が出力するパルス信号の幅が過大にならないように制限して昇圧回路100の出力に過渡的な過大電圧が発生しないようにするものである。
【0036】
図4は、本発明の実施の形態の放電管用インバータ回路における昇圧回路100とPWM回路8とに使用されるスロースタート回路75および34の出力信号の波形図である。
【0037】
図4に示すように、昇圧回路100に使用されるスロースタート回路75の立ち上がり時間T1は、PWM回路8に使用されるスロースタート回路34の立ち上がり時間T2よりも短く設定し、電源電圧76を安定させた後にスロースタート回路34によりロジック回路29の立ち上げを行うため、ロジック回路29を安定して立ち上げることができ、ロジック回路29に接続するHブリッジ回路17も安定した立ち上げとなる。
【0038】
図5は、本発明の実施の形態の放電管用インバータ回路の動作タイミングチャート図である。
【0039】
次に、図1と図5を用いてバースト回路22により放電管9の調光を行なうときの動作について説明する。
【0040】
図1に示すように、バースト回路22は、抵抗23を所定値以上とすることでDUTY端子24aに入力した所定のパルス信号24が第1のバースト信号25b(図5の(D)参照)としてバースト回路22から出力されるモードと、抵抗23を所定値未満とすることで抵抗23とコンデンサ26とで決まり発振する三角波電圧27(図5の(B)参照)とDUTY端子24aに入力する直流電圧36(図5の(B)参照)とが比較されパルス波の第2のバースト信号25a(図5の(C)参照)が出力されるモードとのいずれかに設定することができる。
【0041】
バースト回路22よりの第1のバースト信号25bが「H」のときは、トランジスタ28は「ON」となり、エラーアンプ11は放電管9の電流に応じた出力電圧12をPWM回路8に出力し、図5の(A)に示す三角波7を基に形成される図5の(E)に示すHブリッジ回路17の出力により放電管9は作動状態となる。
【0042】
バースト回路22の第1のバースト信号25bが「L」のときは、トランジスタ28は「OFF」となり、エラーアンプ11の反転端子11aは端子28aに与えられている所定電圧Vaにプルアップされ、エラーアンプ11は非作動状態となり、Hブリッジ回路17の作動を停止し、放電管9は非作動状態となる。このように第1のバースト信号25bにより放電管9は断続的に作動し、調光が行なわれる。
【0043】
なお、第2のバースト信号25aを使用する場合にも、同様にして放電管9の調光が行われ、いずれかのバースト信号を選択的に使用することができる。
【0044】
図6は、本発明の実施の形態の放電管用インバータ回路におけるゲート信号のタイミングチャート図である。
【0045】
図1に示す昇圧回路100よりの電源電圧76によりロジック回路29で形成される図6の(B)に示すパルス振幅10Vのゲート信号18と、同じく図6の(C)に示すパルス振幅10Vのゲート信号19との立ち上がりは、図1に示すカウンタ回路14、15とロジック回路29とにより、図6の(A)に示すように、三角波7の上限側の頂点18u、19uごとに交互に行なわれ、ゲート信号18とゲート信号19との立ち下りは、三角波7とエラーアンプ11の出力信号12とのクロスポイント18d、19dで行なわれる。このパルス振幅10Vのゲート信号18とゲート信号19とにより、PMOS(A1)、PMOS(A2)とのゲートの立ち上がりと立ち下がりがそれぞれ行なわれる。
【0046】
また、昇圧回路100よりの電源電圧76によりロジック回路29で形成される図6の(D)に示すパルス振幅10Vのゲート信号20と、同じく図6の(E)に示すパルス振幅10Vのゲート信号21との立ち上がりは、三角波7の下限側の頂点20u、21uごとに交互に行なわれ、ゲート信号20とゲート信号21との立ち下がりは、三角波7とエラーアンプ11の出力電圧12とのクロスポイント20d、21dで行なわれる。このパルス振幅10Vのゲート信号20とゲート信号21とにより、NMOS(B1)とNMOS(B2)とのゲートの立ち上がりと立ち下りがそれぞれ行なわれる。
【0047】
さらに、図6の(B)から図6の(D)に示すように、ゲート信号18、19の立ち下りに対し、ゲート信号20、21の立ち上がりが遅延しており、また図6の(F)に示すように、ゲート信号20、21の立ち下りに対し、ゲート信号18、19の立ち下りを遅延回路35により予め定めた時間t1だけ遅延させている。そのため、PMOS(A1)、PMOS(A2)とNMOS(B1)、NMOS(B2)が同時に「ON」にならないようにすることができる。
【0048】
したがって、三角波7と出力電圧12とにより、PMOS(A1)、PMOS(A2)とNMOS(B1)、NMOS(B2)が同時に「ON」にならないよう適切なゲート信号18、19、20、21を容易に作ることができる。
【0049】
また、図1に示すように、電圧帰還用のエラーアンプ51は、反転入力部51aに入力する放電管9の印加電圧信号55と予め定めた設定値Vcとを比較し、放電管9への印加電圧に応じた出力電圧52をプロテクト回路50とPWM回路8に出力する。プロテクト回路50は、内部にコンパレータ回路(図示せず)を有しており、電圧帰還用のエラーアンプ51からの出力電圧52と、トランス1の二次側と直列に設けられた抵抗57からのトランス出力電流信号53とを入力する。印加電圧信号55は、トランス1の出力側に並列に設けられたコンデンサ31、32同士の接続部の電圧を、抵抗58、59で分圧した電圧である。
【0050】
電圧帰還用のエラーアンプ51は、反転入力部51aに放電管9の印加電圧信号55が入力すると、印加電圧信号55と予め定めた設定値Vcとを比較して出力電圧52をPWM回路8に出力し、放電管9への印加電圧のフィードバック制御が行なわれる。そのため、例えば、放電管9が接続されていないときや、接続不良などのときに開放電圧を設定値にすることができる。
【0051】
また、放電管9が接続されていないときや接続不良などのときはトランス1の二次側の出力電圧が異常な値となることがあるが、その場合、プロテクト回路50に入力する電圧帰還用エラーアンプ51の出力電圧52とトランス出力電流信号53がプロテクト回路50のコンパレータ回路(図示せず)の基準電圧と比較され、この基準電圧を電圧帰還用エラーアンプ51の出力電圧52または、トランス出力電流信号53が上回ったとき、ロジック回路29の動作を停止し、放電管9への過電流や、トランス1への過電圧を防止することができる。また、プロテクト回路50は、エラーアンプ11の出力電圧12を入力し、放電管9への過電流や、トランス1への過電圧を防止することもできる。このように、プロテクト回路50は、トランス1の放電管側の異常な状況を検出したとき、ロジック回路29の動作を停止してトランス1や各回路が破損されることを防止する。
【0052】
なお、なんらかの原因による瞬間的な過電圧に対応するため、プロテクト回路50は、内蔵するタイマーにより予め定めた値を上回ったときにロジック回路29の動作を停止し、誤ってロジック回路29の動作を停止することがないようにしている。
【0053】
図7は、本発明の実施の形態の放電管用インバータ回路におけるプロテクト回路が作動するときの動作説明図である。
【0054】
図7に示すように、電源電圧Vccは、昇圧回路100、発振回路4、PWM回路8、エラーアンプ11、51、プロテクト回路50および、基準電圧回路90などに供給されるが、基準電圧回路90では、電源電圧Vccがより低い基準電圧Vcと基準電圧Veに変換され、基準電圧Vcはエラーアンプ11、51と、プロテクト回路50に入力し、基準電圧Veは昇圧回路100に入力する。
【0055】
プロテクト回路50がトランス1の放電管側の異常な状況を検出したとき、ロジック回路29の動作を停止してトランス1(図1参照)や各回路が破損されることを防止するが、Hブリッジ回路17には120Vの放電管の点灯用の電源電圧Vbが供給されるため、動作を確実に停止する必要がある。
【0056】
プロテクト回路50は、トランス1の放電管側の異常な状況を検出したとき、基準電圧回路90の動作を停止させ、昇圧回路100に供給する基準電圧Veをゼロ電圧とし、昇圧回路100からロジック回路29に供給する電源電圧76の出力を停止して、確実にロジック回路29の動作を停止する。そのため、Hブリッジ回路17の動作を確実に停止することができる。
【0057】
以上述べたごとく、本発明の実施の形態の放電管用インバータ回路は、発振回路を共用した構成としているため昇圧回路に専用の発振回路を必要とせず、部品点数を削減しコストを低減させる簡潔の構成でHブリッジ回路の高耐圧のFETの制御を行うことができる。そのため、Hブリッジ回路の電源電圧を高くすることが簡潔の構成ででき、FETを流れる電流を小さくしてFETのオン抵抗による損失を低減することができる。また、本発明の実施の形態の放電管用インバータ回路は、トランスの昇圧比も小さくて済むためトランスの一次側の電流を少なくできることから銅損の低減もでき、効率を改善し液晶表示ユニットの消費電力を削減することができる。
【0058】
また、発振回路を共用した構成としているため、基準電圧に発生する干渉を避け回路動作の不安定を解消し、安定した回路動作を得ることができる。
【0059】
また、基準電圧を必要とする回路に基準電圧を供給する基準電圧回路を共有するため、誤動作の恐れのない安定性が良い回路とすることができる。
【0060】
また、本発明の実施の形態の放電管用インバータ回路は、共振周波数より低い周波数でトランスを作動させるため、高次の周波数の影響を受け難くできトランス設計を容易にすることができる。
【0061】
なお、本発明の実施の形態の放電管用インバータ回路は、Hブリッジ回路17と、トランス1と、放電管9を除いた回路をインバータ制御ICとすることもできる。
【0062】
【発明の効果】
本発明の放電管用インバータ回路は、放電管の持つ寄生容量により共振回路が形成されるトランスと、前記共振回路の共振周波数未満で、かつ前記トランスの一次側の電圧と電流との位相差が最小点より予め定めた範囲内にある周波数で前記トランスの一次側を駆動するHブリッジ回路と、前記Hブリッジ回路を作動するゲート信号を発振回路の出力信号により電源電圧を基に作るロジック回路と、前記発振回路よりの前記出力信号に基づいて直流電圧を昇圧し、前記昇圧した直流電源電圧を前記ロジック回路に前記電源電圧として供給する昇圧回路とを備えることとしたため、昇圧回路に専用の発振回路を必要とせず、部品点数を削減しコストを低減させる簡潔の構成でHブリッジ回路の高耐圧のFETの制御を行うことができる。そのため、Hブリッジ回路の電源電圧を高くすることが簡潔の構成ででき、FETを流れる電流を小さくしてFETのオン抵抗による損失を低減することができる。また、トランスの昇圧比も小さくて済むためトランスの一次側の電流を少なくできることから銅損の低減もでき、効率を改善し消費電力を削減することができる。さらに、発振回路を共有した構成としているため、基準電圧に発生する干渉を避け、安定した回路動作を得ることができる。
【0063】
また、前記共振回路は、前記放電管の持つ前記寄生容量と、前記放電管に並列に接続する補助容量とにより形成することとしたため、補助容量により所望の共振周波数を容易に得ることができる。
【0064】
また、前記昇圧回路は、前記昇圧回路の出力電圧に応じた電圧を出力するエラーアンプと、前記発振回路よりの前記出力信号に基づき、前記エラーアンプの出力電圧に応じたパルス幅のパルス電圧を出力するPWM回路とを備えることとしたため、安定した一定電圧を容易に出力することができる。
【0065】
また、前記昇圧回路は、前記PWM回路に接続するスロースタート回路を設けることとしたため、昇圧回路の出力に過渡的な過大電圧が発生しないようにすることができる。
【0066】
また、前記昇圧回路に設けたスロースタート回路は、前記Hブリッジ回路をスロースタートさせるスロースタート回路より短い立ち上がり時間とすることとしたため、ロジック回路を安定して立ち上げることができ、ロジック回路に接続するHブリッジ回路も安定した立ち上げにすることができる。
【0067】
さらに、前記トランスの前記放電管側の異常を検出したとき、前記昇圧回路の動作を停止するプロテクト回路を備えることとしたため、確実にロジック回路の動作を停止すると共に、Hブリッジ回路の動作も確実に停止することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の放電管用インバータ回路のブロック図である。
【図2】本発明の実施の形態の放電管用インバータ回路における、二次側に共振回路が形成されたときのトランス一次側のアドミタンス|Y|の周波数特性と、電圧と電流の位相差θの周波数特性である。
【図3】本発明の実施の形態の放電管用インバータ回路における昇圧回路のブロック図である。
【図4】本発明の実施の形態の放電管用インバータ回路における昇圧回路とPWM回路とに使用されるスロースタート回路の出力信号の波形図である。
【図5】本発明の実施の形態の放電管用インバータ回路の動作タイミングチャート図である。
【図6】本発明の実施の形態の放電管用インバータ回路におけるゲート信号のタイミングチャート図である。
【図7】本発明の実施の形態の放電管用インバータ回路におけるプロテクト回路が作動するときの動作説明図である。
【符号の説明】
1 トランス
2 液晶表示ユニット
4 発振回路
8、72 PWM回路
9 放電管
10 電流電圧変換回路
11、51、71 エラーアンプ
17 Hブリッジ回路
18、19、20、21 ゲート信号
22 バースト回路
29 ロジック回路
34、75 スロースタート回路
50 プロテクト回路
73 トランジスタ
77 ダイオード
90 基準電圧回路
100 昇圧回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inverter circuit for a discharge tube used for a liquid crystal display unit or the like, and more particularly to an inverter circuit for a discharge tube that draws out high power efficiency.
[0002]
[Prior art]
In a conventional discharge tube inverter circuit, a resonance circuit is formed by the leakage inductance on the secondary side of the transformer and the parasitic capacitance of the discharge tube connected as a load, and the primary side of the transformer is driven at the resonance frequency of the resonance circuit. There are some (see, for example, Patent Document 1). A conventional inverter circuit for a discharge tube that is driven at this resonance frequency has a phase difference between the voltage and current on the primary side of the transformer, so that it cannot always be said that the power efficiency of the transformer is good.
[0003]
With regard to such problems, focusing on the fact that the range where the phase difference between the voltage and current on the primary side of the transformer is small is good in power efficiency, the transformer is driven in that frequency range, and the discharge improves the power efficiency of the transformer. There is a tube inverter circuit (see, for example, Patent Document 2).
[0004]
The inverter circuit for a discharge tube of Patent Document 2 includes a transformer in which a resonance circuit is formed by a parasitic capacitance and an auxiliary capacitance of the discharge tube, a voltage and a current on the primary side of the transformer that are less than the series resonance frequency of the resonance circuit. The circuit configuration includes an H-bridge circuit that drives the primary side of the transformer at a frequency that is within a predetermined range from the minimum point, and power efficiency is improved.
[0005]
[Patent Document 1]
US Pat. No. 6,114,814
[Patent Document 2]
JP 2003-168585 A
[Problems to be solved by the invention]
As the liquid crystal display unit, for example, there is a liquid crystal television, and the power supply voltage of the discharge tube inverter circuit used for the backlight of the liquid crystal television is in the range of 12V to 24V, which is described in the discharge tube inverter circuit of Patent Document 2. Taking a separately-excited drive type inverter using a leakage flux type transformer as an example, an inverter control IC that forms a control unit of a discharge tube inverter circuit is operated with a power supply voltage of 5.0 V to drive the transformer and discharge the discharge tube. The FET H-bridge circuit is operated by supplying a power supply voltage of 12V to 24V for lighting the discharge tube.
[0006]
However, in recent years, with an increase in the size of the screen of a liquid crystal television, the number of discharge tubes is often used as 8 to 24, and the length is increased to, for example, 1300 mm, and the power consumption is increased to 180 W accordingly. . Therefore, especially in the case of large-sized LCD TVs, most of the power consumption is consumed by the inverter circuit for the discharge tube and the discharge tube. Therefore, the efficiency of the inverter circuit for the discharge tube is further improved from the viewpoint of energy saving and the power consumption is reduced. It is requested to do.
[0007]
In order to improve the efficiency of the discharge tube inverter circuit, the power supply voltage for lighting the discharge tube supplied to the H bridge circuit is higher than the conventional 12 to 24V, for example, 120V. In this discharge tube inverter circuit, the current flowing through the FET can be reduced by increasing the power supply voltage, so that the loss due to the on-resistance of the FET can be reduced, and the current flowing through the primary winding of the transformer can be reduced, thereby reducing the copper loss. We can reduce it and improve efficiency. At this time, the power supply voltage is two, 120V for lighting the discharge tube supplied to the H bridge and 5V supplied to the inverter control IC.
[0008]
In this case, the withstand voltage of the FET of the H bridge circuit needs to be higher than the conventional one, but a large gate-source voltage is required to drive the FET with a high withstand voltage. Is set to 200V, the gate-source voltage of the FET of the H bridge circuit needs to be 10V or more. Therefore, even if the power supply voltage of 5V supplied to the inverter control IC is used as it is, the FET cannot be driven, and the charge pump, the bootstrap, or the step-up DC-DC converter circuit is connected to boost and boost the voltage. It is necessary to drive the FET with a voltage.
[0009]
However, the connection of such a charge pump or bootstrap or a booster circuit such as a boost DC-DC converter circuit has a problem that the circuit configuration becomes complicated and the number of parts increases, and the H bridge circuit is There is a problem that the circuit operation becomes unstable due to interference between the reference voltage of the inverter control IC due to the difference between the frequency of the oscillation circuit for operating and the oscillation frequency of the oscillation circuit for operating the booster circuit.
[0010]
The present invention has been made in view of such conventional problems, and an object of the present invention is to provide an inverter circuit for a discharge tube that further improves the efficiency of the inverter and reduces power consumption with a simple circuit configuration with stable circuit operation. And
[0011]
[Means for Solving the Problems]
The inverter circuit for a discharge tube according to the present invention has a minimum phase difference between a transformer in which a resonance circuit is formed by the parasitic capacitance of the discharge tube and a resonance frequency of the resonance circuit and a primary side voltage and current of the transformer. An H bridge circuit that drives the primary side of the transformer at a frequency within a predetermined range from a point; and a logic circuit that generates a gate signal for operating the H bridge circuit based on a power supply voltage based on an output signal of the oscillation circuit; And a booster circuit that boosts a DC voltage based on the output signal from the oscillation circuit and supplies the boosted DC power supply voltage to the logic circuit as the power supply voltage.
[0012]
The resonant circuit is formed by the parasitic capacitance of the discharge tube and an auxiliary capacitor connected in parallel to the discharge tube.
[0013]
The booster circuit outputs an error amplifier that outputs a voltage corresponding to the output voltage of the booster circuit, and a pulse voltage having a pulse width corresponding to the output voltage of the error amplifier based on the output signal from the oscillation circuit. And an output PWM circuit.
[0014]
The booster circuit is provided with a slow start circuit connected to the PWM circuit.
[0015]
The slow start circuit provided in the booster circuit has a shorter rise time than the slow start circuit for slow starting the H bridge circuit.
[0016]
Furthermore, a protection circuit is provided that stops the operation of the booster circuit when an abnormality on the discharge tube side of the transformer is detected.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018]
FIG. 1 is a block diagram of an inverter circuit for a discharge tube according to an embodiment of the present invention.
[0019]
In order to make the description easy to understand, first, a case where the predetermined voltage Va of the terminal 28a is not input to the inverting input unit 11a of the error amplifier 11 and dimming is not performed will be described.
[0020]
As shown in FIG. 1, the output of the triangular wave 7 of the oscillation circuit 4 is input to the PWM circuit 8. The liquid crystal display unit 2 on the secondary side of the transformer 1 is provided with a discharge tube 9 for a liquid crystal backlight, and the voltage 9a is converted into an error amplifier by a current-voltage conversion circuit 10 that converts the current flowing through the discharge tube 9 into a voltage. 11 to the inverting input unit 11a. A series resonance circuit is formed by the parasitic capacitance 3 of the discharge tube 9, capacitors (capacitances) 31 and 32 connected in parallel to the discharge tube 9, and the leakage inductance of the transformer 1. The capacitors 31 and 32 function as auxiliary capacitors for the parasitic capacitance 3.
[0021]
The error amplifier 11 outputs an output voltage 12 corresponding to the current of the discharge tube 9 to the PWM circuit 8. The PWM circuit 8 compares the triangular wave 7 with the output voltage 12 of the error amplifier 11, and inputs the pulse signal 13 to the counter circuit 14. To do.
[0022]
The slow start circuit 34 outputs an output signal of a relatively gentle start drive signal 56 to the PWM circuit 8 to prevent an instantaneous overvoltage from occurring at the start.
[0023]
The triangular wave 7 of the output signal of the oscillation circuit 4 is set by the values of the resistor 5 and the capacitor 6, and the output pulse signal 16 of the oscillation circuit 4 synchronized with the triangular wave 7 is input to the counter circuits 14 and 15 and the logic circuit 29. To do. Based on the output pulse signal 16 of the oscillation circuit 4 and the output pulse signals of the counter circuits 14 and 15, the logic circuit 29 inputs the pulse amplitude input to the H bridge circuit 17 based on the 10 V power supply voltage 76 supplied from the booster circuit 100. 10V gate signals 18, 19, 20, 21 are created.
[0024]
The H bridge circuit 17 is configured by connecting a series circuit of PMOS (A1) and NMOS (B2) and a series circuit of PMOS (A2) and NMOS (B1) in parallel, and gate signals 18, 19, 20, 21. It operates by. The H bridge circuit 17 converts the supplied 120 V DC power supply voltage Vb for lighting the discharge tube by the gate signals 18, 19, 20, and 21 having a pulse amplitude of 10 V and lights the discharge tube 9 through the transformer 1. To do.
[0025]
Therefore, when the burst circuit 22 does not operate and the predetermined voltage Va is not input from the terminal 28a to the inverting input portion 11a of the error amplifier 11, dimming is not performed and the current of the discharge tube 9 is input to the inverting input of the error amplifier 11. The discharge tube 9 is input to the unit 11a and is turned on under feedback control.
[0026]
FIG. 2 shows the frequency characteristics of the transformer primary side admittance | Y | and the phase difference θ between the voltage and current when the resonant circuit is formed on the secondary side in the inverter circuit for a discharge tube according to the embodiment of the present invention. It is a frequency characteristic.
[0027]
As shown in FIG. 2, an alternating current in the range of frequency A flows on the primary side of the transformer 1, constant current control is performed in a range where power efficiency is good, and the discharge tube 9 shown in FIG.
[0028]
Next, the operation of the booster circuit 100 will be described.
[0029]
The booster circuit 100 boosts the DC power supply voltage Vcc of 5V and supplies the boosted DC voltage to the logic circuit 29 as the power supply voltage 76. In order to control the booster circuit 100, a triangular wave 7 of an output signal from the oscillation circuit 4 used for controlling the H bridge circuit 17 is also input to the booster circuit 100.
[0030]
FIG. 3 is a block diagram of a booster circuit in the discharge tube inverter circuit according to the embodiment of the present invention.
[0031]
As shown in FIG. 3, the booster circuit 100 is supplied with a power supply voltage Vcc of a DC voltage of 5 V, and this power supply voltage Vcc includes a transistor 73 that operates based on the triangular wave 7, an inductor 74, and a diode 77. The voltage is boosted by a boost chopper circuit. Further, the voltage is smoothed by the capacitor 78 to become a DC voltage of 10 V, and is output from the booster circuit 100 as the DC power supply voltage 76 of the logic circuit 29.
[0032]
The booster circuit 100 performs PWM control using the error amplifier 71 and the PWM circuit 72 to obtain a constant voltage output. The output voltage of the booster circuit 100 is detected by the resistors 81 and 82 and compared with the reference voltage Ve by the error amplifier 71. The error amplifier 71 outputs a voltage corresponding to the output voltage of the booster circuit 100. The PWM circuit 72 compares the output of the error amplifier 71 with the triangular wave 7 output from the oscillation circuit 4, and outputs a pulse signal whose pulse width is feedback-controlled from the PWM circuit 72. The transistor 73 is switched by this pulse signal, and an output of a DC power supply voltage 76 having a constant voltage is obtained.
[0033]
Therefore, the logic circuit 29 is supplied with the power supply voltage 76 and can output the high-voltage gate signals 18, 19, 20, and 21 that can drive the high-breakdown-voltage FET used in the H-bridge circuit 17.
[0034]
Further, the triangular wave 7 output from the oscillation circuit 4 is commonly used for the control of the H bridge circuit 17 and the control of the booster circuit 100, and is shared by both circuits. Thus, the circuit configuration of the booster circuit 100 can be simplified. In addition, since the H bridge circuit 17 and the booster circuit 100 commonly use the triangular wave 7 output from the oscillation circuit 4, the operating frequencies of both circuits are the same, and interference generated in the reference voltage when the operating frequencies are different. Avoiding instability of the circuit operation, and stable circuit operation can be obtained.
[0035]
The slow start circuit 75 outputs an output signal that rises relatively slowly when the booster circuit 100 starts operation to the PWM circuit 72 and limits the pulse signal output from the PWM circuit 72 so that the width of the pulse signal does not become excessive. This prevents a transient excessive voltage from occurring in the output of the booster circuit 100.
[0036]
FIG. 4 is a waveform diagram of output signals of the slow start circuits 75 and 34 used in the booster circuit 100 and the PWM circuit 8 in the discharge tube inverter circuit according to the embodiment of the present invention.
[0037]
As shown in FIG. 4, the rise time T1 of the slow start circuit 75 used in the booster circuit 100 is set shorter than the rise time T2 of the slow start circuit 34 used in the PWM circuit 8, and the power supply voltage 76 is stabilized. Then, the logic circuit 29 is started up by the slow start circuit 34, so that the logic circuit 29 can be started up stably, and the H bridge circuit 17 connected to the logic circuit 29 is also started up stably.
[0038]
FIG. 5 is an operation timing chart of the discharge tube inverter circuit according to the embodiment of the present invention.
[0039]
Next, the operation when the discharge tube 9 is dimmed by the burst circuit 22 will be described with reference to FIGS.
[0040]
As shown in FIG. 1, in the burst circuit 22, the predetermined pulse signal 24 input to the DUTY terminal 24a is set as a first burst signal 25b (see FIG. 5D) by setting the resistance 23 to a predetermined value or more. A mode output from the burst circuit 22, a triangular wave voltage 27 (see FIG. 5B) determined by the resistor 23 and the capacitor 26 by making the resistor 23 less than a predetermined value, and a direct current input to the DUTY terminal 24a. The voltage 36 (see FIG. 5B) is compared, and the mode can be set to any mode in which the second burst signal 25a of the pulse wave (see FIG. 5C) is output.
[0041]
When the first burst signal 25 b from the burst circuit 22 is “H”, the transistor 28 is “ON”, and the error amplifier 11 outputs the output voltage 12 corresponding to the current of the discharge tube 9 to the PWM circuit 8. The discharge tube 9 is activated by the output of the H bridge circuit 17 shown in FIG. 5E, which is formed based on the triangular wave 7 shown in FIG.
[0042]
When the first burst signal 25b of the burst circuit 22 is “L”, the transistor 28 is “OFF”, and the inverting terminal 11a of the error amplifier 11 is pulled up to a predetermined voltage Va applied to the terminal 28a, and an error occurs. The amplifier 11 is deactivated, the operation of the H bridge circuit 17 is stopped, and the discharge tube 9 is deactivated. As described above, the discharge tube 9 is intermittently operated by the first burst signal 25b, and light control is performed.
[0043]
Even when the second burst signal 25a is used, the discharge tube 9 is dimmed in the same manner, and any one of the burst signals can be selectively used.
[0044]
FIG. 6 is a timing chart of gate signals in the discharge tube inverter circuit according to the embodiment of the present invention.
[0045]
A gate signal 18 having a pulse amplitude of 10V shown in FIG. 6B formed by the logic circuit 29 by the power supply voltage 76 from the booster circuit 100 shown in FIG. 1 and a pulse signal having a pulse amplitude of 10V shown in FIG. As shown in FIG. 6A, the rising edge of the gate signal 19 is alternately performed by the counter circuits 14 and 15 and the logic circuit 29 shown in FIG. 1 at every vertex 18u and 19u on the upper limit side of the triangular wave 7. The falling of the gate signal 18 and the gate signal 19 is performed at cross points 18d and 19d between the triangular wave 7 and the output signal 12 of the error amplifier 11. By the gate signal 18 and the gate signal 19 having a pulse amplitude of 10 V, the rise and fall of the gates of the PMOS (A1) and the PMOS (A2) are respectively performed.
[0046]
Further, the gate signal 20 having a pulse amplitude of 10V shown in FIG. 6D formed by the logic circuit 29 by the power supply voltage 76 from the booster circuit 100 and the gate signal having a pulse amplitude of 10V shown in FIG. 21 rises alternately at the lower limit side vertices 20u and 21u of the triangular wave 7, and the falling edge of the gate signal 20 and the gate signal 21 is a cross-point between the triangular wave 7 and the output voltage 12 of the error amplifier 11. 20d, 21d. By the gate signal 20 and the gate signal 21 having the pulse amplitude of 10 V, the gates of the NMOS (B1) and the NMOS (B2) rise and fall, respectively.
[0047]
Further, as shown in FIG. 6B to FIG. 6D, the rise of the gate signals 20 and 21 is delayed with respect to the fall of the gate signals 18 and 19, and the (F) of FIG. ), The delay circuit 35 delays the fall of the gate signals 18 and 19 by a predetermined time t1 with respect to the fall of the gate signals 20 and 21. Therefore, the PMOS (A1), the PMOS (A2), the NMOS (B1), and the NMOS (B2) can be prevented from being “ON” at the same time.
[0048]
Therefore, appropriate gate signals 18, 19, 20, and 21 are set so that the PMOS (A1), the PMOS (A2), the NMOS (B1), and the NMOS (B2) are not simultaneously turned ON by the triangular wave 7 and the output voltage 12. Can be made easily.
[0049]
Further, as shown in FIG. 1, the error amplifier 51 for voltage feedback compares the applied voltage signal 55 of the discharge tube 9 input to the inverting input portion 51a with a predetermined set value Vc, and supplies it to the discharge tube 9. An output voltage 52 corresponding to the applied voltage is output to the protect circuit 50 and the PWM circuit 8. The protect circuit 50 includes a comparator circuit (not shown) inside, and outputs from an output voltage 52 from the error amplifier 51 for voltage feedback and a resistor 57 provided in series with the secondary side of the transformer 1. The transformer output current signal 53 is input. The applied voltage signal 55 is a voltage obtained by dividing the voltage of the connection portion between the capacitors 31 and 32 provided in parallel on the output side of the transformer 1 by the resistors 58 and 59.
[0050]
When the applied voltage signal 55 of the discharge tube 9 is input to the inverting input portion 51a, the error amplifier 51 for voltage feedback compares the applied voltage signal 55 with a predetermined set value Vc and outputs the output voltage 52 to the PWM circuit 8. The voltage is output and feedback control of the voltage applied to the discharge tube 9 is performed. Therefore, for example, the open circuit voltage can be set to a set value when the discharge tube 9 is not connected or when there is a connection failure.
[0051]
Further, when the discharge tube 9 is not connected or when the connection is poor, the output voltage on the secondary side of the transformer 1 may become an abnormal value. In this case, the voltage feedback input to the protect circuit 50 is used. The output voltage 52 of the error amplifier 51 and the transformer output current signal 53 are compared with the reference voltage of the comparator circuit (not shown) of the protect circuit 50, and this reference voltage is output from the error amplifier 51 for voltage feedback or the transformer output. When the current signal 53 exceeds, the operation of the logic circuit 29 is stopped, and an overcurrent to the discharge tube 9 and an overvoltage to the transformer 1 can be prevented. The protect circuit 50 can also receive the output voltage 12 of the error amplifier 11 and prevent overcurrent to the discharge tube 9 and overvoltage to the transformer 1. Thus, the protect circuit 50 stops the operation of the logic circuit 29 and prevents the transformer 1 and each circuit from being damaged when detecting an abnormal situation on the discharge tube side of the transformer 1.
[0052]
In order to cope with an instantaneous overvoltage due to some cause, the protect circuit 50 stops the operation of the logic circuit 29 when it exceeds a predetermined value by a built-in timer, and erroneously stops the operation of the logic circuit 29. I don't want to do that.
[0053]
FIG. 7 is an operation explanatory diagram when the protection circuit in the discharge tube inverter circuit according to the embodiment of the present invention operates.
[0054]
As shown in FIG. 7, the power supply voltage Vcc is supplied to the booster circuit 100, the oscillation circuit 4, the PWM circuit 8, the error amplifiers 11, 51, the protect circuit 50, the reference voltage circuit 90, and the like. The power supply voltage Vcc is converted into a lower reference voltage Vc and a reference voltage Ve. The reference voltage Vc is input to the error amplifiers 11 and 51 and the protection circuit 50, and the reference voltage Ve is input to the booster circuit 100.
[0055]
When the protect circuit 50 detects an abnormal situation on the discharge tube side of the transformer 1, the operation of the logic circuit 29 is stopped to prevent the transformer 1 (see FIG. 1) and each circuit from being damaged. Since the circuit 17 is supplied with the power supply voltage Vb for lighting the 120V discharge tube, it is necessary to stop the operation reliably.
[0056]
When the protect circuit 50 detects an abnormal condition on the discharge tube side of the transformer 1, the protect circuit 50 stops the operation of the reference voltage circuit 90, sets the reference voltage Ve supplied to the booster circuit 100 to zero voltage, and starts from the booster circuit 100 to the logic circuit. The output of the power supply voltage 76 supplied to 29 is stopped, and the operation of the logic circuit 29 is surely stopped. Therefore, the operation of the H bridge circuit 17 can be stopped reliably.
[0057]
As described above, the discharge tube inverter circuit according to the embodiment of the present invention has a configuration in which the oscillation circuit is shared, so that a dedicated oscillation circuit is not required for the booster circuit, and the conciseness that reduces the number of parts and reduces the cost. With the configuration, it is possible to control the high breakdown voltage FET of the H bridge circuit. Therefore, the power supply voltage of the H-bridge circuit can be increased with a simple configuration, and the current flowing through the FET can be reduced to reduce the loss due to the on-resistance of the FET. In addition, the discharge tube inverter circuit according to the embodiment of the present invention can reduce the transformer primary current because the transformer has a small step-up ratio, thereby reducing the copper loss, improving the efficiency and consuming the liquid crystal display unit. Electric power can be reduced.
[0058]
In addition, since the oscillation circuit is shared, it is possible to avoid interference generated in the reference voltage, eliminate instability of circuit operation, and obtain stable circuit operation.
[0059]
In addition, since the reference voltage circuit that supplies the reference voltage to the circuit that requires the reference voltage is shared, it is possible to obtain a circuit with good stability without fear of malfunction.
[0060]
In addition, since the discharge tube inverter circuit according to the embodiment of the present invention operates the transformer at a frequency lower than the resonance frequency, it is difficult to be affected by higher-order frequencies, and the transformer design can be facilitated.
[0061]
In the discharge tube inverter circuit according to the embodiment of the present invention, a circuit excluding the H bridge circuit 17, the transformer 1, and the discharge tube 9 may be used as the inverter control IC.
[0062]
【The invention's effect】
The inverter circuit for a discharge tube according to the present invention has a minimum phase difference between a transformer in which a resonance circuit is formed by the parasitic capacitance of the discharge tube and a resonance frequency of the resonance circuit and a primary side voltage and current of the transformer. An H bridge circuit that drives the primary side of the transformer at a frequency within a predetermined range from a point; and a logic circuit that generates a gate signal for operating the H bridge circuit based on a power supply voltage based on an output signal of the oscillation circuit; A booster circuit that boosts a DC voltage based on the output signal from the oscillation circuit and supplies the boosted DC power supply voltage as the power supply voltage to the logic circuit. Therefore, the high-breakdown-voltage FET of the H-bridge circuit can be controlled with a simple configuration that reduces the number of parts and reduces the cost. Therefore, the power supply voltage of the H-bridge circuit can be increased with a simple configuration, and the current flowing through the FET can be reduced to reduce the loss due to the on-resistance of the FET. Further, since the transformer step-up ratio can be small, the current on the primary side of the transformer can be reduced, so that copper loss can be reduced, efficiency can be improved, and power consumption can be reduced. Further, since the oscillation circuit is shared, it is possible to avoid interference generated in the reference voltage and obtain a stable circuit operation.
[0063]
Further, since the resonance circuit is formed by the parasitic capacitance of the discharge tube and an auxiliary capacitor connected in parallel to the discharge tube, a desired resonance frequency can be easily obtained by the auxiliary capacitor.
[0064]
The booster circuit outputs an error amplifier that outputs a voltage corresponding to the output voltage of the booster circuit, and a pulse voltage having a pulse width corresponding to the output voltage of the error amplifier based on the output signal from the oscillation circuit. Since the output PWM circuit is provided, a stable constant voltage can be easily output.
[0065]
Further, since the booster circuit is provided with a slow start circuit connected to the PWM circuit, it is possible to prevent a transient excessive voltage from occurring in the output of the booster circuit.
[0066]
Also, since the slow start circuit provided in the booster circuit has a shorter rise time than the slow start circuit for slow starting the H bridge circuit, the logic circuit can be started up stably and connected to the logic circuit. The H bridge circuit can be started up stably.
[0067]
Further, since the protection circuit for stopping the operation of the booster circuit is provided when an abnormality on the discharge tube side of the transformer is detected, the operation of the logic circuit is surely stopped and the operation of the H bridge circuit is also surely performed. Can be stopped.
[Brief description of the drawings]
FIG. 1 is a block diagram of an inverter circuit for a discharge tube according to an embodiment of the present invention.
FIG. 2 shows the frequency characteristics of the admittance | Y | on the transformer primary side when the resonant circuit is formed on the secondary side and the phase difference θ between voltage and current in the inverter circuit for a discharge tube according to the embodiment of the present invention. It is a frequency characteristic.
FIG. 3 is a block diagram of a booster circuit in the discharge tube inverter circuit according to the embodiment of the present invention.
FIG. 4 is a waveform diagram of an output signal of a slow start circuit used in a booster circuit and a PWM circuit in the discharge tube inverter circuit according to the embodiment of the present invention.
FIG. 5 is an operation timing chart of the discharge tube inverter circuit according to the embodiment of the present invention.
FIG. 6 is a timing chart of gate signals in the discharge tube inverter circuit according to the embodiment of the present invention.
FIG. 7 is an operation explanatory diagram when the protect circuit is activated in the discharge tube inverter circuit according to the embodiment of the present invention;
[Explanation of symbols]
1 transformer
2 Liquid crystal display unit
4 Oscillator circuit
8, 72 PWM circuit
9 Discharge tube
10 Current-voltage conversion circuit
11, 51, 71 Error amplifier
17 H bridge circuit
18, 19, 20, 21 Gate signal
22 Burst circuit
29 Logic circuit
34, 75 Slow start circuit
50 Protection circuit
73 Transistor
77 Diode
90 Reference voltage circuit
100 Booster circuit

Claims (6)

放電管の持つ寄生容量により共振回路が形成されるトランスと、前記共振回路の共振周波数未満で、かつ前記トランスの一次側の電圧と電流との位相差が最小点より予め定めた範囲内にある周波数で前記トランスの一次側を駆動するHブリッジ回路と、前記Hブリッジ回路を作動するゲート信号を発振回路の出力信号により電源電圧を基に作るロジック回路と、前記発振回路よりの前記出力信号に基づいて直流電圧を昇圧し、前記昇圧した直流電源電圧を前記ロジック回路に前記電源電圧として供給する昇圧回路とを備えたことを特徴とする放電管用インバータ回路。The phase difference between the transformer in which the resonance circuit is formed by the parasitic capacitance of the discharge tube, the resonance frequency of the resonance circuit, and the voltage and current on the primary side of the transformer is within a predetermined range from the minimum point. An H bridge circuit that drives the primary side of the transformer at a frequency, a logic circuit that generates a gate signal for operating the H bridge circuit based on a power supply voltage from an output signal of the oscillation circuit, and the output signal from the oscillation circuit An inverter circuit for a discharge tube, comprising: a booster circuit that boosts a DC voltage based on the booster and supplies the boosted DC power supply voltage to the logic circuit as the power supply voltage. 前記共振回路は、前記放電管の持つ前記寄生容量と、前記放電管に並列に接続する補助容量とにより形成することを特徴とする請求項1に記載の放電管用インバータ回路。2. The inverter circuit for a discharge tube according to claim 1, wherein the resonance circuit is formed by the parasitic capacitance of the discharge tube and an auxiliary capacitor connected in parallel to the discharge tube. 前記昇圧回路は、前記昇圧回路の出力電圧に応じた電圧を出力するエラーアンプと、前記発振回路よりの前記出力信号に基づき、前記エラーアンプの出力電圧に応じたパルス幅のパルス電圧を出力するPWM回路とを備えたことを特徴とする請求項1記載の放電管用インバータ回路。The booster circuit outputs an error amplifier that outputs a voltage corresponding to the output voltage of the booster circuit, and outputs a pulse voltage having a pulse width corresponding to the output voltage of the error amplifier based on the output signal from the oscillation circuit. The inverter circuit for a discharge tube according to claim 1, further comprising a PWM circuit. 前記昇圧回路は、前記PWM回路に接続するスロースタート回路を設けたことを特徴とする請求項3記載の放電管用インバータ回路。4. The inverter circuit for a discharge tube according to claim 3, wherein the booster circuit is provided with a slow start circuit connected to the PWM circuit. 前記昇圧回路に設けたスロースタート回路は、前記Hブリッジ回路をスロースタートさせるスロースタート回路より短い立ち上がり時間とすることを特徴とする請求項4に記載の放電管用インバータ回路。5. The inverter circuit for a discharge tube according to claim 4, wherein the slow start circuit provided in the booster circuit has a shorter rise time than a slow start circuit for slow starting the H-bridge circuit. 前記トランスの前記放電管側の異常を検出したとき、前記昇圧回路の動作を停止するプロテクト回路を備えたことを特徴とする請求項1に記載の放電管用インバータ回路。2. The discharge tube inverter circuit according to claim 1, further comprising a protection circuit that stops the operation of the booster circuit when an abnormality is detected on the discharge tube side of the transformer.
JP2003199387A 2003-07-18 2003-07-18 Inverter circuit for discharge tube Expired - Fee Related JP3905868B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003199387A JP3905868B2 (en) 2003-07-18 2003-07-18 Inverter circuit for discharge tube
EP04254206A EP1499166B1 (en) 2003-07-18 2004-07-14 Inverter circuit for discharge lamps with a voltage step-up circuit for supplying the gate driver of the inverter switches
DE602004007856T DE602004007856T2 (en) 2003-07-18 2004-07-14 Inverter for discharge lamps with voltage booster circuit for feeding the gate drivers of inverter switches
US10/891,578 US7067988B2 (en) 2003-07-18 2004-07-15 Inverter circuit for lighting discharge lamps with reduced power consumption
CNA2004100636954A CN1578577A (en) 2003-07-18 2004-07-16 Inverter circuit for lighting discharge lamps with reduced power consumption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003199387A JP3905868B2 (en) 2003-07-18 2003-07-18 Inverter circuit for discharge tube

Publications (2)

Publication Number Publication Date
JP2005038683A true JP2005038683A (en) 2005-02-10
JP3905868B2 JP3905868B2 (en) 2007-04-18

Family

ID=33475531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003199387A Expired - Fee Related JP3905868B2 (en) 2003-07-18 2003-07-18 Inverter circuit for discharge tube

Country Status (5)

Country Link
US (1) US7067988B2 (en)
EP (1) EP1499166B1 (en)
JP (1) JP3905868B2 (en)
CN (1) CN1578577A (en)
DE (1) DE602004007856T2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7315133B2 (en) 2005-07-28 2008-01-01 Minebea Co., Ltd. Discharge lamp lighting apparatus
WO2008102703A1 (en) * 2007-02-19 2008-08-28 Panasonic Electric Works Co., Ltd. Discharge lamp operation device, illumination device, and liquid crystal display device
US7791283B2 (en) 2005-11-02 2010-09-07 Minebea Co., Ltd. Discharge lamp lighting apparatus
CN103327706A (en) * 2013-04-15 2013-09-25 阮树成 Solar energy power source double full-bridge injection phase-locking power synthesis electrodeless lamp set
CN103327712A (en) * 2013-04-15 2013-09-25 张妙娟 Solar energy power source four-push-pull injection locking power synthesis neon lamp
JP2015070108A (en) * 2013-09-30 2015-04-13 ミネベア株式会社 Light source drive device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7233117B2 (en) * 2005-08-09 2007-06-19 O2Micro International Limited Inverter controller with feed-forward compensation
JP2009224130A (en) * 2008-03-14 2009-10-01 Sanken Electric Co Ltd Discharge tube lighting device
WO2010034162A1 (en) * 2008-09-28 2010-04-01 Bosch Power Tools (China) Co., Ltd. Control device for controlling a motor in a low voltage dc power tool and control method thereof
KR101501522B1 (en) * 2008-10-09 2015-03-19 삼성디스플레이 주식회사 Back-light unit, method for driving the same and liquid crystal display device having the same
CN101980587A (en) * 2010-11-22 2011-02-23 三峡大学 Electronic ballast for cold cathode fluorescent lamp and output current adjusting method thereof
CN109739135B (en) * 2019-01-11 2020-06-19 海芯科技(厦门)有限公司 Power supply management circuit for reducing power supply switching loss of low-voltage single-chip microcomputer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3329929B2 (en) * 1994-02-15 2002-09-30 松下電工株式会社 High pressure discharge lamp lighting device
JPH0992483A (en) * 1995-09-20 1997-04-04 Minebea Co Ltd High-intensity discharge lamp lighting device
US6114814A (en) * 1998-12-11 2000-09-05 Monolithic Power Systems, Inc. Apparatus for controlling a discharge lamp in a backlighted display
KR20000012429A (en) * 1999-12-03 2000-03-06 김중성 Electronic ballast for gas discharge lamp and operating method
JP4267883B2 (en) 2001-09-21 2009-05-27 ミネベア株式会社 LCD display unit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7315133B2 (en) 2005-07-28 2008-01-01 Minebea Co., Ltd. Discharge lamp lighting apparatus
US7791283B2 (en) 2005-11-02 2010-09-07 Minebea Co., Ltd. Discharge lamp lighting apparatus
WO2008102703A1 (en) * 2007-02-19 2008-08-28 Panasonic Electric Works Co., Ltd. Discharge lamp operation device, illumination device, and liquid crystal display device
US8115421B2 (en) 2007-02-19 2012-02-14 Panasonic Electronic Works Co., Ltd. Discharge lamp lighting device, illumination device, and liquid crystal display device
CN103327706A (en) * 2013-04-15 2013-09-25 阮树成 Solar energy power source double full-bridge injection phase-locking power synthesis electrodeless lamp set
CN103327712A (en) * 2013-04-15 2013-09-25 张妙娟 Solar energy power source four-push-pull injection locking power synthesis neon lamp
JP2015070108A (en) * 2013-09-30 2015-04-13 ミネベア株式会社 Light source drive device

Also Published As

Publication number Publication date
EP1499166B1 (en) 2007-08-01
DE602004007856D1 (en) 2007-09-13
CN1578577A (en) 2005-02-09
EP1499166A3 (en) 2006-01-25
EP1499166A2 (en) 2005-01-19
US7067988B2 (en) 2006-06-27
DE602004007856T2 (en) 2008-04-17
JP3905868B2 (en) 2007-04-18
US20050023990A1 (en) 2005-02-03

Similar Documents

Publication Publication Date Title
CN102298907B (en) Load driving circuit, light-emitting device and display device using the same
US6876157B2 (en) Lamp inverter with pre-regulator
US20110084991A1 (en) Back-light control circuit of multi-lamps liquid crystal display
US20090072754A1 (en) Dc-ac converter, controller ic therefor, and electronic apparatus utilizing such dc-ac converter
US20060203525A1 (en) DC/AC inverter
JP3547837B2 (en) Inverter device
KR100771063B1 (en) Discharge lamp lighting circuit
JP2004208396A (en) Dc-ac converter, and controller ic thereof
JP4941036B2 (en) Discharge tube lighting device and semiconductor integrated circuit
JP3905868B2 (en) Inverter circuit for discharge tube
JP2008072872A (en) Switching regulator
JP2009123660A (en) Discharge tube lighting device
JPH0973990A (en) Cold cathode tube lighting device using piezo-electric transformer
JP2003274668A (en) Single stage converter of inverter for lcd backlight
WO2009145052A1 (en) High-voltage discharge lamp operation device and illumination instrument
JP2007035503A (en) Discharge lamp lighting device
JP2004509584A (en) Electronic ballast using start-up transient voltage suppression circuit
US7557522B2 (en) Preheat control device for modulating voltage of gas-discharge lamp
US7495398B2 (en) Discharge lamp lighting apparatus
EP2222141B1 (en) Discharge lamp lighting circuit for AC-driving a discharge lamp
JP4993548B2 (en) Self-excited inverter drive circuit
JPWO2003081963A1 (en) Cold cathode tube lighting device
US20090045757A1 (en) Discharge lamp lighter
JP2009176515A (en) Discharge tube lighting device and semiconductor integrated circuit
JP4479918B2 (en) Discharge lamp lighting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees