JP2005037648A - Laser patterning method - Google Patents

Laser patterning method Download PDF

Info

Publication number
JP2005037648A
JP2005037648A JP2003273979A JP2003273979A JP2005037648A JP 2005037648 A JP2005037648 A JP 2005037648A JP 2003273979 A JP2003273979 A JP 2003273979A JP 2003273979 A JP2003273979 A JP 2003273979A JP 2005037648 A JP2005037648 A JP 2005037648A
Authority
JP
Japan
Prior art keywords
laser
light
thin film
optical material
film material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003273979A
Other languages
Japanese (ja)
Other versions
JP2005037648A5 (en
JP4292906B2 (en
Inventor
Masaki Kondo
昌樹 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003273979A priority Critical patent/JP4292906B2/en
Publication of JP2005037648A publication Critical patent/JP2005037648A/en
Publication of JP2005037648A5 publication Critical patent/JP2005037648A5/ja
Application granted granted Critical
Publication of JP4292906B2 publication Critical patent/JP4292906B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of high equipment costs and long manufacturing days in both cases of (1) to use an optical system of a high NA or (2) to use a laser of a short wavelength when fine groove working is performed since a light condensing diameter shorter than a diffraction limit can not be obtained. <P>SOLUTION: A non-linear effect of a non-linear optical material 6 is caused by using a laser beam having ≥2.2 MW output and the beam having light condensing diameter equal to or shorter than the diffraction limit and a thin film material 7 are relatively moved to perform the fine groove working. The non-linear optical material 6 is preferably quartz. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、レーザパターニング方法に関するものである。   The present invention relates to a laser patterning method.

従来技術におけるピーク出力の高いレーザ発振器については、その発振パルスの幅が小さくすることで得られる。既に1960年代からナノ秒、1990年代からはチタンサファイアレーザでのフェムト秒や過飽和吸収鏡を用いたピコ秒のパルス幅を持つレーザが開発・市販され、様々な分野で利用されてきた。   The laser oscillator having a high peak output in the prior art can be obtained by reducing the width of the oscillation pulse. Lasers with pulse widths of nanoseconds from the 1960s and femtoseconds with titanium sapphire lasers and supersaturated absorption mirrors have been developed and marketed since the 1990s, and have been used in various fields.

近年では、更にピコ秒、フェムト秒の領域で半導体レーザを用いてレーザ媒質に励起させ発振する製品として市販され、レーザの専門家以外にも利用しやすいものとなっている。このような短パルスな高ピーク出力を持つレーザは、加工物への熱的損傷が少なく特に薄膜加工や樹脂加工の微細加工に適しているとされている。従来にもナノ秒レーザを使った微細加工やエキシマレーザの紫外光を使ったアブレーション加工があったが、これらのレーザのパルス幅が大きいため熱的損傷は否めない。したがって、短パルス高ピーク出力のレーザによる微細加工は加工面が良好であることが特徴となる。しかし、ビームの集光径は理想的にはその回折限界までしか集光できない。   In recent years, it has been marketed as a product that is excited and oscillated by a laser medium using a semiconductor laser in the picosecond and femtosecond region, and is easy to use for non-laser experts. Such a laser having a short pulse and a high peak output is considered to be suitable for fine processing such as thin film processing and resin processing with little thermal damage to a workpiece. Conventionally, there have been fine processing using a nanosecond laser and ablation processing using ultraviolet light from an excimer laser, but thermal damage cannot be denied due to the large pulse width of these lasers. Therefore, micromachining with a laser with a short pulse and high peak output is characterized by a good machined surface. However, the focused diameter of the beam can ideally be focused only up to its diffraction limit.

一般にレーザ光が理想的にTEM00であり、その回折限界までレーザ光を集光した場合、その集光径dは、   In general, when the laser beam is ideally TEM00, and the laser beam is condensed to the diffraction limit, the condensing diameter d is

Figure 2005037648
Figure 2005037648

で示される。ここでλはレーザ波長、fは集光レンズ焦点距離、wは集光レンズでのビーム径である。式(1)から小さい集光径を得るには、短波長レーザで、λを小さくするかNAの大きな焦点距離の小さいレンズで大きなビームを使うことが考えられる。しかしながら、やみくもに大きなビームを使うと集光レンズの収差により最小集光径が得られない場合があり、また、焦点深度はNAの2乗に比例し小さくなるので比加工材との距離を調節しながら加工する方式が必要となる。   Indicated by Where λ is the laser wavelength, f is the focal length of the condenser lens, and w is the beam diameter at the condenser lens. In order to obtain a small condensing diameter from the formula (1), it is conceivable to use a large beam with a short wavelength laser with a small λ or a lens with a large NA and a small focal length. However, if a large beam is used indiscriminately, the minimum condensing diameter may not be obtained due to the aberration of the condensing lens, and the depth of focus decreases in proportion to the square of NA, so the distance from the specific work material is adjusted. However, a processing method is required.

