JP2005037868A - Method for forming antireflection face, method for manufacturing mold for forming antireflection member, mold, antireflection member, and method for manufacturing master member for manufacturing mold - Google Patents

Method for forming antireflection face, method for manufacturing mold for forming antireflection member, mold, antireflection member, and method for manufacturing master member for manufacturing mold Download PDF

Info

Publication number
JP2005037868A
JP2005037868A JP2003374051A JP2003374051A JP2005037868A JP 2005037868 A JP2005037868 A JP 2005037868A JP 2003374051 A JP2003374051 A JP 2003374051A JP 2003374051 A JP2003374051 A JP 2003374051A JP 2005037868 A JP2005037868 A JP 2005037868A
Authority
JP
Japan
Prior art keywords
antireflection
mold
manufacturing
forming
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003374051A
Other languages
Japanese (ja)
Inventor
Masashi Hanaoka
正志 花岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Sankyo Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Seiki Manufacturing Co Ltd filed Critical Sankyo Seiki Manufacturing Co Ltd
Priority to JP2003374051A priority Critical patent/JP2005037868A/en
Priority to US10/876,912 priority patent/US7257877B2/en
Priority to CNB2004100632671A priority patent/CN1296184C/en
Publication of JP2005037868A publication Critical patent/JP2005037868A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Milling, Broaching, Filing, Reaming, And Others (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antireflection member for decreasing the manufacture cost by forming minute projections to constitute a wavelength grating without using deposition of fine particles or a semiconductor process, and provide a method for forming an antireflection face, a method for manufacturing a master member for the manufacture of the mold, and a method for manufacturing the mold, and the mold. <P>SOLUTION: In the process of forming an antireflection face of an optical element, many V-grooves 52, 53 are vertically and horizontally formed on the surface 51 of an optical element material 5 or the like by a cutting process using a cutting tool 6 or the like. Thereby, minute pyramid-like projections 3 constituting a wavelength grating for antireflection are formed in the region surrounded by the V-grooves 52, 53. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、多数の角錐形状の微小突起により形成された波長格子を備えた反射防止部材、この反射防止部材の反射防止面の形成方法、反射防止部材形成用金型の製造方法、金型、金型製造用のマスター部材の製造方法に関するものである。   The present invention relates to an antireflection member having a wavelength grating formed by a large number of pyramidal microprojections, a method of forming an antireflection surface of the antireflection member, a method of manufacturing a mold for forming an antireflection member, a mold, The present invention relates to a method for manufacturing a master member for manufacturing a mold.

各種の光学機器に用いられる光学素子では、光の反射によるエネルギー損失や迷光を低減するため、表面に反射防止用の多層膜が形成されることが多い。このような多層膜では、各層間で反射光が干渉によって打ち消し合うことにより、反射が防止される。   In an optical element used in various optical devices, an antireflection multilayer film is often formed on the surface in order to reduce energy loss and stray light due to light reflection. In such a multilayer film, reflection is prevented by interference between the layers due to interference.

しかしながら、反射防止用に多層膜を用いた場合、多層膜として最適な屈折率を持つ物質が限られるので、素材の材質や入射波長によっては、最適な物質の組み合わせが存在しないことがある。また、各層の材料の違いによる物理的、化学的および熱的不整合に起因して耐熱性や耐久性が低いという問題が生じることもある。さらに、多層膜は、蒸着によって形成するので、蒸着材料のコストが必要となる問題点がある。   However, when a multilayer film is used for antireflection, substances having an optimum refractive index as the multilayer film are limited, and therefore there may be no optimum combination of substances depending on the material and incident wavelength. Further, there may be a problem that heat resistance and durability are low due to physical, chemical, and thermal mismatch due to the difference in the material of each layer. Furthermore, since the multilayer film is formed by vapor deposition, there is a problem that the cost of the vapor deposition material is required.

