JP2005037251A - Apparatus for measuring fluid flow - Google Patents

Apparatus for measuring fluid flow Download PDF

Info

Publication number
JP2005037251A
JP2005037251A JP2003274687A JP2003274687A JP2005037251A JP 2005037251 A JP2005037251 A JP 2005037251A JP 2003274687 A JP2003274687 A JP 2003274687A JP 2003274687 A JP2003274687 A JP 2003274687A JP 2005037251 A JP2005037251 A JP 2005037251A
Authority
JP
Japan
Prior art keywords
leakage
procedure
flow
time
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003274687A
Other languages
Japanese (ja)
Inventor
Koichi Takemura
晃一 竹村
Yuji Nakabayashi
裕治 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003274687A priority Critical patent/JP2005037251A/en
Publication of JP2005037251A publication Critical patent/JP2005037251A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently detect very small leakages in a short time, without increasing the electric power consumption. <P>SOLUTION: A switchover determination means 15 switches the operation of a flow velocity detecting means 9 between two different procedures, a flow measurement procedure having a long action time for measuring the quantity of flow of a fluid and a leakage verification procedure, having a long-acting time for determining a very small leakage, by changing an acting time set at a repeating means 7, the number of times of sing arounds. Since a leakage deciding means 17 discriminates between a leakage and a zero point, on the basis of a flow value determined in the leakage verification procedure and is constituted in such a way that leakage decision is not to restart, when at least a prescribed period of time has not elapsed, efficient decision on leakage can be made in a short time, without causing electric power consumption to be increased excessively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、超音波計測計や熱線式計測計等のような検出方法を用いて、流体の流れ状態を間欠的にサンプリングして計測する流体の流れ計測装置に関するものである。   The present invention relates to a fluid flow measurement apparatus that intermittently samples and measures a fluid flow state using a detection method such as an ultrasonic meter or a hot-wire meter.

従来この種の計測装置としては、様々なものが提案されているが、その中で超音波流量計測装置の計測原理としては逆数差法と呼ばれているものが広く知られている。この逆数差法に基づく流量計測装置は、例えば、図7のような構成となっていた。   Conventionally, various types of measuring devices have been proposed. Among them, a so-called reciprocal difference method is widely known as a measuring principle of an ultrasonic flow rate measuring device. The flow rate measuring device based on the reciprocal difference method has a configuration as shown in FIG. 7, for example.

図7において、流体流路1の途中に、超音波を受発信する第1振動子31および第2振動子32が流路33の流れ方向に配置されていて、制御手段34がこれら第1、第2振動子31、32の送受信を制御する。   In FIG. 7, a first vibrator 31 and a second vibrator 32 that receive and transmit ultrasonic waves are arranged in the flow direction of the flow path 33 in the middle of the fluid flow path 1. Controls transmission / reception of the second vibrators 31 and 32.

超音波が流れの中を伝搬する際、流体の流れの影響を受けて流れの順方向、すなわち、第1振動子31から第2振動子32へ向けて送信した場合の伝搬時間と、流れの逆方向、すなわち、第2振動子32から第1振動子31へ向けて送信した場合の伝搬時間は異なった値となり、流量が大きくなるにつれてその差は大となる。   When the ultrasonic wave propagates in the flow, it is influenced by the flow of the fluid, the forward direction of the flow, that is, the propagation time when transmitted from the first vibrator 31 to the second vibrator 32, and the flow The propagation time in the reverse direction, that is, when transmitting from the second vibrator 32 to the first vibrator 31, becomes a different value, and the difference increases as the flow rate increases.

この性質を利用して流体の流量を計測することが可能であり、流速検出手段35で超音波の伝搬時間を計測し、この値を用いて流量演算手段36が流量を演算する。   It is possible to measure the flow rate of the fluid using this property, the ultrasonic wave propagation time is measured by the flow velocity detection means 35, and the flow rate calculation means 36 calculates the flow rate using this value.

次に、計測原理について説明する。静止流体中の音速をc、流体の流れの速さをvとすると、流れの順方向の超音波の伝搬速度は(c+v)、逆方向の伝搬速度は(c−v)となる。振動子2と3の間の距離をL、超音波伝搬軸と流路の中心軸とがなす角度をθ、流れの順方向に発信された超音波の伝搬する時間をt、流れの逆方向に発信された超音波の伝搬する時間をtとすると、
=L/(c+vcosθ) (式1)
=L/(c−vcosθ) (式2)
となる。
Next, the measurement principle will be described. When the velocity of sound in the static fluid is c and the velocity of the fluid flow is v, the propagation velocity of the ultrasonic wave in the forward direction is (c + v) and the propagation velocity in the reverse direction is (cv). The distance between the transducers 2 and 3 is L, the angle between the ultrasonic wave propagation axis and the central axis of the flow path is θ, the propagation time of the ultrasonic wave transmitted in the forward direction of the flow is t f , and the reverse of the flow When the time for propagation of the ultrasonic wave transmitted in the direction and t r,
t f = L / (c + v cos θ) (Formula 1)
t r = L / (c- vcosθ) ( Equation 2)
It becomes.

上記(式1)または(式2)の一方から直接流速vを求めることが可能であるが、そのためには音速cが既知である必要がある。   Although it is possible to determine the flow velocity v directly from one of the above (Equation 1) or (Equation 2), the sound velocity c needs to be known.

一般に音速cは流体温度に依存するため、流体温度が既知である必要がある。しかし、ここで、順方向、逆方向を計測した時点の流体温度が等しいと仮定することにより、音速cが未知であっても、(式1)、(式2)より流速vを求めることが可能である。すなわち、(式1)および(式2)を変形してvについて解くと、
v=(L/2cosθ)・(1/t−1/t) (式3)
となり、Lとθが既知ならt、tを計測して流速vが求められる。ここで、流路断面積をS、補正係数をKとすれば、流量Qは
Q=K・S・v (式4)
となる。
In general, the speed of sound c depends on the fluid temperature, so the fluid temperature needs to be known. However, by assuming that the fluid temperatures at the time when the forward direction and the reverse direction are measured are equal, the flow velocity v can be obtained from (Equation 1) and (Equation 2) even if the sound velocity c is unknown. Is possible. That is, when (Formula 1) and (Formula 2) are transformed and solved for v,
v = (L / 2cosθ) · (1 / t f -1 / t r) ( Equation 3)
If L and θ are known, t f and tr are measured to determine the flow velocity v. Here, if the channel cross-sectional area is S and the correction coefficient is K, the flow rate Q is Q = K · S · v (Equation 4)
It becomes.