式(1)はレーザの集光径だけを表した式で実際に加工物に照射した場合、レーザのエネルギだけでなく材料の波長による吸収特性、形状、表面状態によりその大きさは異なる。   Expression (1) is an expression representing only the laser condensing diameter, and when the workpiece is actually irradiated, the size differs depending not only on the energy of the laser but also on the absorption characteristics, shape, and surface state of the material depending on the wavelength.

図5に従来の加工システムを示す。(例えば非特許文献1参照)。ナノ秒以下のパルス幅を持つレーザ発振器101(以下「短パルスレーザ発振器」と称す)はフェムト秒またはピコ秒のパルス幅を持つレーザ発振器である。短パルスレーザ発振器101から発した光はアッテネータ111でその出力はコントロールされる。アッテネータ111は1/2波長板102と偏光板103により偏光面を回転させ一定の偏光方向だけの光を通過させることにより出力をコントロールする。出力されたレーザ光をモニターして1/2波長板102の回転角を調整することにより出力をフィードバックすることもできる。このように出力を制御し、また、制御された光は一方向の偏光を有する光となる。更にこの光はビームエクスパンダー104により平行化拡大される。市販品では拡大率は2倍から8倍までできる。その後レーザ光はアパーチャ107を通過する。アパーチャの径は可変である。通常アパーチャは迷光やレーザ光そのものにその形状を成形する時に用いられる。   FIG. 5 shows a conventional processing system. (For example, refer nonpatent literature 1). A laser oscillator 101 (hereinafter referred to as “short pulse laser oscillator”) having a pulse width of nanoseconds or less is a laser oscillator having a femtosecond or picosecond pulse width. The output of the light emitted from the short pulse laser oscillator 101 is controlled by the attenuator 111. The attenuator 111 controls the output by rotating the plane of polarization by the half-wave plate 102 and the polarizing plate 103 and allowing light of only a certain polarization direction to pass. The output can be fed back by monitoring the output laser light and adjusting the rotation angle of the half-wave plate 102. The output is controlled in this way, and the controlled light becomes light having a unidirectional polarization. Further, this light is collimated and expanded by the beam expander 104. In a commercial product, the enlargement ratio can be 2 to 8 times. Thereafter, the laser light passes through the aperture 107. The diameter of the aperture is variable. Normally, the aperture is used when the shape is formed into stray light or laser light itself.

また、HeNeレーザ等での光軸調整時にアパーチャを基準としてその中心にレーザ光は通過するように調整をするのに必要である。アパーチャ107を通過したレーザ光は集光レンズ108により集光されステージ109上に装填された基板110を加工する。図5及び式(1)から集光径dを小さくするには、波長λを小さくする。NAを1に近づける。このことは、ビームエクスパンダー104の倍率を上げる(すなわちwを大きくする)、集光レンズ108の焦点距離fを小さくすることになる。   Further, it is necessary to adjust the optical axis with a HeNe laser or the like so that the laser beam passes through the center with respect to the aperture. The laser light that has passed through the aperture 107 is condensed by the condenser lens 108 and the substrate 110 loaded on the stage 109 is processed. In order to reduce the condensing diameter d from FIG. 5 and formula (1), the wavelength λ is reduced. Bring NA closer to 1. This increases the magnification of the beam expander 104 (that is, increases w) and decreases the focal length f of the condenser lens 108.

しかし、例えばNA=1のレンズがあったとしても、最小径は波長1.22倍にしか集光できない。仮に可視光を発するレーザ光で波長800nmでは976nmのビーム径しか得られない。しかし、このような高NAの集光系では焦点深度は小さくなり焦点距離の調整のためにオートフォーカス機能などを設置することが必要になる。露光装置に見られるように集光レンズとウェハ位置調整のためフォーカス方向の調整、あおりなどの調整が必要となっている。   However, even if there is a lens with NA = 1, for example, the minimum diameter can be condensed only at a wavelength of 1.22 times. If the laser beam emits visible light and the wavelength is 800 nm, only a beam diameter of 976 nm can be obtained. However, in such a high NA condensing system, the depth of focus becomes small, and it is necessary to install an autofocus function or the like for adjusting the focal length. As seen in the exposure apparatus, it is necessary to adjust the focus direction, tilt, etc. to adjust the position of the condenser lens and the wafer.