このような多層膜の代わりに、光学素子の表面に光の波長より短い周期の微小突起からなる波長格子を構成することにより反射防止を行うことがある。光の波長より短い周期の微小突起からなる波長格子は、ある屈折率をもつような媒質と等価であり、薄膜と同様な反射防止効果が得られる。さらに、微小突起の形状を円錘形状または角錐形状とすると、微小突起の根元部分から先端側にかけて体積占有率が徐々に変化する。すると、表面における等価屈折率が徐々に変化するため、反射防止特性が良くなる。この他に、表面に凹凸形状を無作為に形成して同様の反射防止特性を実現する構成も提案されている(例えば、特許文献1参照)。   In place of such a multilayer film, reflection may be prevented by forming a wavelength grating composed of minute protrusions having a period shorter than the wavelength of light on the surface of the optical element. A wavelength grating composed of minute protrusions having a period shorter than the wavelength of light is equivalent to a medium having a certain refractive index, and an antireflection effect similar to that of a thin film can be obtained. Furthermore, when the shape of the microprotrusions is a conical shape or a pyramid shape, the volume occupancy gradually changes from the root of the microprotrusions to the tip side. Then, since the equivalent refractive index on the surface gradually changes, the antireflection characteristic is improved. In addition to this, a configuration has also been proposed in which irregularities are randomly formed on the surface to achieve similar antireflection characteristics (see, for example, Patent Document 1).

このような波長格子を形成する方法としては、従来、下地の表面に微粒子を堆積させて微小突起を形成する方法と、下地にエッチングを施して凹凸を形成する方法とがある。ここで、下地が光学素子を形成するための素材であれば、反射防止面を備えた光学素子を直接、製造することになる。一方、下地が金型素材、あるいは金型を製造するためのマスター部材の素材であれば、それにより製造した金型を用いて射出成形あるいはプレス成形を行うことになる。   As a method of forming such a wavelength grating, there are conventionally a method of forming fine protrusions by depositing fine particles on the surface of the base and a method of forming irregularities by etching the base. Here, if the base is a material for forming an optical element, an optical element having an antireflection surface is directly manufactured. On the other hand, if the base is a mold material or a material of a master member for manufacturing a mold, injection molding or press molding is performed using the manufactured mold.

特開2002−286906号公報JP 2002-286906 A

しかしながら、波長格子を製造するのに微粒子の堆積や、エッチングなどの半導体プロセスを利用する方法では、生産性が低く、かつ、材料コストが嵩むという問題点がある。特にエッチングを利用する方法では、フォトリソグラフィ工程で露光マスクを必要とするため、波長格子を構成する微小突起のピッチなどを変更するたびに新たなマスクを準備する必要があり、製造コストが増大するという問題点がある。   However, a method that uses a semiconductor process such as deposition of fine particles or etching to produce a wavelength grating has problems of low productivity and high material cost. In particular, in the method using etching, an exposure mask is required in the photolithography process. Therefore, it is necessary to prepare a new mask each time the pitch of minute projections constituting the wavelength grating is changed, which increases the manufacturing cost. There is a problem.

以上の問題点に鑑みて、本発明の課題は、微粒子の堆積や半導体プロセスを利用せずに、波長格子を構成するための微小突起を形成することにより、製造コストの低減を図ることのできる反射防止部材、この反射防止部材の反射防止面の形成方法、反射防止部材形成用金型の製造方法、金型、金型製造用のマスター部材の製造方法を提供することにある。   In view of the above problems, an object of the present invention is to reduce the manufacturing cost by forming minute protrusions for forming a wavelength grating without using the deposition of fine particles or a semiconductor process. An object of the present invention is to provide an antireflection member, a method of forming an antireflection surface of the antireflection member, a method of manufacturing a mold for forming an antireflection member, a mold, and a method of manufacturing a master member for manufacturing a mold.

上記の課題を解決するため、本発明では、素材の表面に対して切削加工により多数本のV字溝を縦横に形成して、当該V字溝で囲まれた部分の各々に角錘形状の微小突起を形成し、該多数の角錐形状の微小突起を利用して、反射防止面を形成する。   In order to solve the above problems, in the present invention, a large number of V-shaped grooves are formed vertically and horizontally on the surface of the material by cutting, and each of the portions surrounded by the V-shaped grooves has a pyramidal shape. A microprotrusion is formed, and an antireflection surface is formed using the large number of pyramidal microprotrusions.

従って、本発明では、波長格子を構成するための角錐形状の微小突起を形成するのに微粒子の堆積や、エッチングなどの半導体プロセスを利用せず、切削加工を利用するため、生産性が高く、かつ、材料コストを削減できる。また、切削加工であるため、波長格子を構成する微小突起のピッチや高さなどを変更するのも容易である。それ故、製造コストを低減することができる。   Therefore, in the present invention, since the pyramid-shaped microprotrusions for forming the wavelength grating are formed without using a semiconductor process such as deposition of fine particles or etching, and using cutting, the productivity is high. In addition, material costs can be reduced. In addition, since it is a cutting process, it is easy to change the pitch and height of the minute protrusions constituting the wavelength grating. Therefore, the manufacturing cost can be reduced.

本発明は、具体的には、以下に説明するように、反射防止部材の反射防止面に角錐形状の微小突起を直接形成する場合、あるいは反射防止部材を成形するのに用いる金型やこの金型を製造するためのマスター部材に角錐形状の微小突起を形成するのに利用できる。   Specifically, as described below, the present invention relates to a mold used for forming a pyramid-shaped microprotrusion directly on the antireflection surface of the antireflection member, or to mold the antireflection member, and the mold. It can be used to form pyramid-shaped microprotrusions on a master member for manufacturing a mold.

すなわち、本発明では、反射防止部材の素材の表面に対して切削加工により多数本のV字溝を縦横に形成して、当該V字溝で囲まれた部分の各々に、反射防止用の波長格子を構成する角錘形状の微小突起を形成する。   That is, in the present invention, a large number of V-shaped grooves are formed vertically and horizontally by cutting the surface of the material of the antireflection member, and each of the portions surrounded by the V-shaped grooves has an antireflection wavelength. A pyramidal minute protrusion constituting the lattice is formed.

本発明の別の形態では、反射防止部材形成用金型を製造するのに、以下の2通りの方法によって製造する。即ち、反射防止部材形成用金型の素材の表面に対して、直接、切削加工により多数本のV字溝を縦横に形成して、当該V字溝で囲まれた部分の各々に角錘形状の微小突起を形成する第1の方法と、反射防止部材形成用金型を製造するための金型製造用マスター部材の素材表面に対して、まず、上記第1の方法と同様に、切削加工により多数本のV字溝を縦横に形成して、当該V字溝で囲まれた部分の各々に角錘形状の微小突起を形成し、その後、このマスター部材に形成されている前記微小突起の形状を金型用素材に転写して、金型の反射防止面成形面を形成する第2の方法とによって製造することができる。この第2の方法によって製造される反射防止部材形成用金型によって、射出成形あるいはプレス成形により成形される反射防止部材の反射防止面には、反射防止用の波長格子を構成する角錘形状の微小突起が形成される。
一方、第1の方法によって製造される反射防止部材形成用金型によって、射出成形あるいはプレス成形により成形される反射防止部材の反射防止面には、角錘形状の微小孔が成形されることになるが、この微少孔も微少突起と同様な反射防止効果が得られる。微少孔の形状に関しても微少突起と同様に角錐形状とすることにより、微少孔の根本部分から先端側にかけて体積含有率が徐々に変化するため、表面における等価屈折率が徐々に変化し、反射防止特性が良くなる。
In another embodiment of the present invention, the antireflection member forming mold is manufactured by the following two methods. That is, a large number of V-shaped grooves are formed vertically and horizontally by cutting directly on the surface of the material of the mold for forming the anti-reflective member, and each of the portions surrounded by the V-shaped grooves has a pyramidal shape. First, in the same manner as in the first method, cutting is performed on the material surface of the first method for forming the microprojections and the surface of the master member for manufacturing the mold for manufacturing the mold for forming the antireflection member. A plurality of V-shaped grooves are formed vertically and horizontally to form pyramidal microprojections in each of the portions surrounded by the V-shaped grooves, and then the microprojections formed on the master member are formed. The shape can be transferred to a mold material and manufactured by a second method for forming an antireflection surface molding surface of the mold. With the antireflection member forming mold manufactured by the second method, the antireflection surface of the antireflection member formed by injection molding or press molding has a pyramidal shape that constitutes the antireflection wavelength grating. A microprotrusion is formed.
On the other hand, a pyramidal minute hole is formed on the antireflection surface of the antireflection member formed by injection molding or press molding by the antireflection member forming mold manufactured by the first method. However, this minute hole can provide the same antireflection effect as the minute protrusion. As for the shape of the micropores, the volume content gradually changes from the root of the micropores to the tip side by adopting a pyramid shape like the microprojections, so the equivalent refractive index on the surface gradually changes, preventing reflection. The characteristics are improved.

本発明では、波長格子を構成するための角錐形状の微小突起を形成するのに切削加工を利用するため、生産性が高く、かつ、材料コストを削減できる。また、切削加工であるため、波長格子を構成する微小突起のピッチや高さなどを変更するのも容易である。それ故、反射防止部材や金型などの製造コストを低減することができる。 In the present invention, cutting is used to form the pyramid-shaped microprotrusions for forming the wavelength grating, so that the productivity is high and the material cost can be reduced. In addition, since it is a cutting process, it is easy to change the pitch and height of the minute protrusions constituting the wavelength grating. Therefore, it is possible to reduce the manufacturing cost of the antireflection member and the mold.

以下に、図面を参照して、表面に反射防止のための波長格子が形成された光学素子(反射防止部材)、および、その波長格子を構成する角錘形状の微小突起を形成するための微小突起形成方法を説明する。   In the following, referring to the drawings, an optical element (antireflection member) having a wavelength grating for preventing reflection on the surface and a minute projection for forming a pyramidal minute protrusion constituting the wavelength grating. The protrusion forming method will be described.

(光学素子の構成)
図1(A)、(B)は、本発明が適用される光学素子を示す斜視図、および光学素子表面における屈折率分布の説明図である。
(Configuration of optical element)
1A and 1B are a perspective view showing an optical element to which the present invention is applied, and an explanatory diagram of a refractive index distribution on the surface of the optical element.

図1(A)に示す光学素子1は、例えば、レーザ光を利用してCDやDVDなど種類の異なる光記録ディスクの再生等を行なう光ピックアップ装置などの光学機器において、共通光学系を構成する回折格子や対物レンズなどであり、表面に反射防止のための波長格子2を備えている。   The optical element 1 shown in FIG. 1A constitutes a common optical system in an optical apparatus such as an optical pickup device that uses a laser beam to reproduce different types of optical recording disks such as CDs and DVDs. A diffraction grating, an objective lens, and the like, and a wavelength grating 2 for preventing reflection are provided on the surface.

波長格子2は、多数の四角錘形状の微小突起3を周期的に2次元配列したものであり、各四角錘形状の微小突起3は、図2(C)に示すように、互いに直交する座標軸をX軸、Y軸、Z軸としたときに、X軸に平行なV字溝52、およびY軸に平行なV字溝53によってマトリクス状に形成されており、その矩形の底部31(根元部分)から先端32に向けてZ軸方向に高さhで延びている。このため、微小突起3の底部31から先端32にかけて、周囲の媒質と四角錘形状の微小突起3の体積占有率が徐々に変化する。このため、図1(B)に示すように、波長格子2の底部31から先端32までの高さhの間で、周囲の媒質(空気)の屈折率n2から四角錘形状の微小突起3の屈折率n1まで徐々に変化する。また、底部31のX軸およびY軸方向の周期Px、Pyは、光学素子1に入射する入射光4の波長λより短い周期となっている。従って、光学素子1では、波長格子2によって入射光4に対する屈折率の変化が緩やかであるので、入射光4の反射防止を行うことができる。   The wavelength grating 2 is a two-dimensional array of a large number of quadrangular pyramidal microprojections 3, and each quadrangular pyramidal microprojection 3 has coordinate axes orthogonal to each other as shown in FIG. Are formed in a matrix by a V-shaped groove 52 parallel to the X-axis and a V-shaped groove 53 parallel to the Y-axis. From the portion) toward the tip 32 in the Z-axis direction with a height h. For this reason, the volume occupancy of the surrounding medium and the quadrangular pyramidal microprojections 3 gradually changes from the bottom 31 to the tip 32 of the microprojections 3. For this reason, as shown in FIG. 1 (B), between the height h from the bottom 31 of the wavelength grating 2 to the tip 32, the refractive index n2 of the surrounding medium (air) determines the quadrangular pyramid-shaped microprojections 3. It gradually changes to the refractive index n1. Further, the periods Px and Py of the bottom 31 in the X-axis and Y-axis directions are shorter than the wavelength λ of the incident light 4 incident on the optical element 1. Accordingly, in the optical element 1, the change in the refractive index with respect to the incident light 4 is moderate due to the wavelength grating 2, so that the reflection of the incident light 4 can be prevented.

(光学素子1の製造方法1)
図2(A)、(B)、(C)は、図1に示す光学素子の波長格子2を構成する四角錘形状の微小突起3を形成する方法を示す説明図である。
(Manufacturing method 1 of the optical element 1)
2A, 2 </ b> B, and 2 </ b> C are explanatory views showing a method of forming the quadrangular pyramid-shaped microprojections 3 constituting the wavelength grating 2 of the optical element shown in FIG. 1.

本形態では、図2(A)、(B)に示すように、光学素子素材5の表面51をバイト6で切削する。バイト6は、刃先61がV形状の単結晶のダイヤモンドバイトであり、X軸方向に伸びるV字溝52を表面51に切削加工により形成し、一本切削する毎に、Y軸方向に移動して次のV字溝52を表面51に切削加工により形成する。このような切削加工により、光学素子素材5の表面には、Y軸方向に並んだ第1のV字溝52が形成される。第1のV字溝52の加工ピッチは、入射光4の波長λ以下となっている。   In this embodiment, the surface 51 of the optical element material 5 is cut with a cutting tool 6 as shown in FIGS. The cutting tool 6 is a single-crystal diamond cutting tool having a V-shaped cutting edge 61. A V-shaped groove 52 extending in the X-axis direction is formed by cutting on the surface 51, and each time one piece is cut, the cutting tool 61 moves in the Y-axis direction. The next V-shaped groove 52 is formed on the surface 51 by cutting. By such a cutting process, first V-shaped grooves 52 arranged in the Y-axis direction are formed on the surface of the optical element material 5. The processing pitch of the first V-shaped groove 52 is equal to or less than the wavelength λ of the incident light 4.

次に、図2(C)に示すように、バイト6の向きを90°変え、第1のV字溝52に垂直なY軸方向に伸びる第2のV字溝53を表面51に切削加工により形成する。また、第2のV字溝53を一本切削する毎に、バイト6をX軸方向に移動させて次のV字溝53を切削加工により形成していく。ここで、第2のV字溝53の加工ピッチも、入射光4の波長λ以下となっている。   Next, as shown in FIG. 2C, the direction of the cutting tool 6 is changed by 90 °, and the second V-shaped groove 53 extending in the Y-axis direction perpendicular to the first V-shaped groove 52 is cut into the surface 51. To form. Further, every time one second V-shaped groove 53 is cut, the cutting tool 6 is moved in the X-axis direction to form the next V-shaped groove 53 by cutting. Here, the processing pitch of the second V-shaped groove 53 is also equal to or less than the wavelength λ of the incident light 4.

このような切削加工により、表面51には、第1のV字溝52および第2のV字溝53で区画された部分に四角錘形状の微小突起3が形成される。なお、第2のV字溝53の切削は、光学素子素材5に対してバイト6の向きを90°変える代わりに、バイト6に対して光学素子素材5を90°回転させて行うこともできる。   By such a cutting process, the quadrangular pyramid-shaped microprotrusions 3 are formed on the surface 51 at portions partitioned by the first V-shaped groove 52 and the second V-shaped groove 53. The cutting of the second V-shaped groove 53 can be performed by rotating the optical element material 5 by 90 ° relative to the cutting tool 6 instead of changing the orientation of the cutting tool 6 by 90 ° with respect to the optical element material 5. .

このように本形態では、四角錐形状の微小突起3をバイト6を用いた機械加工により形成する。従って、エッチング、フォトリソグラフィ、電子線描画法等を利用した場合に比べると、材料費を押さえることができ、かつ、生産性も高い。また、機械加工であるので、加工形状の自由度が高く、かつ、微小突起3のピッチや高さを変更するのも容易である。よって、反射防止面を備えた光学素子1の製造コストを低減することができる。   Thus, in this embodiment, the quadrangular pyramid-shaped microprojections 3 are formed by machining using the cutting tool 6. Therefore, compared to the case where etching, photolithography, electron beam lithography, or the like is used, material costs can be reduced and productivity is high. Moreover, since it is machining, it is easy to change the pitch and height of the microprojections 3 while the degree of freedom of the machining shape is high. Therefore, the manufacturing cost of the optical element 1 provided with the antireflection surface can be reduced.

(光学素子1の製造方法2)
図3(A)、(B)、(C)は、図1に示す光学素子の波長格子2を構成する四角錘形状の微小突起3を形成する別の様子を示す説明図である。
(Manufacturing method 2 of the optical element 1)
FIGS. 3A, 3B, and 3C are explanatory views showing another mode of forming the quadrangular pyramid-shaped microprotrusions 3 that constitute the wavelength grating 2 of the optical element shown in FIG.

製造方法1では、刃先がV形状のダイヤモンドバイトを直線移動させてV字溝を形成したが、図3(A)、(B)、(C)に示すように、シャンク71の先端にV形状のダイヤモンド刃部72を形成しておき、シャンク71を軸線周りに高速回転させるフライカット工法により、光学素子素材5の表面51にV字溝52、53を形成し、反射防止用の波長格子2を構成する四角錘形状の微小突起3を形成してもよい。   In manufacturing method 1, a V-shaped groove was formed by linearly moving a diamond tool having a V-shaped cutting edge. However, as shown in FIGS. 3 (A), (B), and (C), a V-shaped groove is formed at the tip of the shank 71. The V-grooves 52 and 53 are formed on the surface 51 of the optical element material 5 by a fly-cut method in which the diamond blade portion 72 is formed and the shank 71 is rotated around the axis at a high speed. You may form the square protrusion-shaped microprotrusion 3 which comprises.

なお、本形態で行う工程は、図2を参照して説明した方法と基本的な構成が共通しているので、対応する部分には、同一の符号を付してそれらの説明を省略する。   Note that the steps performed in this embodiment have the same basic configuration as the method described with reference to FIG. 2, so the corresponding parts are denoted by the same reference numerals and description thereof is omitted.

(光学素子1の製造方法3)
製造方法1、2は、いずれも光学素子素材5の表面51にV字溝52、53を直接形成して、四角錘形状の微小突起3が形成された反射防止面を備える光学素子1を直接、形成したが、図2および図3を参照して説明した方法と同様な方法で、反射防止部材を形成する金型、或いは、金型製造用のマスター部材を製造するための素材の表面に対して、切削加工により多数本のV字溝を縦横に形成して、V字溝で囲まれた部分の各々に角錘形状の微小突起が形成された金型、或いはマスター部材を製造してもよい。
(Manufacturing method 3 of the optical element 1)
In both manufacturing methods 1 and 2, the V-shaped grooves 52 and 53 are directly formed on the surface 51 of the optical element material 5, and the optical element 1 including the antireflection surface on which the quadrangular pyramid-shaped microprojections 3 are formed is directly applied. In the same manner as described with reference to FIG. 2 and FIG. 3, on the surface of the material for manufacturing the mold for forming the antireflection member or the master member for manufacturing the mold. On the other hand, by manufacturing a mold or a master member in which a large number of V-shaped grooves are formed vertically and horizontally by cutting, and each of the portions surrounded by the V-shaped grooves is formed with pyramidal microprojections. Also good.

反射防止部材を形成するのに金型製造用のマスター部材を製造する場合には、マスター部材に形成されている微小突起の形状を金型用素材に転写して、微少孔状の金型の反射防止面成形面を形成する。従って、この金型の反射防止面成形面によって、射出成形あるいはプレス成形により成形される反射防止部材の反射防止面には、反射防止用の波長格子を構成する角錘形状の微小突起が形成される。 When manufacturing a master member for manufacturing a mold to form an antireflection member, the shape of the minute projections formed on the master member is transferred to the mold material, An antireflection surface molding surface is formed. Therefore, by the antireflection surface molding surface of this mold, the pyramid-shaped minute projections constituting the wavelength grating for antireflection are formed on the antireflection surface of the antireflection member formed by injection molding or press molding. The

一方、金型反射防止部材形成用金型の表面に対して、切削加工により多数本のV字溝を縦横に形成して、直接、反射部材用金型を製造する場合には、この金型の反射防止面成形面によって、射出成形あるいはプレス成形により成形される反射防止部材の反射防止面には、角錘形状の微小孔が成形される。この微少孔も微少突起と同様な反射防止効果が得られ、微少孔の形状を角錐形状とすることにより、微少孔の根本部分から先端側にかけて体積含有率が徐々に変化するため、表面における等価屈折率が徐々に変化し、反射防止特性が良くなる。   On the other hand, in the case of directly manufacturing a reflection member mold by forming a large number of V-shaped grooves vertically and horizontally on the surface of the mold for forming the antireflection member, this mold is used. With the antireflection surface molding surface, pyramid-shaped micropores are formed on the antireflection surface of the antireflection member formed by injection molding or press molding. This microhole also has the same antireflection effect as the microprojection, and the volume content gradually changes from the root part to the tip side of the microhole by making the microhole shape into a pyramid shape. The refractive index changes gradually, and the antireflection characteristics are improved.

このような形態でも、四角錐形状の微小突起を切削加工により形成するため、エッチング、フォトリソグラフィ、電子線描画法等で形成する場合に比べると、材料費を押さえることができ、かつ、加工時間も短くできるので、金型製造用のマスター部材や反射防止部材を形成するための金型を安価に製造できる。また、機械加工であるので、加工形状の自由度の向上も図ることができ、かつ、微小突起のピッチや高さを変更するのも容易である。よって、反射防止面を備えた光学素子の製造コストの低減を図ることができる。   Even in such a form, since the quadrangular pyramidal microprotrusions are formed by cutting, the material cost can be reduced and the processing time can be reduced compared to the case of forming by etching, photolithography, electron beam drawing method, etc. Therefore, the mold for forming the master member for manufacturing the mold and the antireflection member can be manufactured at a low cost. In addition, since machining is performed, the degree of freedom of the machining shape can be improved, and the pitch and height of the minute protrusions can be easily changed. Therefore, the manufacturing cost of the optical element having the antireflection surface can be reduced.

(A)、(B)は、本発明が適用される光学素子を示す斜視図、および光学素子表面における屈折率分布の説明図である。(A), (B) is a perspective view which shows the optical element to which this invention is applied, and explanatory drawing of the refractive index distribution in the optical element surface. (A)、(B)、(C)は、図1に示す光学素子の波長格子を構成する四角錘形状の微小突起を形成する方法を示す説明図である。(A), (B), (C) is explanatory drawing which shows the method of forming the square pyramid-shaped microprotrusion which comprises the wavelength grating of the optical element shown in FIG. (A)、(B)、(C)は、図1に示す光学素子の波長格子を構成する四角錘形状の微小突起を形成する別の方法を示す説明図である。(A), (B), (C) is explanatory drawing which shows another method of forming the square pyramid-shaped microprotrusion which comprises the wavelength grating of the optical element shown in FIG.

符号の説明Explanation of symbols

1 光学素子
2 波長格子
3 角錘形状の微小突起
4 入射光
5 光学素子素材
6 バイト
31 先端
32 底部
51 表面
52、53 V字溝
61 刃先
71 シャンク
72 刃部
DESCRIPTION OF SYMBOLS 1 Optical element 2 Wavelength grating 3 A pyramidal microprotrusion 4 Incident light 5 Optical element material 6 Bit 31 Tip 32 Bottom 51 Surface 52, 53 V-shaped groove 61 Cutting edge 71 Shank 72 Blade

Claims (6)

素材の表面に対して切削加工により多数本のV字溝を縦横に形成して、当該V字溝で囲まれた部分の各々に、反射防止用の波長格子を構成する角錘形状の微小突起を形成することを特徴とする反射防止面の形成方法。   A large number of V-shaped grooves are formed vertically and horizontally by cutting on the surface of the material, and each of the portions surrounded by the V-shaped grooves has a pyramidal minute projection that constitutes an antireflection wavelength grating. A method of forming an antireflection surface, characterized in that: 反射防止部材を形成するための金型素材の表面に対して切削加工により多数本のV字溝を縦横に形成して、当該V字溝で囲まれた部分の各々に角錘形状の微小突起が形成された金型を製造することを特徴とする反射防止部材形成用金型の製造方法。   A large number of V-shaped grooves are formed vertically and horizontally by cutting on the surface of the mold material for forming the antireflection member, and each of the portions surrounded by the V-shaped grooves has a pyramidal minute projection. The manufacturing method of the metal mold | die for anti-reflective member formation characterized by manufacturing the metal mold | die with which was formed. 請求項2に規定する方法で製造したことを特徴とする金型。   A mold manufactured by the method defined in claim 2. 請求項3に規定する金型を用いた射出成形あるいはプレス成形により形成され、前記反射防止面成形面で成形された面には、反射防止用の波長格子を構成する角錘形状の微小孔が形成されていることを特徴とする反射防止部材。   Formed by injection molding or press molding using a metal mold as defined in claim 3, the surface formed by the antireflection surface molding surface has pyramidal micropores constituting an antireflection wavelength grating. An antireflective member characterized by being formed. 請求項1に規定する方法で形成した反射防止面を有することを特徴とする反射防止部材。   An antireflection member having an antireflection surface formed by the method defined in claim 1. 金型製造用のマスター部材を製造するための素材の表面に対して切削加工により多数本のV字溝を縦横に形成して、当該V字溝で囲まれた部分の各々に角錘形状の微小突起が形成されたマスター部材を製造することを特徴とする金型製造用のマスター部材の製造方法。
A large number of V-shaped grooves are formed vertically and horizontally by cutting on the surface of a material for manufacturing a master member for mold manufacture, and each portion surrounded by the V-shaped grooves has a pyramidal shape. A method for producing a master member for producing a mold, comprising producing a master member on which fine protrusions are formed.
JP2003374051A 2003-06-30 2003-11-04 Method for forming antireflection face, method for manufacturing mold for forming antireflection member, mold, antireflection member, and method for manufacturing master member for manufacturing mold Withdrawn JP2005037868A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003374051A JP2005037868A (en) 2003-06-30 2003-11-04 Method for forming antireflection face, method for manufacturing mold for forming antireflection member, mold, antireflection member, and method for manufacturing master member for manufacturing mold
US10/876,912 US7257877B2 (en) 2003-06-30 2004-06-25 Grating forming method and manufacturing method for master member for manufacturing molding die
CNB2004100632671A CN1296184C (en) 2003-06-30 2004-06-30 Grating forming method, molding die, molded product and manufacturing method for master member for manufacturing molding die

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003187886 2003-06-30
JP2003374051A JP2005037868A (en) 2003-06-30 2003-11-04 Method for forming antireflection face, method for manufacturing mold for forming antireflection member, mold, antireflection member, and method for manufacturing master member for manufacturing mold

Publications (1)

Publication Number Publication Date
JP2005037868A true JP2005037868A (en) 2005-02-10

Family

ID=34220495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003374051A Withdrawn JP2005037868A (en) 2003-06-30 2003-11-04 Method for forming antireflection face, method for manufacturing mold for forming antireflection member, mold, antireflection member, and method for manufacturing master member for manufacturing mold

Country Status (1)

Country Link
JP (1) JP2005037868A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129514A1 (en) * 2005-06-03 2006-12-07 Nalux Co., Ltd. Fine mesh and mold therefor
WO2007077892A1 (en) * 2006-01-05 2007-07-12 Zeon Corporation Process for manufacturing metal shaped item
WO2007077737A1 (en) * 2005-12-28 2007-07-12 Zeon Corporation Mold part and molded flat-plate product
JP2015043400A (en) * 2013-07-26 2015-03-05 本田技研工業株式会社 Resin case of semiconductor device and method for manufacturing the same
US11042098B2 (en) * 2019-02-15 2021-06-22 Applied Materials, Inc. Large area high resolution feature reduction lithography technique

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129514A1 (en) * 2005-06-03 2006-12-07 Nalux Co., Ltd. Fine mesh and mold therefor
US8649096B2 (en) 2005-06-03 2014-02-11 Nalux Co., Ltd. Fine grating and mold therefor
WO2007077737A1 (en) * 2005-12-28 2007-07-12 Zeon Corporation Mold part and molded flat-plate product
WO2007077892A1 (en) * 2006-01-05 2007-07-12 Zeon Corporation Process for manufacturing metal shaped item
JP2015043400A (en) * 2013-07-26 2015-03-05 本田技研工業株式会社 Resin case of semiconductor device and method for manufacturing the same
US11042098B2 (en) * 2019-02-15 2021-06-22 Applied Materials, Inc. Large area high resolution feature reduction lithography technique

Similar Documents

Publication Publication Date Title
US10422934B2 (en) Diffraction gratings and the manufacture thereof
EP0732624B1 (en) Fabrication method with energy beam
JP4483793B2 (en) Microstructure manufacturing method and manufacturing apparatus
US7329372B2 (en) Method for producing aspherical structure, and aspherical lens array molding tool and aspherical lens array produced by the same method
US7257877B2 (en) Grating forming method and manufacturing method for master member for manufacturing molding die
JP4349104B2 (en) Blazed holographic grating, manufacturing method thereof, and replica grating
GB2509536A (en) Diffraction grating
KR20110036875A (en) Optical element
WO2020013995A1 (en) System and method for optimally forming gratings of diffracted optical elements
WO2019131336A1 (en) Coarse structure body, optical member, and electronic device
TW201415072A (en) Manufacture of truncated lenses, of pairs of truncated lenses and of corresponding devices
JP2005037868A (en) Method for forming antireflection face, method for manufacturing mold for forming antireflection member, mold, antireflection member, and method for manufacturing master member for manufacturing mold
KR102606558B1 (en) How to Create Optical Grating Components
JP2004219494A (en) Manufacturing method of optical element
JP2005084485A (en) Diffraction optical element
JPH11277543A (en) Production of mold for molding micro-lens array
JP6547283B2 (en) Method of manufacturing structure on substrate
CN100442171C (en) Lens-free optical device for making proton crystal
JP2004344994A (en) Step forming method, lens molding die, and lens
JP5445128B2 (en) Optical element and method for processing optical element mold
JPH07151910A (en) Method for exposing diffraction grating
WO2019163630A1 (en) Method for producing mold
JP2005099375A (en) Grating forming method, molding die and molded product
JP4582495B2 (en) Processing method
JP4706942B1 (en) OPTICAL ELEMENT, WORKED BODY, AND METHOD FOR PRODUCING THEM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060325

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070820