前記(式3)、(式4)から明らかなように、伝搬時間を求めることにより流量Qが求められる。   As is clear from the above (Formula 3) and (Formula 4), the flow rate Q is obtained by obtaining the propagation time.

ここで、微少な流速まで検知しようとした場合、t、tの検出精度を高める必要があるが、単発現象として計測した場合には精度を上げるのが難しいため、送受信を複数回繰り返してトータル時間を計測して、平均化することにより精度確保する方法が、超音波計測では一般的に取り入れられており、シングアラウンド法と呼ばれている。 Here, when attempting to detect up to minute flow rates, it is necessary to increase the detection accuracy of the t f, t r, it is difficult to improve the accuracy when measured as a single phenomenon repeated a plurality of times and receives A method of ensuring accuracy by measuring and averaging the total time is generally adopted in ultrasonic measurement and is called a single-around method.

シングアラウンド法において、設定された繰り返し回数をM回、流れの順方向、逆方向の伝搬時間の合計値をT、Tとすれば、伝搬時間t、tはT、Tを回数平均すれば求めることができる。よって、(式3)を変形して、式(式5)から流速vを求めることができる。 In the sing-around method, if the set number of repetitions is M and the total value of the propagation times in the forward and reverse directions of the flow is T f and T r , the propagation times t f and tr are T f and T r. Can be obtained by averaging the number of times. Therefore, the flow velocity v can be obtained from the equation (Equation 5) by modifying (Equation 3).

v=M(L/2cosθ)・(1/T−1/T) (式5)
この種の流量計測装置では、ガスの総使用量を正確に求めることが要求される一方で、ガス器具の使用状況を監視する保安機能でも高い性能を有することが求められる。
v = M (L / 2 cos θ) · (1 / T f −1 / T r ) (Formula 5)
In this type of flow rate measuring device, it is required to accurately determine the total amount of gas used, but it is also required to have high performance in the security function for monitoring the usage status of gas appliances.

保安機能付きのメーターは一般にマイコンメータと呼ばれており、ガス使用量の推移からガス器具の使用状態を類推し、異常な使用状態を検出した場合にガスを供給を遮断するものである。   A meter with a security function is generally called a microcomputer meter, which estimates the use state of a gas appliance from the transition of the amount of gas used, and shuts off the gas supply when an abnormal use state is detected.

マイコンメータは、例えば、10000倍にも及ぶ非常に広い使用範囲において、正確な瞬時流量を求める必要がある。超音波式流量計をマイコンメータに適用した場合、最小流量に計測精度を合わせてシングアラウンド回数を多くすると、装置全体の消費電力を増加させてしまうことになる。   For example, the microcomputer meter needs to obtain an accurate instantaneous flow rate in a very wide use range as long as 10,000 times. When an ultrasonic flow meter is applied to a microcomputer meter, if the number of times of sing-around is increased by adjusting the measurement accuracy to the minimum flow rate, the power consumption of the entire apparatus is increased.

これを解決する手法として、計測流量に応じてシングアラウンド回数と計測周期を可変にする方法が提案されている(例えば、特許文献1参照)。   As a technique for solving this, a method of changing the number of times of single-around and the measurement cycle according to the measured flow rate has been proposed (see, for example, Patent Document 1).

すなわち、総使用量として誤差になりにくい小流量においては、シングアラウンド回数を多くして分解能を高める一方で、計測周期を長くして、トータルの電力消費量を増大させないようにしようというものである。
再公表特許96/12933号公報
In other words, at a small flow rate that is less likely to be an error as the total amount used, the resolution is improved by increasing the number of times of single-around, but the measurement cycle is lengthened so as not to increase the total power consumption. .
Republished Patent No. 96/12933

マイコンメータが実現すべき機能として、配管に生じた亀裂などが原因で発生する微小な漏れの検出機能がある。   As a function to be realized by the microcomputer meter, there is a function of detecting a minute leak generated due to a crack or the like generated in the pipe.

この微少漏れを意識して、計測分解能を高めた場合、配管内の自然対流を配管内で生じる自然対流をも検出して、実際にはガス器具の使用を停止しているにも関わらず、一時的にはガス流れているかの如く、流量値を検出してしまうことがある。   When the measurement resolution is increased in consideration of this minute leak, natural convection in the pipe is also detected in the pipe, and even though the use of gas appliances is actually stopped, The flow rate value may be detected as if the gas is flowing temporarily.

これを防ぐには、流速検出手段9により求めた計測値を平均化することにより比較的容易に実現可能である。   In order to prevent this, the measurement values obtained by the flow velocity detection means 9 can be averaged relatively easily.

しかしながら、近年、ガス熱源を用いた冷暖房機(床暖房、ガスエアコン)が普及しているが、これらの器具は一日中、断続的に動作しており、使用を停止している短時間の間で、漏れ判断を正しく行なう必要がある。   However, in recent years, air conditioners (floor heating, gas air conditioners) using gas heat sources have become widespread, but these appliances operate intermittently throughout the day, and in a short period of time when they are not in use. It is necessary to make a correct leak judgment.

この短時間の間に十分な平均化効果を得るためには、間欠駆動周期を思ったように長く定めることができず、結果として小流量計測時の消費電流の削減が困難であるという課題があった。   In order to obtain a sufficient averaging effect in this short time, the intermittent drive cycle cannot be set as long as expected, and as a result, it is difficult to reduce current consumption when measuring a small flow rate. there were.

本発明は上記課題を解決するものであり、消費電力の増大を招くことなく、短時間で効率的に微小漏れの検出を可能とすることを目的とするものである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to enable detection of minute leaks efficiently in a short time without causing an increase in power consumption.

前記従来の課題を解決するために、本発明の流体の流れ計測装置は、流体の流れを計測する動作時間の短い計測手順と、流体供給経路内の微小漏洩の判定をする動作時間の長い漏洩確認手順のふたつの異なる計測手順とを備え、漏洩判定手段が、漏洩確認手順を駆動して求めた値により漏洩の有無を判断する。そして、この漏洩判定手段が、少なくとも定められた時間経過しなければ再起動しない構成となっている。   In order to solve the above-described conventional problems, a fluid flow measuring device according to the present invention includes a measurement procedure with a short operation time for measuring a fluid flow, and a leak with a long operation time for determining a minute leak in a fluid supply path. The leak determination means determines whether or not there is a leak based on a value obtained by driving the leak check procedure. The leak determination means is configured not to restart unless at least a predetermined time has elapsed.

したがって、消費電力が大きい漏洩判定の頻度を小さくすることができるので、消費電力の増大を招くことなく微小漏れの検出を可能とするものである。   Therefore, since the frequency of leak determination with high power consumption can be reduced, it is possible to detect minute leaks without causing an increase in power consumption.

本発明の流れの計測装置によれば、消費電力の大きい漏洩判定の動作頻度を低減しているので、過度に消費電力を増大させることなく効率的に短時間で、漏洩判定を行なうことができる。   According to the flow measuring apparatus of the present invention, since the operation frequency of leakage determination with high power consumption is reduced, leakage determination can be performed efficiently and in a short time without excessively increasing power consumption. .

本発明の実施の形態は、定められた一連の計測手順を間欠的に実行することにより流体の流量およびまたは流速を計測する計測手段と、前記計測手段の動作を制御する制御手段とを備え、前記計測手段は、動作時間の短い流れ計測手順と、流体供給経路内の微小漏洩の判定をする動作時間の長い漏洩確認手順との二つの異なる計測手順を具備し、前記制御手段は、前記流れ計測手順と漏洩確認手順とを切り換える切換判定手段と、前記漏洩確認手順を駆動して求めた値と閾値とを比較して漏洩の有無を判断する漏洩判定手段をもち、前記漏洩判定手段は、少なくとも定められた時間経過しなければ再起動しない構成としたものである。   An embodiment of the present invention includes a measuring unit that measures a flow rate and / or a flow rate of a fluid by intermittently executing a predetermined series of measuring procedures, and a control unit that controls the operation of the measuring unit, The measurement means includes two different measurement procedures, a flow measurement procedure with a short operation time and a leak check procedure with a long operation time for determining a minute leak in the fluid supply path, and the control means has the flow A switching determination means for switching between a measurement procedure and a leakage confirmation procedure, and a leakage determination means for determining the presence or absence of leakage by comparing the value obtained by driving the leakage confirmation procedure with a threshold, the leakage determination means, At least a predetermined time has not passed before the system is restarted.

したがって、消費電力の大きい漏洩判定の動作頻度を低減しているので、過度に消費電力を増大させることなく効率的に短時間で、漏洩判定を行なうことができる。   Therefore, since the operation frequency of leakage determination with large power consumption is reduced, leakage determination can be performed efficiently and in a short time without excessively increasing power consumption.

前記漏洩判定手段を、漏洩確認手順を連続して複数回駆動してその出力平均値と閾値を比較するようにすれば、漏洩判定を実行する構成としているので、外乱の影響を受けにくくなり、漏洩判定の信頼性を高めることができる。   If the leakage determination means is configured to execute leakage determination by continuously driving the leakage confirmation procedure a plurality of times and comparing the output average value and the threshold value, it is less susceptible to disturbance, The reliability of leak determination can be improved.

前記漏洩判定手段を、流れ計測手順により求めた流量値および流量値のばらつきが小さいときのみ動作する構成とすれば、流れの乱れの小さい適切なタイミングを見計らって漏洩判定ができ、誤判定の確率を小さくすることができる。   If the leakage determination means is configured to operate only when the flow rate value obtained by the flow measurement procedure and the variation in the flow rate value are small, the leakage determination can be performed by looking for an appropriate timing with a small flow disturbance, and the probability of erroneous determination. Can be reduced.

前記漏洩判定手段を、流量計測手順により求めた流量値のばらつきが小さくなるにしたがって漏洩判定手順の動作時間を短く設定する構成とすれば、流量値に応じて適切な計測条件を設定することができる。   If the leakage determination means is configured to set the operation time of the leakage determination procedure to be shorter as the variation in the flow value obtained by the flow measurement procedure becomes smaller, an appropriate measurement condition can be set according to the flow value. it can.

前記漏洩判定手段を、流量計測手順により求めた流量値のばらつきが小さくなるにしたがって漏洩判定手順の駆動回数を少なく設定する構成とすれば、流量値に応じて適切な計測条件を設定することができる。   If the leak determination means is configured to set the number of times the leak determination procedure is driven to be smaller as the variation in the flow value obtained by the flow measurement procedure becomes smaller, it is possible to set an appropriate measurement condition according to the flow value. it can.

前記漏洩判定手段を、「漏洩なし」の検出回数が所定回数に達すると動作しない構成とすれば、安全が確認できた後の無駄な消費電力を低減できる。   If the leakage determination means is configured not to operate when the number of detections of “no leakage” reaches a predetermined number, it is possible to reduce wasteful power consumption after safety is confirmed.

前記漏洩判定手段を、定められた期間が経過する毎に「漏洩なし」の検出回数を初期化して、動作を再開する構成とすれば、消費電力を低減しつつ、定期的な漏れの点検が可能となる。   If the leak determination means is configured to initialize the number of detections of “no leak” every time a predetermined period elapses and restart the operation, periodic leak check can be performed while reducing power consumption. It becomes possible.

以下本発明の実施例について、図1〜6を参照しながら説明する。   Embodiments of the present invention will be described below with reference to FIGS.

(実施例1)
図1において、流体流路1の途中に、超音波を送、受信する第1振動子2と第2振動子3が流れ方向に配置されている。4は送信手段、5はで受信した超音波を信号処理する受信手段、6は第1振動子2と第2振動子3の送受信を切換える切換手段である。
(Example 1)
In FIG. 1, a first vibrator 2 and a second vibrator 3 that transmit and receive ultrasonic waves are arranged in the flow direction in the middle of a fluid flow path 1. Reference numeral 4 denotes transmission means, reference numeral 5 denotes reception means for performing signal processing on the ultrasonic waves received in step 6, and reference numeral 6 denotes switching means for switching transmission / reception between the first vibrator 2 and the second vibrator 3.

7は受信回路5で超音波を検知した後、一方の振動子からの送信と他方の振動子での受信を複数回繰り返す繰り返し手段、8は繰り返し手段7により行われる複数回の超音波伝搬の所要時間を計測する計時手段である。   7 is a repeating unit that repeats transmission from one transducer and reception by the other transducer a plurality of times after the ultrasonic wave is detected by the receiving circuit 5, and 8 is a plurality of ultrasonic propagations performed by the repeating unit 7. It is a time measuring means for measuring the required time.

9は電池、商用電源等の電源10を動力源とする流速検出手段であり、前記の第1振動子2、第2振動子3、送信手段4、受信手段5、切換手段6、繰り返し手段7、計時手段8の各要素により構成されている。   Reference numeral 9 denotes flow velocity detection means using a power source 10 such as a battery or a commercial power source as a power source. The first vibrator 2, the second vibrator 3, the transmission means 4, the reception means 5, the switching means 6, and the repetition means 7 described above. The time measuring means 8 is constituted by each element.

11は制御手段であり、計時手段8で求めた超音波の伝搬時間から流速を、さらに同流速を基に流量を演算する流量演算手段12、この流量演算手段12で演算した流量の平均値を求める平均値演算手段13、流量演算手段12で求めた流量のばらつきを演算するばらつき演算手段14、前記平均値演算手段13、ばらつき演算手段14の出力から、流速検出手段9が実行する一連の計測手順の動作時間の切換の判断、すなわち、シングアラウンド回数の設定を行なう切換判定手段15、間欠周期を設定し、設定された周期に応じて、電源10を動作させる計測周期設定手段16、平均値演算手段13の出力から漏洩の有無を判定する漏洩判定手段17で構成されている。   Reference numeral 11 denotes a control means, a flow rate calculation means 12 for calculating a flow rate based on the propagation time of the ultrasonic wave obtained by the time measuring means 8 and a flow rate based on the flow velocity, and an average value of the flow rate calculated by the flow rate calculation means 12. The average value calculating means 13 to be obtained, the variation calculating means 14 for calculating the variation in flow rate obtained by the flow rate calculating means 12, the series of measurements performed by the flow velocity detecting means 9 from the outputs of the average value calculating means 13 and the variation calculating means 14 Determination of switching of operating time of the procedure, that is, switching determination means 15 for setting the number of times of sing around, measurement period setting means 16 for setting the intermittent period and operating the power supply 10 according to the set period, average value It is constituted by a leakage determination means 17 for determining the presence or absence of leakage from the output of the calculation means 13.

次いで、流速検出手段9における計測手順について説明する。制御手段11では、電源10のスイッチ回路が閉じて流速検出手段9に電力供給を開始されると、繰り返し手段7に対して計測開始のトリガ信号が出力される。   Next, a measurement procedure in the flow velocity detection means 9 will be described. In the control means 11, when the switch circuit of the power supply 10 is closed and the supply of power to the flow velocity detection means 9 is started, a trigger signal for starting measurement is output to the repetition means 7.

切換手段6は、トリガ信号を受けて第1振動子2を送信手段4に、第2振動子3を受信手段5に接続して、超音波を流れの順方向に送信した伝搬時間を計測する回路を構成するものである。   In response to the trigger signal, the switching unit 6 connects the first transducer 2 to the transmission unit 4 and the second transducer 3 to the reception unit 5 to measure the propagation time during which ultrasonic waves are transmitted in the forward direction of the flow. It constitutes a circuit.

そして、送信手段4から送信信号が出力されると同時に、計時手段8で送受信に要した時間の計測が開始される。   Then, at the same time as the transmission signal is output from the transmission means 4, the time measurement means 8 starts measuring the time required for transmission / reception.

受信手段5で受信1回目が終了すると、再び送信手段4から送信信号が出力される。以下同様に、予め定められたシングアラウンド回数だけ、流れの順方向の送受信が行なわれ、所定の回数が終了すると、計時手段8は伝搬時間の計時を停止し、その計測結果Tfを流量演算手段12に出力する。
続いて、切換手段6は、第1振動子2を受信手段5に、第2振動子3を送信手段4に接続して、超音波を流れの逆方向に送信した伝搬時間を計測する回路を構成する。
When the reception unit 5 completes the first reception, a transmission signal is output from the transmission unit 4 again. Similarly, the forward / reverse flow of the flow is performed for a predetermined number of times of singing, and when the predetermined number of times is finished, the time measuring means 8 stops measuring the propagation time, and the measurement result Tf is used as the flow rate calculating means. 12 is output.
Subsequently, the switching unit 6 connects a first transducer 2 to the receiving unit 5 and a second transducer 3 to the transmitting unit 4, and measures a propagation time for transmitting an ultrasonic wave in the reverse direction of the flow. Constitute.

そして、送信手段4から送信信号が出力されると同時に、計時手段8で送受信に要した時間の計測が開始される。   Then, at the same time as the transmission signal is output from the transmission means 4, the time measurement means 8 starts measuring the time required for transmission / reception.

受信手段5で受信1回が終了すると、再び送信手段4から送信信号が出力される。以下同様に、予め定められたシングアラウンド回数だけ流れの逆方向の送受信が行なわれ、所定の回数が終了すると計時手段8は伝搬時間の計時を停止し、その計測結果Trを流量演算手段12に出力する。   When the reception unit 5 completes one reception, a transmission signal is output from the transmission unit 4 again. In the same manner, transmission / reception in the reverse direction of the flow is performed for a predetermined number of times of sing-around, and when the predetermined number of times ends, the time measuring means 8 stops measuring the propagation time, and the measurement result Tr is sent to the flow rate calculating means 12. Output.

以上のように、流れの順・逆それぞれ定められた回数のシングアラウンドをもって一連の計測手順が終了し、制御手段11は電源10の回路を開いて、流速検出手段9への電源供給を停止する。   As described above, a series of measurement procedures is completed with a sing-around number of times determined in the order of flow and reverse, and the control means 11 opens the circuit of the power supply 10 and stops supplying power to the flow velocity detection means 9. .

計測手順において定められた繰り返し回数をM回とするならば、(式4)、(式5)に基づいて流量を求めることができる。   If the number of repetitions determined in the measurement procedure is M, the flow rate can be obtained based on (Expression 4) and (Expression 5).

以上、一連の計測手順は、計測周期設定手段16で定められた計測周期が経過する毎に実行される。   As described above, a series of measurement procedures is executed each time the measurement cycle determined by the measurement cycle setting unit 16 elapses.

図2、図3を用いて、流量演算手段12で求めた計測ばらつきとシングアラウンド回数との関係について説明する。   The relationship between the measurement variation obtained by the flow rate calculation means 12 and the number of sing-arounds will be described with reference to FIGS.

配管内に一定流量(ゼロも含む)が発生していると仮定した場合であっても、外乱や検出精度により若干の計測ばらつきを生じる。したがって、真値を求めるには、流量値を平均化して求める必要がある。   Even if it is assumed that a constant flow rate (including zero) is generated in the pipe, slight measurement variations occur due to disturbance and detection accuracy. Therefore, in order to obtain the true value, it is necessary to obtain the flow value by averaging.

平均化効果を高めるひとつの方法として、シングアラウンド回数を増やす方法が上げられる。   One method for increasing the averaging effect is to increase the number of times of single-around.

すなわち、シングアラウンド回数を多くすることによって、一計測あたりの動作時間が長くなり、その結果、流量値のばらつきを小さく抑えることが可能となる。   That is, by increasing the number of times of sing-around, the operation time per measurement becomes longer, and as a result, it is possible to suppress the variation in the flow rate value.

図2は、同一条件下において、シングアラウンド回数を変化させた時の流量値の標準偏差を示すものである。   FIG. 2 shows the standard deviation of the flow rate value when the number of times of sing-around is changed under the same conditions.

図2に示すように、標準偏差σはシングアラウンド回数Mの平方根に反比例して小さくなることが、実験的に確かめられている。これを数式で表すと(式6)のようになる。   As shown in FIG. 2, it has been experimentally confirmed that the standard deviation σ decreases in inverse proportion to the square root of the number of times of sing-around M. This can be expressed as (Expression 6).

Figure 2005037251
Figure 2005037251

(Kは比例定数)
図3において、分布Aはガス器具の使用を停止している状態、すなわち流量がゼロの状態(以降ゼロ点と称する)で、シングアラウンド回数をMとした時の流量値の発生確率の密度分布であり、分布Bは微少流量値Qs[L/h]が発生している条件下での流量値の発生確率の密度分布である。
(K is a proportional constant)
In FIG. 3, distribution A is a density distribution of the occurrence probability of the flow rate when the use of the gas appliance is stopped, that is, the flow rate is zero (hereinafter referred to as zero point) and the number of times of sing around is M. The distribution B is a density distribution of the flow rate generation probability under the condition that the minute flow rate value Qs [L / h] is generated.

なお、ここでは流量=0、および流量=Qsの計測値の標準偏差σは等しいと仮定している。Qsが実際に発生しうる、微少漏れの下限値であるとすると、分布A、Bが重ならなければ、漏れとゼロ点の識別が可能となる。   Here, it is assumed that the standard deviation σ of the measured values of the flow rate = 0 and the flow rate = Qs is equal. Assuming that Qs is the lower limit value of minute leakage that can actually occur, if the distributions A and B do not overlap, it is possible to identify the leakage and the zero point.

ここで、識別を容易にするためには標準偏差σを小さくするようにシングアラウンド回数Mを増やせば良い。   Here, in order to facilitate the identification, the number of times of single-around M may be increased so as to reduce the standard deviation σ.

さらに、1回の計測のみで漏洩を判定せずに、連続して複数回計測した結果を平均化する手法を用いれば、その平均値のばらつきは、平均化回数の平方根に反比例して小さくなるので、更に判定精度を高めることができる。   Furthermore, if a technique is used to average the results of multiple measurements continuously without determining leakage by only one measurement, the variation in the average value becomes smaller in inverse proportion to the square root of the averaging count. Therefore, the determination accuracy can be further increased.

一方、一般家庭内でのガス器具の使用パタンを考えるとガス器具を使わない時間の方が、ガス器具を使っている時間よりもはるかに長い。したがって、流量が小さい場合、単純にシングアラウンド回数を増やすだけでは、消費電力の増大を招く結果となり実用的ではない。   On the other hand, considering the usage pattern of gas appliances in general households, the time when the gas appliances are not used is much longer than the time when the gas appliances are used. Therefore, when the flow rate is small, simply increasing the number of sing-arounds results in an increase in power consumption and is not practical.

そこで、漏れの検出を一定期間(例えば1時間)毎に一度だけ行なうように定めれば、漏れ検出期間中のシングアラウンド回数を多く設定しても消費電力が著しく増加することはない。   Therefore, if it is determined that leak detection is performed only once every fixed period (for example, one hour), power consumption does not increase significantly even if the number of times of single-around during the leak detection period is set.

以上を鑑みて、制御手段11は次の通り作用する。図4を用いて制御手段11の動作を説明する。通常のシングアラウンド回数は40回に設定されていて(STEP1)、計測周期2秒で30回すなわち1分間計測を実行し(STEP2)、その間の流量値の平均値が平均値演算手段13で、流量値の標準偏差がばらつき演算手段14で算出される(STEP3)。   In view of the above, the control means 11 operates as follows. The operation of the control means 11 will be described with reference to FIG. The normal number of sing-around times is set to 40 times (STEP 1), 30 times in a measurement cycle of 2 seconds, that is, 1 minute measurement is performed (STEP 2), and the average value of the flow rate value during that time is the average value calculation means 13. The standard deviation of the flow value is calculated by the variation calculating means 14 (STEP 3).

ここで、求めた平均値が基準値Q1より小さく(STEP4)、かつ標準偏差が閾値Q2より小さければ(STEP5)、切換判定手段15が、流速検出手段9の動作を漏洩判定動作に切り替える。   Here, if the obtained average value is smaller than the reference value Q1 (STEP 4) and the standard deviation is smaller than the threshold value Q2 (STEP 5), the switching determination unit 15 switches the operation of the flow velocity detection unit 9 to the leakage determination operation.

これを受けて、繰り返し手段に設定されるシングアラウンド回数が800回に設定される(STEP6)。   In response to this, the number of times of single-around set in the repeater is set to 800 (STEP 6).

漏洩判定時には、計測周期2秒で定められた短い時間(5回すなわち10秒間)、集中的にサンプリングを行い(STEP7)、その期間の流量平均値を平均値演算手段13で求める(STEP8)。   At the time of leakage determination, sampling is performed intensively for a short time (5 times or 10 seconds) determined by a measurement cycle of 2 seconds (STEP 7), and the average value calculation means 13 obtains the average flow rate value during that period (STEP 8).

このとき求めた流量平均値と洩れ判定の閾値Qsとの大小比較を漏洩判定手段17で行い(STEP9)、閾値より小さければゼロ点、すなわち漏洩なしと判断し(STEP10)、閾値より大きければ漏洩と判断する(STEP11)。   A comparison between the average flow rate obtained at this time and the threshold value Qs for leakage determination is performed by the leakage determination means 17 (STEP 9). If it is smaller than the threshold, it is determined that there is no zero point, that is, no leakage (STEP 10). (STEP 11).

漏洩判定を一度行った後は、切換判定手段15が、漏洩判定の終了を決定し、繰り返し手段7に設定するシングアラウンド回数を40回に戻す(STEP12)。   After the leakage determination is performed once, the switching determination unit 15 determines the end of the leakage determination, and returns the number of times to be set in the repetition unit 7 to 40 (STEP 12).

そして、1時間経過するまでは、流量の大小にかかわらず漏洩判定は行なわない(STEP13)。   Until one hour elapses, no leakage determination is performed regardless of the flow rate (STEP 13).

したがって、過度に消費電力を増大させることなく効率的に短時間で、洩れ判定を行なうことができる。   Therefore, the leakage determination can be performed efficiently and in a short time without excessively increasing the power consumption.

図4のSTEP6で設定されるシングアラウンド回数は800回としているが、必要最低限の消費電力に抑えるため、図5に示すように、漏洩判定時に実行するシングアラウンド回数Msを、直前の1分間の流量計測値の標準偏差σpに応じて可変とする構成でも良い。   The number of sing-around times set in STEP 6 in FIG. 4 is set to 800. However, in order to suppress the required minimum power consumption, as shown in FIG. It may be configured to be variable according to the standard deviation σp of the flow rate measurement value.

σpはシングアラウンド40回の時の標準偏差であるから、シングアラウンド回数をMs回に変更した場合の標準偏差σsは(式7)の如く求めることができる。   Since σp is a standard deviation at 40 times of sing-around, the standard deviation σs when the number of times of sing-around is changed to Ms times can be obtained as (Equation 7).

Figure 2005037251
Figure 2005037251

漏洩判定時の計測条件を、その時の状況に応じて過不足なく定めるには、(式7)の値が漏洩判定に耐えうる値で、かつ一定になるようにすれば良い。(式7)をMsについて解くと、(式8)の如く変形できる。   In order to determine the measurement conditions at the time of leak determination without excess or deficiency according to the situation at that time, the value of (Equation 7) should be a value that can withstand leak determination and be constant. When (Equation 7) is solved for Ms, it can be transformed as (Equation 8).

Ms=40(σp/σs) (式8)
(式8)でσsを定数と考えると、Msはσpの2乗に比例する。実際には、Msは整数値であるので、(式8)で求めた値の小数点以下を切り上げるとともに、(式8)を用いて求めた値が流量計測時のシングアラウンド回数40回を下回る時には、Ms=40としている。
Ms = 40 (σp / σs) 2 (Formula 8)
Considering σs as a constant in (Equation 8), Ms is proportional to the square of σp. Actually, since Ms is an integer value, the value obtained by (Equation 8) is rounded up after the decimal point, and when the value obtained by using (Equation 8) is less than 40 times of sing-around at the time of flow measurement. , Ms = 40.

この関係を図示すると図5のように、示すことができ、漏洩判定の直前の1分間の流量計測値の標準偏差が小さくなるにしたがって、漏洩判定時のシングアラウンド回数が少なくても良いことがわかる。   This relationship can be illustrated as shown in FIG. 5, and as the standard deviation of the flow rate measurement value for 1 minute immediately before the leak determination becomes smaller, the number of sing-around times at the leak determination may be reduced. Recognize.

また、図4のSTEP7で設定される漏洩判定時の計測回数は5回に設定されているが、シングアラウンド回数は800回で固定として、図6に示すように、漏洩判定時に実行する計測回数Lsを、直前の1分間の流量計測値の標準偏差σpに応じて可変とする構成でも必要最低限の消費電力に抑えることができる。   In addition, the number of times of measurement at the time of leak determination set in STEP 7 of FIG. 4 is set to 5, but the number of times of sing-around is fixed at 800 times, and as shown in FIG. Even in a configuration in which Ls is variable according to the standard deviation σp of the flow rate measurement value for the previous minute, the required power consumption can be suppressed.

σpはシングアラウンド40回の時の標準偏差であるから、シングアラウンド回数を800回に変更した場合の標準偏差σsは(式9)の如く求めることができる。   Since σp is the standard deviation when the singaround is 40 times, the standard deviation σs when the number of singarounds is changed to 800 can be obtained as in (Equation 9).

Figure 2005037251
Figure 2005037251

更に、漏洩判定時の計測回数であるLs回の平均値の標準偏差σssを求めると、(式10)の通りとなる。   Furthermore, when the standard deviation σss of the average value of Ls times, which is the number of measurements at the time of leakage determination, is obtained, (Expression 10) is obtained.

Figure 2005037251
Figure 2005037251

漏洩判定時の計測条件を、その時の状況に応じて過不足なく定めるには、(式10)の値が漏洩判定に耐えうる値で、かつ一定になるようにすれば良い。(式10)をLsについて解くと、(式11)の如く変形できる。   In order to determine the measurement conditions at the time of leakage determination without excess or deficiency according to the situation at that time, the value of (Equation 10) may be a value that can withstand leakage determination and be constant. When (Equation 10) is solved for Ls, it can be transformed as (Equation 11).

Ls=0.05(σp/σss) (式11)
(式11)でσssを定数と考えると、Lsはσpの2乗に比例する。実際には、Lsは整数値であるので、(式11)で求めた値の小数点以下を切り上げて求めている。
Ls = 0.05 (σp / σss) 2 (Formula 11)
Considering σss as a constant in (Equation 11), Ls is proportional to the square of σp. Actually, since Ls is an integer value, it is obtained by rounding up the decimal point of the value obtained in (Equation 11).

この関係を図示すると図6のように示すことができ、漏洩判定の直前の1分間の流量計測値の標準偏差が小さくなるにしたがって、漏洩判定時の計測回数が少なくても良いことがわかる。   This relationship can be illustrated as shown in FIG. 6, and it can be seen that the number of measurements at the time of leak determination may be reduced as the standard deviation of the flow rate measurement value for one minute immediately before the leak determination becomes smaller.

更に、定常的な漏れが発生しているとするならば、ゼロ点を検出することはないはずであるから、一旦、所定回数(例えば5回)以上、ゼロ点、すなわち「漏洩なし」が確認できたら、それ以降の漏洩判定を行なわない構成としても良い。   Furthermore, if a steady leak has occurred, the zero point should not be detected, so once the zero point, that is, “no leak” is confirmed for a predetermined number of times (for example, 5 times) or more. If possible, it may be configured not to perform subsequent leakage determination.

この場合、例えば、一定期間(例えば1か月)以上経過した後、ゼロ点の検出履歴をすべてクリアして、再度、漏洩判定を行なう様に定めておけば、消費電力を更に節約しながらも、定常的な洩れの検出が可能であるため、安全性が損なわれることはない。   In this case, for example, after a certain period (for example, one month) or more has elapsed, it is possible to clear all zero point detection histories and perform leakage determination again, while further saving power consumption. Since a steady leak can be detected, safety is not impaired.

以上のように、本実施例によれば、動作時間の長い漏洩判定手段を少なくとも定められた時間以上経過しなければ再起動しない構成としているので、過度に消費電力を増大させることなく効率的に短時間で洩れ判定を行なうことができる。特に、家庭用ガスメータのように装置電源として電池を用いるものにおいては、電池容量を増やしたり、製品寿命を犠牲にしたりすることなく安全性を確保できる。   As described above, according to the present embodiment, the leakage determination unit having a long operation time is configured not to be restarted unless at least a predetermined time has elapsed, so that it can be efficiently performed without excessively increasing power consumption. Leakage determination can be performed in a short time. In particular, in the case of using a battery as a device power source like a household gas meter, safety can be ensured without increasing the battery capacity or sacrificing the product life.

また、漏洩判定を、連続した複数回の計測の平均値により行っているので、外乱の影響を受けにくくなり、判定の信頼性を更に高めることができる。   Moreover, since the leak determination is performed based on the average value of a plurality of consecutive measurements, it is difficult to be affected by disturbances, and the determination reliability can be further improved.

また、流量値とそのばらつきが小さいときのみ、漏洩判定を行なっているので、適切なタイミングで漏洩判定ができるので、判定の信頼性を高めることができる。   In addition, since the leak determination is performed only when the flow rate value and its variation are small, the leak determination can be performed at an appropriate timing, so that the reliability of the determination can be improved.

また、流量値のばらつきが小さくなるにしたがって、漏洩判定時間を短くなるように設定しているので、状況に応じて適切な計測条件を設定することができる。   Further, since the leakage determination time is set to be shorter as the variation in the flow rate value becomes smaller, it is possible to set an appropriate measurement condition depending on the situation.

そして、「漏洩なし」の検出回数が所定回数に達すると、漏洩判定手段が動作しないので、安全を確認した後の無駄な消費電力を低減できる。   When the number of detections of “no leakage” reaches a predetermined number, the leakage determination unit does not operate, and thus it is possible to reduce wasteful power consumption after confirming safety.

さらに、定められ期間が経過する毎に、漏洩判定手段の動作を再開するようにしているので、定期的な漏れ点検が可能となり、安全性の確保が可能である。   Furthermore, since the operation of the leakage determination unit is restarted every time a predetermined period elapses, it is possible to periodically check for leakage and ensure safety.

なお、本実施例は、超音波の伝搬速度を利用したものについて説明したが、例えば、熱線式フローセンサを用いた構成のものであっても、流量計測時のサンプリング時間を制御する方法を用いれば、同様の効果を得られる。   In this embodiment, the ultrasonic wave propagation speed has been described. However, for example, a method of controlling the sampling time during flow rate measurement is used even for a configuration using a hot-wire flow sensor. The same effect can be obtained.

また、漏洩判定は流量に限らず、この流量を求めるベースとなった流速でも同様に判定できることは今更いうまでもないことであろう。   In addition, the leakage determination is not limited to the flow rate, and it is needless to say that the determination can be made in the same manner even at a flow velocity that is a base for obtaining the flow rate.

以上のように本発明の流れの計測装置によれば、消費電力の大きい漏洩判定の動作頻度を低減して消費電力の低減を可能としたものでガスなどの気体流体から液体流体まで広く応用できるものである。   As described above, according to the flow measuring device of the present invention, it is possible to reduce power consumption by reducing the operation frequency of leakage determination with large power consumption, and can be widely applied from gas fluid such as gas to liquid fluid. Is.

本発明の実施例1の流量計測装置のブロック図1 is a block diagram of a flow rate measuring apparatus according to a first embodiment of the present invention. 同装置の計測時のシングアラウンド回数と計測値の標準偏差の関係を示す特性図Characteristic diagram showing the relationship between the number of sing-arounds during measurement and the standard deviation of the measured value 同装置の計測値の標準偏差と漏洩判定の関係を示す特性図Characteristic diagram showing the relationship between standard deviation of measured values and leak judgment 同装置の動作を説明するフローチャートFlow chart explaining operation of the apparatus 同装置の計測値の標準偏差と漏洩判定時のシングアラウンド回数との関係を示す特性図Characteristic diagram showing the relationship between the standard deviation of the measured value of the device and the number of times of sing-around when determining leakage 同装置の計測値の標準偏差と漏洩判定時の計測回数との関係を示す特性図Characteristic diagram showing the relationship between the standard deviation of the measured value of the device and the number of measurements at the time of leak judgment 従来の流量計測装置のブロック図Block diagram of a conventional flow measurement device

符号の説明Explanation of symbols

9 計測手段
13 流量演算手段
14 ばらつき演算手段
15 切換判定手段
17 漏洩判定手段
9 Measuring means 13 Flow rate calculating means 14 Variation calculating means 15 Switching judgment means 17 Leakage judgment means

Claims (7)

定められた一連の計測手順を間欠的に実行することにより流体の流量およびまたは流速を計測する計測手段と、前記計測手段の動作を制御する制御手段とを具備し、前記計測手段は、動作時間の短い流れ計測手順と、流体供給経路内の微小漏洩の判定をする動作時間の長い漏洩確認手順の二つの異なる計測手順をもち、前記制御手段は、前記流れ計測手順と前記漏洩確認手順とを切り換える切換判定手段と、前記漏洩確認手順を駆動して求めた値と閾値とを比較して漏洩の有無を判断する漏洩判定手段をもち、前記漏洩判定手段は、少なくとも定められた時間経過しなければ再起動しない構成とした流体の流れ計測装置。 A measuring means for measuring the flow rate and / or flow velocity of the fluid by intermittently executing a set of measurement procedures, and a control means for controlling the operation of the measuring means, the measuring means having an operating time The flow measurement procedure and the leak check procedure with a long operation time for determining micro leaks in the fluid supply path, and the control means includes the flow measurement procedure and the leak check procedure. A switching determination means for switching, and a leakage determination means for determining the presence or absence of leakage by comparing a value obtained by driving the leakage confirmation procedure with a threshold value, and the leakage determination means must be at least a predetermined time elapsed. This is a fluid flow measurement device that does not restart. 漏洩判定手段は、漏洩確認手順を連続して複数回駆動してその出力平均値と閾値を比較することにより漏洩判定を実行する請求項1記載の流体の流れ計測装置。 The fluid flow measuring device according to claim 1, wherein the leakage determination means performs the leakage determination by continuously driving the leakage confirmation procedure a plurality of times and comparing the output average value with a threshold value. 流れ計測手順により求めた計測値およびその計測値のばらつきが小さいときのみ漏洩判定手段を動作させる請求項1または2記載の流体の流れ計測装置。 The fluid flow measuring device according to claim 1 or 2, wherein the leakage determining means is operated only when the measured value obtained by the flow measuring procedure and the variation of the measured value are small. 流れ計測手順により求めた計測値のばらつきが小さくなるにしたがって、漏洩判定手順の動作時間を短く設定する請求項1〜3いずれか1項記載の流体の流れ計測装置。 The fluid flow measurement device according to any one of claims 1 to 3, wherein the operation time of the leakage determination procedure is set to be shorter as the variation in the measured value obtained by the flow measurement procedure becomes smaller. 流れ計測手順により求めた計測値のばらつきが小さくなるにしたがって、漏洩判定手順の駆動回数を少なく設定する請求項1〜3いずれか1項記載の流体の流れ計測装置。 The fluid flow measuring device according to any one of claims 1 to 3, wherein the number of times the leakage determination procedure is driven is set to be smaller as the variation in the measured value obtained by the flow measuring procedure is smaller. 漏洩なしの検出回数が所定回数に達すると、漏洩判定手段が動作しない請求項1〜5いずれか1項記載の流体の流れ計測装置。 The fluid flow measuring device according to any one of claims 1 to 5, wherein the leakage determination means does not operate when the number of detections without leakage reaches a predetermined number. 定められた期間が経過する毎に漏洩なしの検出回数を初期化するとともに漏洩判定手段の動作を再開する請求項6記載の流体の流れ計測装置。 7. The fluid flow measuring device according to claim 6, wherein the number of times of detection without leakage is initialized and the operation of the leakage determination means is restarted each time a predetermined period elapses.
JP2003274687A 2003-07-15 2003-07-15 Apparatus for measuring fluid flow Pending JP2005037251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003274687A JP2005037251A (en) 2003-07-15 2003-07-15 Apparatus for measuring fluid flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003274687A JP2005037251A (en) 2003-07-15 2003-07-15 Apparatus for measuring fluid flow

Publications (1)

Publication Number Publication Date
JP2005037251A true JP2005037251A (en) 2005-02-10

Family

ID=34211576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003274687A Pending JP2005037251A (en) 2003-07-15 2003-07-15 Apparatus for measuring fluid flow

Country Status (1)

Country Link
JP (1) JP2005037251A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216643A (en) * 2008-03-12 2009-09-24 Toshiba Corp Ultrasonic flowmeter
JP2010217080A (en) * 2009-03-18 2010-09-30 Tokyo Gas Co Ltd Gas meter and method of detecting error in flow rate measurement
JP2012103088A (en) * 2010-11-10 2012-05-31 Panasonic Corp Flow rate measurement device
CN112802310A (en) * 2020-12-29 2021-05-14 金卡智能集团股份有限公司 Micro-flow alarm method and instrument

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843246A (en) * 1994-08-03 1996-02-16 Tokyo Gas Co Ltd Method for judging gas leakage from inner tube using fluidic gas meter with flow sensor
JPH08226835A (en) * 1995-02-21 1996-09-03 Tokyo Gas Co Ltd Gas meter and detection method of slight leak in gas meter
JP2002039827A (en) * 2000-07-21 2002-02-06 Matsushita Electric Ind Co Ltd Gas maintenance device
JP2002122458A (en) * 2000-10-13 2002-04-26 Matsushita Electric Ind Co Ltd Gas cut-off device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843246A (en) * 1994-08-03 1996-02-16 Tokyo Gas Co Ltd Method for judging gas leakage from inner tube using fluidic gas meter with flow sensor
JPH08226835A (en) * 1995-02-21 1996-09-03 Tokyo Gas Co Ltd Gas meter and detection method of slight leak in gas meter
JP2002039827A (en) * 2000-07-21 2002-02-06 Matsushita Electric Ind Co Ltd Gas maintenance device
JP2002122458A (en) * 2000-10-13 2002-04-26 Matsushita Electric Ind Co Ltd Gas cut-off device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216643A (en) * 2008-03-12 2009-09-24 Toshiba Corp Ultrasonic flowmeter
JP2010217080A (en) * 2009-03-18 2010-09-30 Tokyo Gas Co Ltd Gas meter and method of detecting error in flow rate measurement
JP2012103088A (en) * 2010-11-10 2012-05-31 Panasonic Corp Flow rate measurement device
CN112802310A (en) * 2020-12-29 2021-05-14 金卡智能集团股份有限公司 Micro-flow alarm method and instrument
CN112802310B (en) * 2020-12-29 2023-05-19 金卡智能集团股份有限公司 Micro-flow alarm method and instrument

Similar Documents

Publication Publication Date Title
US6796189B1 (en) Ultrasonic flowmeter having sequentially changed driving method
JP5402620B2 (en) Flow measuring device
US9239256B2 (en) Flow-rate measurement device
JP2014092467A (en) Flow rate measurement device
US20130081477A1 (en) Flow meter device
JP3562712B2 (en) Flow measurement device
JP4591248B2 (en) Gas utilization system
KR20020000890A (en) Flow rate measuring device
JP2005037251A (en) Apparatus for measuring fluid flow
JP4285056B2 (en) Fluid flow measuring device
JP3427839B1 (en) Flow measurement device
JPH1144563A (en) Apparatus for measuring flow rate
JP4592268B2 (en) Meter device
JP5034510B2 (en) Flow velocity or flow rate measuring device and its program
JP7203355B2 (en) gas meter
JP3443660B2 (en) Flow measurement device and flow measurement program
JP2008180566A (en) Flow velocity or flow rate measuring device, and program therefor
JP5990770B2 (en) Ultrasonic measuring device
JP5310001B2 (en) Ultrasonic gas meter
JP4858220B2 (en) Ultrasonic current meter
JP4059733B2 (en) Ultrasonic meter device
JP3624901B2 (en) Flow measuring device
JP2004069530A (en) Flow rate measuring apparatus
JP2003156373A (en) Flow rate change detector for ultrasonic flowmeter, and ultrasonic flowmeter
JP2005037325A (en) Flow measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060707

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081225

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629