なお、リソグラフィではレーザの波長を200nm以下を用い、NA=0.65として微細パターンの形成を行っている。
池田正幸他著「レーザプロセス技術ハンドブック」 朝倉書店,1992年4月発行,P479,図3,2,46
In lithography, a fine pattern is formed using a laser wavelength of 200 nm or less and NA = 0.65.
Masayuki Ikeda et al. "Laser Process Technology Handbook" Asakura Shoten, April 1992, P479, Fig. 3, 2, 46

しかしながら前述する構成では、回折限界以下の集光径が得られないことから微細溝加工を行う場合には、結局、高NAの光学系を使用するか、短波長のレーザを用いるかである。高NAの光学系を用いた微細加工方法では、焦点深度が小さくなるためフォーカス調整が必要なり設備コスト高になる。また、短波長のレーザを用いることで微細化を計ることは最近では稀はないが、可視、赤外領域対応のレーザにくらべ紫外用レーザはコスト高でありメンテナンスも必要である。   However, in the above-described configuration, since a condensing diameter less than the diffraction limit cannot be obtained, when fine groove processing is performed, either an optical system with a high NA or a short wavelength laser is used. In a fine processing method using an optical system with a high NA, since the depth of focus is small, focus adjustment is necessary, and the equipment cost is high. Although it is not rare to use a short-wavelength laser for miniaturization, an ultraviolet laser is more expensive than a laser for the visible and infrared regions, and requires maintenance.

光学部品についても可視、赤外用光学部品の方がはるかに一般的で耐久性も紫外用に比べると高く、コストも安い。波長、高NAに対応する装置は結局コスト高となる。   As for optical parts, visible and infrared optical parts are far more common, and durability is higher than that for ultraviolet parts, and costs are low. An apparatus corresponding to a wavelength and a high NA eventually becomes expensive.

一方、微細加工のパターン加工ではビーム分割による同時加工を行い直接描画しパターンを形成する方法やリソグラフィによる一括パターン形成する方法がある。ビーム分割した場合でも上述した回折限界以下の集光径を得るには短波長のレーザと高NAの光学系により同様なコスト高になり、またリソグラフィの場合には高価な設備とパターン形成のためにマスクが必要で製作日数、コストが更にかかるという問題点を有する。   On the other hand, there are two methods for fine pattern processing: a method of forming a pattern by performing simultaneous processing by beam splitting and directly drawing, and a method of forming a collective pattern by lithography. Even in the case of beam splitting, a short wavelength laser and a high NA optical system are required to obtain a condensing diameter less than the above-mentioned diffraction limit, and in the case of lithography, expensive equipment and pattern formation are required. In addition, a mask is required, and the production days and costs are further increased.

本発明は、上記従来の問題点を解決するものであり、微細溝を形成することが可能なレーザパターニング方法を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide a laser patterning method capable of forming a fine groove.

この課題を解決するために、本発明ではピーク出力が2.2MW以上のレーザ光により基板上の薄膜材料に微細溝を形成する方法であって、前記レーザ光を拡大し平行光線化にするビームエクスパンダーと拡大平行化されたレーザ光を集光する集光レンズと、前記集光レンズにより集光されたレーザ光の焦点位置近傍に設置した非線形光学材料を用い、前記非線形光学材料に密着もしくは隙間を有して基板を設置し、前記2.2MW以上のレーザ光により前記非線形光学材料の非線形効果を生じさせ、回折限界以下のビーム集光径で前記薄膜材料と相対的移動により微細な溝加工を行うことを特徴とする。   In order to solve this problem, the present invention is a method for forming a fine groove in a thin film material on a substrate with a laser beam having a peak output of 2.2 MW or more, and a beam that expands the laser beam into a parallel beam Using an expander and a condensing lens for condensing the laser beam expanded and collimated, and a non-linear optical material installed near the focal position of the laser light condensed by the condensing lens, A substrate is provided with a gap, the nonlinear optical material is caused to have a nonlinear effect by the laser light of 2.2 MW or more, and a fine groove is formed by relative movement with the thin film material with a beam condensing diameter less than the diffraction limit. It is characterized by processing.

この方式によれば非線形光学材料内であって集光位置近傍の高エネルギ領域では、非線形光学材料の非線形効果によりビームは自己集束を起こし、回折と自己集束がつりあうことによる自己束縛でビームは一定の微小径で非線形光学材料内を伝播し、非線形材料の終端またはその付近にて微小径で薄膜材料を加工する。本発明の第2の請求項にあるように、非線形光学材料を石英とし、2.2MW以上のピーク出力にとり、石英は非線形光学効果を起こす。これにより、微小径により薄膜材料加工する。   According to this method, the beam is self-focused due to the nonlinear effect of the nonlinear optical material in the high-energy region in the nonlinear optical material and in the vicinity of the focusing position, and the beam is constant due to self-constraint due to the balance between diffraction and self-focusing. The thin film material is processed with a small diameter at or near the end of the nonlinear material. As described in the second claim of the present invention, the nonlinear optical material is quartz, and the quartz causes a nonlinear optical effect when the peak output is 2.2 MW or more. Thereby, the thin film material is processed with a minute diameter.

一方、パターン形成をする場合は、1光束を薄膜材料と相対的移動により加工する場合と、多光束に分割し相対的移動によりパターン形成する場合がある。後者の場合、拡大平行化されたレーザ光を複数本に分割するビーム分割手段を備え、前記集光レンズの代わりにエフシータレンズを用いることにより複数本の光束を分割したままそれぞれの光束を集光させ非線形光学材料により回折限界以下のビーム径をもつ複数本の光束で相対移動させることを特徴とする。   On the other hand, when forming a pattern, there are a case where one light beam is processed by relative movement with a thin film material and a case where a pattern is formed by dividing into multiple light beams and relative movement. In the latter case, a beam splitting means for splitting the expanded and collimated laser beam into a plurality of beams is provided, and an F-theta lens is used in place of the condensing lens to collect each beam while splitting the plurality of beams. The light beam is relatively moved by a plurality of light beams having a beam diameter less than a diffraction limit by a nonlinear optical material.

また、複数本に分割された光束を集光レンズで集光させ干渉を生じさせ、その干渉による光強度を利用し、光軸または前記薄膜材料が形成されたガラス基板を相対的に移動することを特徴とする。   Further, the light beam divided into a plurality of beams is condensed by a condensing lens to cause interference, and by using the light intensity due to the interference, the optical axis or the glass substrate on which the thin film material is formed is relatively moved. It is characterized by.

これはいわゆる干渉露光方式によるのパターニングである。これによれば、干渉縞を形成しこの縞と薄膜材料との相対移動によりパターニングする方式となる。   This is patterning by a so-called interference exposure method. According to this, an interference fringe is formed and patterning is performed by relative movement between the fringe and the thin film material.

以上のことから、本発明によれば、集光位置近傍の高エネルギ領域では、非線形効果によりビームは自己集束を起こし、また、回折と自己集束が釣り合うことによる自己束縛でビームは、一定の微小径で非線形光学材料を伝播するため、非線形材料の終端またはその付近にて微小径で薄膜材料を加工することができる。   From the above, according to the present invention, in the high energy region in the vicinity of the condensing position, the beam is self-focused due to the nonlinear effect, and the beam is fixed by a self-constraint due to the balance between diffraction and self-focusing. Since the nonlinear optical material is propagated with a small diameter, the thin film material can be processed with a minute diameter at or near the end of the nonlinear material.

図1は本発明第一の実施形態に係る構成を示す図である。以下、図1を参照しながら本実施形態の動作仕様を説明する。2.2MW以上のピーク出力を有するレーザ発振器1から照射されたレーザ光は、2つのミラー2a、2bによって、所望の角度に折り曲げられ、ビームを平行拡大するビームエクスパンダー3に入射される。その後、折り曲げミラー4によりビームは曲げられ、集光レンズ5に入射される。焦点近傍に置かれた非線形光学材料は、レーザの高エネルギ密度のため非線形効果を生じる。一般に物質の屈折率nは、   FIG. 1 is a diagram showing a configuration according to the first embodiment of the present invention. Hereinafter, the operation specifications of the present embodiment will be described with reference to FIG. Laser light emitted from the laser oscillator 1 having a peak output of 2.2 MW or more is bent at a desired angle by two mirrors 2a and 2b, and is incident on a beam expander 3 that expands the beam in parallel. Thereafter, the beam is bent by the bending mirror 4 and is incident on the condenser lens 5. Nonlinear optical materials placed near the focal point produce nonlinear effects due to the high energy density of the laser. In general, the refractive index n of a substance is

Figure 2005037648
Figure 2005037648

となる。ここでIは入射した光のエネルギ密度(cm2/MW)、n0は初期屈折率、n2は非線形係数である。n2*IはIが閾値(石英の場合2.2MW)を超えると非線形性を示す。 It becomes. Here, I is the energy density (cm 2 / MW) of incident light, n0 is the initial refractive index, and n2 is a nonlinear coefficient. n2 * I exhibits nonlinearity when I exceeds a threshold value (2.2 MW for quartz).

そのため図2に示すように、図2(a)では、例えばレーザピーク出力が2.2MW以下の場合で、非線形光学材料をレーザ光は焦点付近では一旦集光するが(ビーム径は回折限界以上)再び拡大する。しかし、ピーク出力が2.2MW以上の場合は、図2(b)に示すように、高ピーク出力のためビームを式(2)に従って回折限界以下に集光されていく。   Therefore, as shown in FIG. 2, in FIG. 2A, for example, when the laser peak output is 2.2 MW or less, the nonlinear optical material is once condensed near the focal point (the beam diameter is greater than the diffraction limit). ) Expand again. However, when the peak output is 2.2 MW or more, as shown in FIG. 2 (b), the beam is condensed below the diffraction limit according to the equation (2) for high peak output.

ここで光の回折(図2(b)の破線)により広がろうとする働きと非線形効果による集光する働き(自己集束)が釣り合うと光は、回折限界以下のビーム径でその直径を維持したまま非線形光学材料内を伝播する。この高ピーク出力のレーザ光により、非線形光学材料6の終端に設置された薄膜材料7が加工できる。薄膜材料は、基板8に形成されている。   Here, when the action of spreading by the diffraction of light (broken line in FIG. 2B) and the action of focusing by the non-linear effect (self-focusing) are balanced, the light maintained its diameter at a beam diameter below the diffraction limit. Propagates through the nonlinear optical material. The thin peak material 7 installed at the end of the nonlinear optical material 6 can be processed by this high peak output laser beam. The thin film material is formed on the substrate 8.

この場合薄膜材料7、基板8をステージ上に装填し、光軸と基板8とを相対移動させることで薄膜材料のパターン形成が可能になる。   In this case, the thin film material 7 and the substrate 8 are loaded on the stage, and the pattern of the thin film material can be formed by moving the optical axis and the substrate 8 relative to each other.

本発明の第2の発明の実施形態として非線形光学材料6に石英を用いることで2.2MWのピーク出力で薄膜材料8が加工できる。   By using quartz as the nonlinear optical material 6 as an embodiment of the second invention of the present invention, the thin film material 8 can be processed with a peak output of 2.2 MW.

図3に本発明の第3の発明の実施形態を示す。2.2MWのピーク出力を持つレーザ発振器1から照射されたレーザ光は、2つのミラー2a、2bにより折り曲げられ、ビームを平行拡大するビームエクスパンダー3に入射する。その後、折り曲げミラー4によりビームは曲げられビームスプリッタ9に入射し、複数本のビームに分割される。それぞれのビーム(光束)はエフシータレンズ10により入射した位置から垂直に集光、伝播しそれぞれが非線形光学材料6に入射する。   FIG. 3 shows an embodiment of the third invention of the present invention. The laser light emitted from the laser oscillator 1 having a peak output of 2.2 MW is bent by the two mirrors 2a and 2b and is incident on the beam expander 3 that expands the beam in parallel. Thereafter, the beam is bent by the bending mirror 4 and incident on the beam splitter 9 to be split into a plurality of beams. Each beam (light beam) is condensed and propagated vertically from the position where it enters by the F-theta lens 10, and each enters the nonlinear optical material 6.

この場合、それぞれのビームのピーク出力は非線形効果を起こす2.2MW以上必要で、分割した場合の分割数に比例したレーザ出力が必要である。それぞれのビームは回折限界以下で薄膜材料8を加工する。図中11はビームと薄膜材料との相対移動させる2軸のあおり機能をもつ駆動手段で折り返しミラー4のあおりを行うことでビームを移動させることができる。   In this case, the peak output of each beam needs to be 2.2 MW or more that causes a non-linear effect, and a laser output proportional to the number of divisions in the case of division is necessary. Each beam processes the thin film material 8 below the diffraction limit. In the figure, reference numeral 11 denotes a driving means having a biaxial tilting function for relatively moving the beam and the thin film material, and the beam can be moved by tilting the folding mirror 4.

図4に本発明の第4の発明の実施の形態を示す。2.2MWのピーク出力を持つレーザ発振器1から照射されたレーザ光は2つのミラー2a、2bにより折り曲げられ、ビームを平行拡大するビームエクスパンダー3に入射する。その後、折り曲げミラー4によりビームは曲げられビームスプリッタ9に入射し、複数本のビームに分割される。それぞれのビーム(光束)は集光レンズ10により平行光線化され再度集光する。その際生じる干渉が非線形光学材料6内で生じる。   FIG. 4 shows a fourth embodiment of the present invention. The laser light emitted from the laser oscillator 1 having a peak output of 2.2 MW is bent by the two mirrors 2a and 2b and is incident on the beam expander 3 that expands the beam in parallel. Thereafter, the beam is bent by the bending mirror 4 and incident on the beam splitter 9 to be split into a plurality of beams. Each beam (light beam) is collimated by the condenser lens 10 and condensed again. The resulting interference occurs in the nonlinear optical material 6.

この場合、それぞれの干渉ビームのピーク出力は非線形効果を起こす2.2MW以上必要で、分割した場合の分割数に比例したレーザ出力が必要である。それぞれのビームは回折限界以下で薄膜材料8を加工する。   In this case, the peak output of each interference beam is required to be 2.2 MW or more that causes a nonlinear effect, and a laser output proportional to the number of divisions when divided is required. Each beam processes the thin film material 8 below the diffraction limit.

本発明の第1の実施形態を示す概略図Schematic showing the first embodiment of the present invention 本発明の第1の実施形態に係る基本原理を示す図The figure which shows the basic principle which concerns on the 1st Embodiment of this invention. 本発明の第3の実施形態を示す概略図Schematic showing the third embodiment of the present invention 本発明の第4の実施形態を示す概略図Schematic showing the fourth embodiment of the present invention 従来のレーザパターニング方法を示す図Diagram showing conventional laser patterning method

符号の説明Explanation of symbols

1 レーザ発振器
2a ミラー
2b ミラー
3 ビームエクスパンダー
4 折り曲げミラー
5 集光レンズ
6 非線形光学材料
7 薄膜材料
8 基板


DESCRIPTION OF SYMBOLS 1 Laser oscillator 2a Mirror 2b Mirror 3 Beam expander 4 Bending mirror 5 Condensing lens 6 Nonlinear optical material 7 Thin film material 8 Substrate


Claims (4)

ピーク出力が2.2MW以上のレーザ光により基板上の薄膜材料に微細溝を形成する方法であって、前記レーザ光を拡大し平行光線化にするビームエクスパンダーと拡大平行化されたレーザ光を集光する集光レンズと、前記集光レンズにより集光されたレーザ光の焦点位置近傍に設置した非線形光学材料を用い、前記非線形光学材料に密着もしくは隙間を有して基板を設置し、前記2.2MW以上のレーザ光により前記非線形光学材料の非線形効果を生じさせ、回折限界以下のビーム集光径で前記薄膜材料と相対的移動により微細な溝加工を行うことを特徴とするレーザパターニング方法。 A method of forming a fine groove in a thin film material on a substrate with a laser beam having a peak output of 2.2 MW or more, wherein a beam expander that expands the laser beam into a parallel beam and an expanded collimated laser beam Using a condensing lens for condensing, and a non-linear optical material installed in the vicinity of the focal position of the laser light collected by the condensing lens, a substrate is installed with a close contact or gap with the non-linear optical material, A laser patterning method, wherein a nonlinear effect of the nonlinear optical material is generated by a laser beam of 2.2 MW or more, and a fine groove is formed by relative movement with the thin film material with a beam condensing diameter less than a diffraction limit. . 前記非線形光学材料は石英であることを特徴とする請求項1に記載のレーザパターニング方法。 The laser patterning method according to claim 1, wherein the nonlinear optical material is quartz. 前記拡大平行化されたレーザ光を複数本に分割するビーム分割手段を備え、前記集光レンズの代わりにエフシータレンズを用いることにより複数本の光束をそれぞれ集光させ非線形光学材料により回折限界以下のビーム径をもつ複数本の光束と前記薄膜材料が形成されたガラス基板とを相対的に移動させることを特徴とする請求項2に記載のレーザパターニング方法。 Beam splitting means for splitting the expanded and collimated laser light into a plurality of beams, and by using an F-theta lens instead of the focusing lens, each of the plurality of light beams is condensed and below the diffraction limit by a nonlinear optical material. The laser patterning method according to claim 2, wherein a plurality of light beams having a beam diameter of 10 mm and a glass substrate on which the thin film material is formed are relatively moved. 前記複数本に分割された光束を前記集光レンズで集光させ干渉を生じさせその干渉による光強度を利用し、光軸または前記薄膜材料が形成されたガラス基板を相対的に移動することを特徴とする請求項2に記載のレーザパターニング方法。 The light beam divided into a plurality of light beams is condensed by the condensing lens, interference is generated, and light intensity due to the interference is utilized to relatively move the optical axis or the glass substrate on which the thin film material is formed. The laser patterning method according to claim 2, wherein:
JP2003273979A 2003-07-14 2003-07-14 Laser patterning method Expired - Fee Related JP4292906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003273979A JP4292906B2 (en) 2003-07-14 2003-07-14 Laser patterning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003273979A JP4292906B2 (en) 2003-07-14 2003-07-14 Laser patterning method

Publications (3)

Publication Number Publication Date
JP2005037648A true JP2005037648A (en) 2005-02-10
JP2005037648A5 JP2005037648A5 (en) 2006-03-09
JP4292906B2 JP4292906B2 (en) 2009-07-08

Family

ID=34211064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003273979A Expired - Fee Related JP4292906B2 (en) 2003-07-14 2003-07-14 Laser patterning method

Country Status (1)

Country Link
JP (1) JP4292906B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268581A (en) * 2006-03-31 2007-10-18 Sunx Ltd Laser beam machining apparatus
JP2009262223A (en) * 2008-04-30 2009-11-12 Sunx Ltd Laser beam machining apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE368017T1 (en) 2000-03-14 2007-08-15 James Hardie Int Finance Bv FIBER CEMENT CONSTRUCTION MATERIALS WITH LOW DENSITY ADDITIVES

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268581A (en) * 2006-03-31 2007-10-18 Sunx Ltd Laser beam machining apparatus
JP2009262223A (en) * 2008-04-30 2009-11-12 Sunx Ltd Laser beam machining apparatus

Also Published As

Publication number Publication date
JP4292906B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
US11130701B2 (en) Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US11548093B2 (en) Laser apparatus for cutting brittle material
US6951627B2 (en) Method of drilling holes with precision laser micromachining
US6555781B2 (en) Ultrashort pulsed laser micromachining/submicromachining using an acoustooptic scanning device with dispersion compensation
RU2689018C2 (en) Device for projecting mask with beam of femtosecond and picosecond laser, containing limiter, mask and system of lenses
US20120223061A1 (en) Laser processing method and laser processing device
JP4640029B2 (en) Wavelength conversion optical system, laser light source, exposure apparatus, specimen inspection apparatus, and polymer crystal processing apparatus
JPH11347758A (en) Super precision machining device
US20040188393A1 (en) Method and apparatus of drilling high density submicron cavities using parallel laser beams
JP2007061855A (en) Laser irradiation device
JP2002040627A (en) Method for correcting laser pattern and apparatus for correcting the same
EP1475678B1 (en) Method for producing a hologram by picosecond laser
JP2002154846A (en) Method for processing glass substrate
KR100491558B1 (en) Light projecting device and light projecting method
JP2008036641A (en) Laser beam machining apparatus and method
TWI327498B (en) Laser processing apparatus using laser beam splitting
JP2006088199A (en) Laser-induced modification apparatus and method
JP4610201B2 (en) Laser irradiation device
JP2005161372A (en) Laser machine, structure, optical element and laser machining method
JP5383342B2 (en) Processing method
JP4292906B2 (en) Laser patterning method
JP4456881B2 (en) Laser processing equipment
JP2005205464A (en) Laser beam machining method, structure and optical element
JP2004306127A (en) Processing method for patterning thin film
KR100787236B1 (en) Processing apparatus and mehtod of using ultrashort pulse laser

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060120

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees