JP2005036045A - Stain-proofing coating and method for producing the same - Google Patents

Stain-proofing coating and method for producing the same Download PDF

Info

Publication number
JP2005036045A
JP2005036045A JP2003197923A JP2003197923A JP2005036045A JP 2005036045 A JP2005036045 A JP 2005036045A JP 2003197923 A JP2003197923 A JP 2003197923A JP 2003197923 A JP2003197923 A JP 2003197923A JP 2005036045 A JP2005036045 A JP 2005036045A
Authority
JP
Japan
Prior art keywords
emulsion
colloidal silica
anionic
general formula
amphoteric polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003197923A
Other languages
Japanese (ja)
Other versions
JP2005036045A5 (en
JP3682880B2 (en
Inventor
Kenji Ebihara
健治 海老原
Yasushi Suzuki
康史 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aica Kogyo Co Ltd
Original Assignee
Aica Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aica Kogyo Co Ltd filed Critical Aica Kogyo Co Ltd
Priority to JP2003197923A priority Critical patent/JP3682880B2/en
Publication of JP2005036045A publication Critical patent/JP2005036045A/en
Publication of JP2005036045A5 publication Critical patent/JP2005036045A5/ja
Application granted granted Critical
Publication of JP3682880B2 publication Critical patent/JP3682880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems that, although having widely been used, non-solvent type water-borne coatings, coating agents, and the like are easily fouled because of being inferior in foul resistance, are easily discolored because of being inferior in weather resistance, and are further easily peeled or dissolved because of being inferior in water resistance. <P>SOLUTION: This stain-proofing coating is characterized by the absorptive dispersion of anionic colloidal silica in an amphoteric polymer emulsion that is obtained by imparting a cationic property to the particle surfaces of an anionic and/or nonionic resin emulsion which has a negative surface potential and is prepared by neutralizing groups obtained by the introduction of a specific monomer into a carboxy-modified seed latex or by imparting a quaternary ammonium salt to the carboxy-modified seed latex. Problems such as foul resistance, film formability and water resistance can be solved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は各種の基材などの表面に塗布される塗料、コーテイングなどの用途に使用される防汚コート剤であつて、詳しくはカルボキシル変性した合成ゴムラテックスまたは合成樹脂系エマルジョンを種ラテックスとし、これを下記一般式[I]で示されるモノマー、またはこれらと共重合可能なエチレン性不飽和モノマー[II]との混合物を添加重合して得られるシード重合体の一般式[I]で示される単量体によって導入された
【化8】

Figure 2005036045
を、酸または塩で中和するか、または4級化剤で4級アンモニウム塩化することにより、負の表面電位を有するアニオン性及び/またはノニオン性の樹脂エマルジョン粒子表面にカチオン性を付与させて得られた両性重合体エマルジョンに、アニオン性コロイダルシリカを分散させ、該重合体エマルジョンの周囲に、該アニオン性コロイダルシリカが吸着・分散して仕上げられたことを特徴とした防汚コート剤並びにその製造方法に関するものであつて、更に合成ゴムラテックスまたは合成樹脂系エマルジョンが配合されてなる防汚性コート剤とその製造方法に関するものである。
一般式
【化9】
Figure 2005036045
(ただし、式中のRはHまたはCHを、Rは炭素数2〜5のアルキル基を、R及びRはH又は炭素数1〜5のアクリル基を、Aは
【化10】
Figure 2005036045
を示し、R、R、Rは単量体が水に対し難溶性または不溶性である範囲で選ばれる。)
【0002】
【特許文献1】特開平10−7940号
【特許文献2】特開2001−106791号
【0003】
【従来の技術】
塗料分野においては環境汚染の防止対策として有機溶剤型塗料から、親水性水溶性樹脂、水分散性樹脂をベースとする水性塗料への変換が進行している。
また、汚れを落としやすくすめためには親水性の塗膜が適していることから、水性塗料が注目されている。
しかしながら、水分散性樹脂は乳化重合する際に界面活性剤を使用することから、耐汚染性、耐水性、耐候性などになお改良されるべき点が残されている。
【0004】
この改良策として、例えばアクリル樹脂の乳化重合時にシラン化合物を導入してシラン変性アクリル樹脂とすることにより塗膜の性能を向上することが検討されてきた。しかしながら、シリコン変性アクリル樹脂にしても保存安定性、防汚性の点に課題がある。
【0005】
【発明が解決しようとする課題】
このような状況に鑑みて、本発明になる防汚コート剤を検討した結果、開発されたもので以下詳細に説明する。
【0006】
【課題を解決するための手段】
本発明は防汚コート剤、詳しくはカルボキシル変性した合成ゴムラテックスまたは合成樹脂系エマルジョンを種ラテックスとし、これを下記一般式[I]で示されるモノマー、またはこれらと共重合可能なエチレン性不飽和モノマー[II]との混合物を添加重合して得られるシード重合体の一般式[I]で示されるモノマーによって導入された
【化11】
Figure 2005036045
を、酸または塩で中和するか、または4級化剤で4級アンモニウム塩化することにより、負の表面電位を有するアニオン性及び/またはノニオン性の樹脂エマルジョン粒子表面にカチオン性を付与させて得られた両性重合体エマルジョンに、アニオン性コロイダルシリカを分散させ分散液からなり、該両性重合体エマルジョンの周囲に、該アニオン性コロイダルシリカを吸着・分散させることにより防汚性、成膜性、耐水性などに確保した防汚性コート剤に関するものである。
一般式
【化12】
Figure 2005036045
(ただし、式中のRはHまたはCHを、Rは炭素数2〜5のアルキル基を、R及びRはH又は炭素数1〜5のアクリル基を、Aは
【化13】
Figure 2005036045
を示し、R、R、Rは単量体が水に対し難溶性または不溶性である範囲で選ばれる。)
【0007】
カルボキシル変性する合成ゴムラテックスまたは合成樹脂系エマルジョンに使用される種ラテックスの合成ゴム系ラテックス、合成樹脂系エマルジョンには公知のものを使用できる。
合成ゴム系ラテックスの具体例としてはスチレン・ブタジエンゴムラテックス、アクリロニトリル・ブタジエンゴム、メチルメタアクリレート・ブタジエンゴム、クロロプレンゴムなどのカルボキシル変性したものなどが挙げられる。
合成樹脂系エマルジョンには各種アクリル酸エステルなどのアクリル系モノマーを使用して調製されたアクリル酸エステル樹脂系エマルジョン、酢酸ビニル或いは酢酸ビニルとアクリル酸エステル、ベオバ、スチレンなどのコモノマーとを共重合した酢酸ビニル樹脂系エマルジョン、塩化ビニルと酢酸ビニル、エチレン、アクリル酸エステルなどコモノマーとが重合された塩化ビニル樹脂系エマルジョン、スチレンとアクリル酸エステル、酢酸ビニルなどコモノマーとが共重合されたスチレン樹脂系エマルジョン、エチレン・酢酸ビニル共重合系エマルジョンなどをカルボキシル変性したものなどが挙げられる。
【0008】
カルボキシル変性には、(メタ)アクリル酸、ケイヒ酸、クロトン酸、マレイン酸、フタル酸、イタコン酸、などカルボキシル基を含有するモノマー、ビニルスルホン酸、スチレンスルホン酸、アクリル酸−2−エチルスルホン酸など分子内にスルホン酸基を持つモノマー、アクリル酸2−ヒドロキシエチルりん酸エステル、メタクリル酸2−ヒドロキシりん酸エステルなどりん酸基を持つモノマーなどを共重合して導入するか、若しくはグラフト反応などにより重合体に導入する方法などを採用することができる。
【0009】
一般式〔I〕で示されるモノマーとしては、ジエチルアミノエチルメタクリレート、ジエチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレート、ジプロピルアミノエチルメタアクリレート、ジプロピルアミノエチルメタアクリレート、ジブチルアミノエチルメタアクリレート、t−ブチルアミノエチル(メタ)アクリレート、ジエチルアミノプロピルメタクリルアミド、ジプロピルアミノプロピルメタクリルアミド、ジブチルアミノプロピルメタクリルアミド、ジブチルアミノプロピルアクリルアミドなどが挙げられる。
【0010】
種ラテックスに対する一般式〔I〕で示されるモノマーの割合は5〜50重量%、好ましくは10〜30重量%である。5重量%以下ではカチオン性が少なすぎて所期のカチオン性が得られない。また、50重量%以上ではカチオン性基が過剰になり適合しなくなる。
【0011】
また、一般式〔I〕で示されるモノマーとともに、これらと共重合可能な他のエチレン性不飽和モノマー[II]を併用してもよい。その具体例として、アクリル酸メチル、アクリル酸エチ、アクリル酸ブチル、アクリル酸プロピル、アクリロニトリル、スチレン、酢酸ビニル、ジビニルベンゼンなどが挙げられる。
【0012】
カチオン性を付与させて得る両性重合体エマルジョンの合成方法には、種ラテツクスを水で希釈するか、希釈せずに系のpHを2〜8に調整し、一般式〔I〕で示されるモノマーを添加し、重合開始剤の存在下、温度50〜80℃に保ちながら攪拌してシード重合する方法が採用される。
【0013】
重合開始剤には、通常の乳化重合に用いられる、過硫酸アンモニウム、過硫酸カリウム、過酸化水素、アゾビスイソブチロニトリル、ベンゾイルパーオキサイド、並びにパーオキサイド類とアスコルビン酸、多価金属塩、酸性亜硫酸ナトリウムなどの還元剤とを組み合わせたレドツクス系などが挙げられる。これらの開始剤の使用量はモノマーに対して0.5〜5.0重量%が適当である。
【0014】
界面活性剤として、ノニオン型界面活性剤、アニオン系界面活性剤が使用される。界面活性剤の使用量は種ラテックスの固形分に対して0.1〜8重量%が適合している。0.1重量%以下では凝固物防止効果が得られない。8重量%以上では発泡が激しくなり好ましくない。
カチオン系界面活性剤を使用する方法では、両性重合体エマルジョン表面全体がカチオン性を示すため、アニオン性コロイダルシリカと混合した場合に全面がアニオン性コロイダルシリカに覆われてしまいコートした場合に成膜性が低下するため好ましくない。
【0015】
一般式〔I〕で示されるモノマーを使用する方法のほか、カチオン化の方法として得られたシード重合物を室温で攪拌しながら酸若しくは塩で中和するか、又は4級化剤で4級アンモニウム塩化する方法が採用される。酸としては無機酸或いは有機酸、塩としては硫酸水素ナトリウム、リン酸第二水素ナトリウムなどの酸性塩、4級化剤としては塩化メチル、塩化エチル、臭化メチル、ヨウ化メチルなどのハロゲン化アルキル、ベンジルクロリド、硫酸ジメチル、パラトルエンスルホン酸メチルなどのアルキル化剤が使用できる。
【0016】
本発明の防汚コート剤は、以上のように調製された両性重合体エマルジョンの周囲に、アニオン性コロイダルシリカが電気的に吸着・分散されて仕上げられることを特徴とするものであつて、場合によつては更に合成ゴムラテックスまたは合成樹脂系エマルジョンが配合されて親水性の防汚コート剤に仕上げることもできる。
【0017】
アニオン性コロイダルシリカは、負に帯電した無定形シリカ粒子がコロイド状に水中に分散された超微粒子シリカ粉末であつて、水性分散液として市販されている粒子径が1〜100nmのものが使用される。具体的には、アデライト(旭電化工業製)、カタロイド(触媒化成工業製)、スノーテックス(日産化学工業製)などがある。
なお、アニオン性コロイダルシリカはpHが3以下では水性エマルジョンと混合した場合に樹脂分を吸着した凝集物を生じやすくなり、またpHが10以上では水性エマルジヨンと混合した場合に安定性が低下しやすいためpHが3〜10の範囲で使用されることが好ましい。更にゼータ電位が負の値を示すことが好ましい。
【0018】
該両性重合体エマルジョンに対する該アニオン性コロイダルシリカの混合割合は、該両性重合体エマルジョン固形分100重量部に対して、該アニオン性コロイダルシリカ100〜500重量部が適合している。100重量部以下では両性重合体エマルジョンが不安定になりやすいため適さない。一方、500重量部以上の場合は防汚コート剤の塗膜が割れやすくなるため好ましくない。
該両性重合体エマルジョンに該アニオン性コロイダルシリカを攪拌しながら除除に添加すると、分散液は一時凝集して高粘度になるが、更に該アニオン性コロイダルシリカを添加して行くと再び流動性が回復する。分散液は更に充分な攪拌処理すると均一分散して、該両性重合体エマルジョンの周囲に該アニオン性コロイダルシリカが電気的に吸着された状態で分散されたシリカ−樹脂複合粒子に仕上げられ、透明の皮膜を形成できるようになる。なお、分散液のゼータ電位は負の値を示す。
攪拌手段には攪拌機、ボールミル、ホモジナイザー、超音波などの方法があるが、この中でも超音波にて分散させることが望ましい。
【0019】
本発明の防汚コート剤は該分散液の状態として使用できるが、前記のように合成ゴムラテックスまたは合成樹脂系エマルジョンを更に混合した状態としても使用できる。このように合成ゴムラテックスや合成樹脂系エマルジョンを更に混合したものでは成膜性、密着性、耐水性などを更に向上させることができる。
【0020】
該分散液に合成ゴムラテックスまたは合成樹脂系エマルジョンを更に混合して防汚コート剤を調製する場合は、該分散液の固形分100重量部に対して、合成ゴムラテックスまたは合成樹脂系エマルジョンを固形分100重量部以下で混合し、防汚コート剤が調製される。100重量部以上では防汚性能を低下させるため好ましくない。
【0021】
なお、防汚コート剤として各種の基材等に対する密着性を確保するために、適宜粘着付与樹脂(以下TFという)が配合される。該TFは防汚コート剤の形態によつて樹脂エマルジョン状又は固形状態で使用することができる。
TFには変成ロジン、重合ロジン、フェノール樹脂、アルキルフェノール樹脂等のフェノール系、クマロンインデン系、脂肪族炭化水素系、テルペン樹脂等の芳香族石油系等が使用できる。これらのTFは粉末状態ないし粉末状で乳化されたもの、水溶性高分子等で表面処理したのち乳化されたもの等があり、使用状況に照らして採用される。カルボキシル変性や水酸基変性をさせたものも使用できる。
【0022】
その他、配合材料として、老化防止を向上させる目的で酸化亜鉛、酸化カルシウム、酸化マグネシウム等の金属酸化物が配合される。
更に着色のために適宜、公知な染料や顔料が適宜配合され、増量剤として、炭酸カルシウム、クレー、カオリン、シリカ粉末等の無機フィラーも適宜配合することができる。
その他、これら以外に防汚コート剤の安定化の為に配するアンモニア、トリエタノールアミン、モルホリン等の塩基性化合物、炭酸カルシウム、シリカ、タルク等の充填材、防腐剤、防かび剤、消泡剤、増粘剤または粘度調整剤等が必要により添加されて調製されてもよい。
【0023】
以下、実施例、比較例により本発明について説明する。配合は重量部を単に部として表示する。なお、本発明は実施例に限定されるものではない。
【0024】
(1)ノニオン性エマルジョンベースの両性重合体エマルジョンの調製
メタクリル酸メチル100部、アクリル酸ブチル、アクリル酸1.5部、水200部、ノニオン系界面活性剤(ノイゲンEM−250 第一工業製薬株式会社製)5部を仕込み攪拌して混合乳化した乳化液を調製する。その後、攪拌機、温度計、還流冷却管を備えたフラスコ中で過硫酸アンモニウム1部を溶解した60℃の温水50部に、温度80℃に保った該乳化液を2時間かけて滴下し乳化重合して種ラテックスとなるベースエマルジョンを合成した。ゼータ電位は−36mVのアニオン型であつた。
該ベースエマルジョンを温度60℃に保った状態で、該ベースエマルジョン100部に対してジエチルアミノエチルジメタクリレート7部を1時間かけて滴下し、1時間攪拌したのち、過硫酸アンモニウム0.5部を添加し更に1時間反応させた。その後ノニオン系界面活性剤(エマルゲン840S 花王株式会社製)1部を添加したのちにパラスルホン酸メチル6部を添加し、4時間還流してカチオン型樹脂エマルジョンを調製した。固形分30%、pH7、ゼータ電位は+42mVであつた。また、0℃での成膜性を確認できた。
【0025】
(2)アニオン性エマルジョンベースの両性重合体エマルジョンの調製
メタクリル酸メチル100部、アクリル酸ブチル100部、アクリル酸1部、水200部、アニオン系界面活性剤(レベノールWX 花王株式会社製)5部を仕込み攪拌して混合乳化して乳化液を調製する。その後、攪拌機、温度計、還流冷却管を備えたフラスコ中で過硫酸アンモニウム1部を溶解した60℃の温水50部中に、温度80℃に保った該乳化液を2時間かけて滴下し乳化重合して種ラテックスとなるベースエマルジョンを合成した。ゼータ電位は−45mVであつた。
該ベースエマルジョンを60℃に保つた状態で、該ベースエマルジョン100部に対してジエチルアミノエチルジメタクリレート7部を1時間かけて滴下し、1時間攪拌したのち、過硫酸アンモニウム0.5部を添加し更に1時間反応させた。その後ノニオン系界面活性剤(エマルゲン840S 花王株式会社製)1部を添加したのちパラトルエンスルホン酸6部を添加し、4時間還流してカチオン型樹脂エマルジョンを調製した。固形分30%、pH7、ゼータ電位は+27mVであつた。また、0℃での成膜性を確認できた。
【0026】
(3)アニオン性樹脂エマルジョンの調製
メタクリル酸メチル100部、アクリル酸ブチル100部、アクリル酸1部、水200部、アニオン系界面活性剤(レベノールWX 花王株式会社製)6部を混合し乳化して乳化液を調製する。その後、攪拌機、温度計、還流冷却管を備えたフラスコ中で過硫酸アンモニウム1部を溶解した60℃の温水50部中に、温度70℃に保つた該乳化液を2時間かけて滴下しつつ乳化重合を進めてアニオン型樹脂エマルジョンを調製した。固形分45%、pH2.5、ゼータ電位は−36mVであつた。
【0027】
(4)参考樹脂エマルジョンの調製
メタクリル酸メチル100部、アクリル酸ブチル100部、アクリル酸1.5部、水200部、カチオン系界面活性剤4部を混合して乳化物を調製する。
その後、攪拌機、温度計、還流冷却管を備えたフラスコ中で過硫酸アンモニウム1部を溶解した60℃の温水50部中に、該乳化物を70℃に保つたまま2時間かけて滴下して乳化重合を進めてアクリル系樹脂エマルジョンを調製した。固形分45%、pH2.5、ゼータ電位は+50mVであつた。0℃での成膜性は確認できた。
【0028】
実施例1
(1)で調製した両性重合体エマルジョン35部に対して、水200部を混合したのち、アニオン性コロイダルシリカ(スノーテックス30 日産化学工業株式会社製)65部を5分間で滴下しながら充分に攪拌処理して実施例1の防汚コート剤とした。
【0029】
実施例2
実施例1の防汚コート剤100部に、(3)で調製したアニオン性樹脂エマルジヨン30部を添加・混合したものを実施例2の防汚コート剤とした。
【0030】
実施例3
(2)で調製した両性重合体エマルジョン35部に対して、水200部を混合したのちアニオン性コロイダルシリカ(スノーテックス30 日産化学工業株式会社製)65部を5分間で滴下し充分に攪拌して実施例3の防汚コート剤とした。
【0031】
比較例1
(4)で調製した樹脂エマルジヨン35部に、水200部を混合し、アニオン性コロイダルシリカ(スノーテックス30 日産化学工業株式会社製)65部を5分間かけて滴下しながら充分に攪拌して、比較例1のコート剤とした。
【0032】
比較例2
比較例1で調製した防汚コート剤100部に(3)で調製したアニオン性樹脂エマルジョンを30部添加した分散液を比較例2のコート剤とした。
【0033】
比較例3
(3)で調製したアニオン性樹脂エマルジョン35部に対して、水200部を混合し、アニオン性コロイダルシリカ(スノーテックス30 日産化学工業株式会社製)65部を5分間かけて滴下し、充分に攪拌して比較例3のコート剤とした。
【0034】
実施例、比較例の防汚コート剤について、防汚性、成膜性並びに耐水性について測定・評価した結果は表1の通りであつた。
また、実施例1の防汚コート剤をポリエステル樹脂フィルム(以下PETと記載)上に塗布して調製した塗膜の断面を透過型電子顕微鏡(以下TEMと記載)により観察した映像(倍率25万倍)写真である図1に示す通り両性重合体エマルジョン(白い部分)の周囲にアニオン性コロイダルシリカ(黒い部分)が吸着的に分散しているため、両性重合体エマルジョン粒子の形状が保たれている。一方、比較例3の塗膜断面のTEM映像写真(倍率25万倍)である図2に示すようにエマルジョン(白い部分)周囲にアニオン性コロイダルシリカ(黒い部分)が均一に吸着、分散しておらず、両性重合体エマルジョン同士が融着していることが認められ、このことから接触角が大きくなり防汚性が悪くなるものと推定される。
【0035】
【表1】
Figure 2005036045
評価方法
成膜性
PETにコート液約40g/mを塗布し、25℃の環境で塗膜の成膜状態を観察する。
接触角
協和界面科学株式会社の接触角計(機種CA−X型)を使用し、水滴を成膜した表面に1滴垂らした際の接触角を測定する。
防汚性、その他評価
厚さ6mmのスレート板に水性アクリル樹脂系塗材(ジョリパツトJP−100アイカ工業株式会社製)を鏝により2kg/m塗布し、3日間養生したのち、その表面に実施例の防汚コート剤及び比較例のコート剤を約40g/m塗布し更に1日養生したものを南向き45℃の角度で2ヶ月屋外暴露試験を行い、表面状態(汚染の様子、剥離の有無等)を目視にて評価した。◎は雨スジ、黒ずみなし。×は雨スジ、黒ずみあり。
耐水性
試験1にてPET上に塗布した防汚コート剤、コート剤を1日養生後、常温の水に1日浸漬したのち塗膜の状態を観察する。異常のない場合を「良好」とする。
【0036】
【発明の効果】
本発明になる防汚コート剤は、両性重合体エマルジョンにアニオン性コロイダルシリカが分散されたもので、TEMの撮影に見られるように前者の周囲に後者が電気的に吸着され分散された状態に仕上げられていて、前者の成膜性、接着性、耐水性などの特性と、接触角の測定結果から明らかなように後者の持つ親水性とが複合された特性が得られるため、実施例に観察されるとおり防汚性、成膜性、耐水性などの性能を備えたものに仕上げられている。
このため、防汚性を求められる塗料のトツプコート剤のほか、各種用途のコーテイング材として利用できる。
【図面の簡単な説明】
【図1】実施例1の防汚コート剤をPET上に成膜させた部分の断面をTEM(倍率 25万倍)で観察した写真。
【図2】比較例3の防汚コート剤をPET上に成膜させた部分の断面をTEM(倍率 25万倍)で観察した写真。[0001]
BACKGROUND OF THE INVENTION
The present invention is an antifouling coating agent used for applications such as coatings and coatings applied to the surface of various substrates, and more specifically, a carboxyl-modified synthetic rubber latex or synthetic resin emulsion is used as a seed latex. This is represented by the general formula [I] of a seed polymer obtained by adding and polymerizing a monomer represented by the following general formula [I] or a mixture thereof with an ethylenically unsaturated monomer [II] copolymerizable therewith. Introduced by monomer
Figure 2005036045
Is neutralized with an acid or salt, or quaternary ammonium salified with a quaternizing agent to impart cationicity to the surface of the anionic and / or nonionic resin emulsion particles having a negative surface potential. An anionic colloidal silica is dispersed in the obtained amphoteric polymer emulsion, and the anionic colloidal silica is adsorbed and dispersed around the polymer emulsion, and the antifouling coating agent, and its The present invention relates to a production method, and further relates to an antifouling coating agent comprising a synthetic rubber latex or a synthetic resin emulsion and a production method thereof.
General formula
Figure 2005036045
(Where R 1 is H or CH 3 , R 2 is an alkyl group having 2 to 5 carbon atoms, R 3 and R 4 are H or an acrylic group having 1 to 5 carbon atoms, and A is 10]
Figure 2005036045
R 1 , R 3 and R 4 are selected in the range where the monomer is hardly soluble or insoluble in water. )
[0002]
[Patent Document 1] JP-A-10-7940 [Patent Document 2] JP-A-2001-106791
[Prior art]
In the paint field, conversion from organic solvent-type paints to water-based paints based on hydrophilic water-soluble resins and water-dispersible resins is progressing as a measure for preventing environmental pollution.
Moreover, since a hydrophilic coating film is suitable for facilitating removal of dirt, a water-based paint has attracted attention.
However, since a water-dispersible resin uses a surfactant during emulsion polymerization, there are still points to be improved in terms of stain resistance, water resistance, weather resistance, and the like.
[0004]
As an improvement measure, for example, it has been studied to improve the performance of the coating film by introducing a silane compound during emulsion polymerization of an acrylic resin to obtain a silane-modified acrylic resin. However, even with a silicone-modified acrylic resin, there are problems in terms of storage stability and antifouling properties.
[0005]
[Problems to be solved by the invention]
In view of such a situation, as a result of studying the antifouling coating agent according to the present invention, it has been developed and will be described in detail below.
[0006]
[Means for Solving the Problems]
The present invention provides an antifouling coating agent, specifically, a carboxyl-modified synthetic rubber latex or synthetic resin emulsion as a seed latex, which is a monomer represented by the following general formula [I], or an ethylenically unsaturated copolymerizable therewith A seed polymer obtained by addition polymerization of a mixture with the monomer [II] was introduced by the monomer represented by the general formula [I]
Figure 2005036045
Is neutralized with an acid or salt, or quaternary ammonium salified with a quaternizing agent to impart cationicity to the surface of the anionic and / or nonionic resin emulsion particles having a negative surface potential. In the obtained amphoteric polymer emulsion, an anionic colloidal silica is dispersed to form a dispersion, and by adsorbing and dispersing the anionic colloidal silica around the amphoteric polymer emulsion, antifouling properties, film-forming properties, The present invention relates to an antifouling coating agent that ensures water resistance.
General formula
Figure 2005036045
(Where R 1 is H or CH 3 , R 2 is an alkyl group having 2 to 5 carbon atoms, R 3 and R 4 are H or an acrylic group having 1 to 5 carbon atoms, and A is 13]
Figure 2005036045
R 1 , R 3 and R 4 are selected in the range where the monomer is hardly soluble or insoluble in water. )
[0007]
Known synthetic rubber latex and synthetic resin emulsion of seed latex used for synthetic rubber latex to be carboxyl-modified or synthetic resin emulsion can be used.
Specific examples of the synthetic rubber-based latex include carboxyl-modified ones such as styrene / butadiene rubber latex, acrylonitrile / butadiene rubber, methyl methacrylate / butadiene rubber, and chloroprene rubber.
Synthetic resin emulsions are acrylic ester resin emulsions prepared using acrylic monomers such as various acrylic esters, vinyl acetate or vinyl acetate and copolymers of acrylic acid ester, Veova, styrene, etc. Vinyl acetate resin emulsion, vinyl chloride resin emulsion in which vinyl chloride and vinyl acetate, ethylene, acrylic acid ester and other comonomer are polymerized, styrene resin emulsion in which styrene and acrylic acid ester, vinyl acetate and other comonomer are copolymerized And those obtained by carboxyl-modifying an ethylene / vinyl acetate copolymer emulsion.
[0008]
For carboxyl modification, (meth) acrylic acid, cinnamic acid, crotonic acid, maleic acid, phthalic acid, itaconic acid and other monomers containing a carboxyl group, vinylsulfonic acid, styrenesulfonic acid, acrylic acid-2-ethylsulfonic acid Introducing a monomer having a sulfonic acid group in the molecule, a monomer having a phosphoric acid group such as 2-hydroxyethyl phosphate acrylic acid, 2-hydroxy phosphate methacrylate, etc. A method of introducing the polymer into the polymer can be employed.
[0009]
Examples of the monomer represented by the general formula [I] include diethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, dipropylaminoethyl methacrylate, dipropylaminoethyl methacrylate, dibutylaminoethyl methacrylate, t-butylaminoethyl ( And (meth) acrylate, diethylaminopropylmethacrylamide, dipropylaminopropylmethacrylamide, dibutylaminopropylmethacrylamide, dibutylaminopropylacrylamide and the like.
[0010]
The ratio of the monomer represented by the general formula [I] to the seed latex is 5 to 50% by weight, preferably 10 to 30% by weight. If it is 5% by weight or less, the cationic property is too small to obtain the desired cationic property. On the other hand, when the amount is 50% by weight or more, the cationic group becomes excessive and is not suitable.
[0011]
In addition to the monomer represented by the general formula [I], another ethylenically unsaturated monomer [II] copolymerizable with these may be used in combination. Specific examples thereof include methyl acrylate, ethyl acrylate, butyl acrylate, propyl acrylate, acrylonitrile, styrene, vinyl acetate, and divinylbenzene.
[0012]
A method for synthesizing an amphoteric polymer emulsion obtained by imparting cationic properties includes diluting the seed latex with water, or adjusting the pH of the system to 2 to 8 without diluting, and the monomer represented by the general formula [I] Is added and the seed polymerization is carried out with stirring while maintaining the temperature at 50 to 80 ° C. in the presence of a polymerization initiator.
[0013]
Polymerization initiators include ammonium persulfate, potassium persulfate, hydrogen peroxide, azobisisobutyronitrile, benzoyl peroxide, as well as peroxides and ascorbic acid, polyvalent metal salts, acidic used in normal emulsion polymerization. A redox system in combination with a reducing agent such as sodium sulfite may be mentioned. The amount of these initiators used is suitably 0.5 to 5.0% by weight based on the monomer.
[0014]
As the surfactant, a nonionic surfactant or an anionic surfactant is used. The amount of the surfactant used is 0.1 to 8% by weight based on the solid content of the seed latex. If it is 0.1% by weight or less, the effect of preventing coagulation cannot be obtained. If it is 8% by weight or more, foaming becomes violent, which is not preferable.
In the method using a cationic surfactant, since the entire surface of the amphoteric polymer emulsion is cationic, when mixed with anionic colloidal silica, the entire surface is covered with anionic colloidal silica, and the film is formed. This is not preferable because the properties are lowered.
[0015]
In addition to the method using the monomer represented by the general formula [I], the seed polymer obtained as a cationization method is neutralized with an acid or a salt while stirring at room temperature, or quaternized with a quaternizing agent. A method of ammonium chloride is adopted. Acids are inorganic or organic acids, salts are acidic salts such as sodium hydrogen sulfate and sodium dihydrogen phosphate, and quaternizing agents are halogenated such as methyl chloride, ethyl chloride, methyl bromide, methyl iodide, etc. Alkylating agents such as alkyl, benzyl chloride, dimethyl sulfate and methyl paratoluenesulfonate can be used.
[0016]
The antifouling coating agent of the present invention is characterized in that anionic colloidal silica is electrically adsorbed and dispersed around the amphoteric polymer emulsion prepared as described above. In some cases, a synthetic rubber latex or a synthetic resin emulsion can be further blended to finish a hydrophilic antifouling coating agent.
[0017]
Anionic colloidal silica is an ultrafine silica powder in which negatively charged amorphous silica particles are colloidally dispersed in water, and those having a particle diameter of 1 to 100 nm commercially available as an aqueous dispersion are used. The Specifically, there are Adelite (manufactured by Asahi Denka Kogyo), Cataloid (manufactured by Catalyst Kasei Kogyo), Snowtex (manufactured by Nissan Chemical Industries) and the like.
It should be noted that anionic colloidal silica tends to form an agglomerate adsorbing a resin component when mixed with an aqueous emulsion at a pH of 3 or less, and stability tends to decrease when mixed with an aqueous emulsion at a pH of 10 or more. Therefore, it is preferable to use in the range of pH 3-10. Furthermore, it is preferable that the zeta potential shows a negative value.
[0018]
As for the mixing ratio of the anionic colloidal silica to the amphoteric polymer emulsion, 100 to 500 parts by weight of the anionic colloidal silica is suitable for 100 parts by weight of the amphoteric polymer emulsion solids. Less than 100 parts by weight is not suitable because the amphoteric polymer emulsion tends to be unstable. On the other hand, the case of 500 parts by weight or more is not preferable because the coating film of the antifouling coating agent tends to break.
When the anionic colloidal silica is added to the amphoteric polymer emulsion while stirring, the dispersion temporarily aggregates and becomes highly viscous. However, when the anionic colloidal silica is further added, the fluidity is once again increased. Recover. When the dispersion is further stirred sufficiently, it is uniformly dispersed and finished into silica-resin composite particles in which the anionic colloidal silica is electrically adsorbed around the amphoteric polymer emulsion. A film can be formed. The zeta potential of the dispersion shows a negative value.
Examples of the stirring means include a stirrer, a ball mill, a homogenizer, and an ultrasonic wave. Among them, it is desirable to disperse with ultrasonic waves.
[0019]
The antifouling coating agent of the present invention can be used in the state of the dispersion, but can also be used in a state in which a synthetic rubber latex or a synthetic resin emulsion is further mixed as described above. Thus, what mixed synthetic rubber latex and synthetic resin type emulsion further can improve film formability, adhesiveness, water resistance, etc. further.
[0020]
When an antifouling coating agent is prepared by further mixing a synthetic rubber latex or synthetic resin emulsion into the dispersion, the synthetic rubber latex or synthetic resin emulsion is solidified with respect to 100 parts by weight of the solid content of the dispersion. An antifouling coating agent is prepared by mixing at 100 parts by weight or less per minute. An amount of 100 parts by weight or more is not preferable because the antifouling performance is lowered.
[0021]
In addition, in order to ensure the adhesiveness with respect to various base materials etc. as an antifouling coating agent, tackifying resin (henceforth TF) is mix | blended suitably. The TF can be used in the form of a resin emulsion or in a solid state depending on the form of the antifouling coating agent.
For TF, modified rosin, polymerized rosin, phenolic resins such as phenolic resins and alkylphenolic resins, aromatic petroleum systems such as coumarone indene, aliphatic hydrocarbons and terpene resins can be used. These TFs include those emulsified in a powdered state or in powder form, those emulsified after surface treatment with a water-soluble polymer, etc., and are employed in light of usage conditions. Those modified with carboxyl or hydroxyl can also be used.
[0022]
In addition, metal oxides such as zinc oxide, calcium oxide, and magnesium oxide are blended as blending materials for the purpose of improving aging prevention.
Furthermore, known dyes and pigments are appropriately blended for coloring, and inorganic fillers such as calcium carbonate, clay, kaolin, silica powder and the like can be blended as a filler.
Other than these, basic compounds such as ammonia, triethanolamine and morpholine distributed for stabilizing the antifouling coating agent, fillers such as calcium carbonate, silica and talc, preservatives, fungicides, antifoaming An agent, thickener or viscosity modifier may be added as necessary.
[0023]
Hereinafter, the present invention will be described with reference to examples and comparative examples. Formulations are expressed simply as parts by weight. In addition, this invention is not limited to an Example.
[0024]
(1) Preparation of nonionic emulsion-based amphoteric polymer emulsion 100 parts methyl methacrylate, butyl acrylate, 1.5 parts acrylic acid, 200 parts water, nonionic surfactant (Neugen EM-250 Daiichi Kogyo Seiyaku Co., Ltd.) Prepare 5 parts of (made by company) and stir and mix and emulsify to prepare an emulsion. Thereafter, the emulsion maintained at 80 ° C. was dropped into 50 parts of 60 ° C. warm water in which 1 part of ammonium persulfate was dissolved in a flask equipped with a stirrer, thermometer and reflux condenser for 2 hours to effect emulsion polymerization. A base emulsion to be a seed latex was synthesized. The zeta potential was anion type of −36 mV.
With the base emulsion kept at a temperature of 60 ° C., 7 parts of diethylaminoethyl dimethacrylate was added dropwise to 100 parts of the base emulsion over 1 hour, and after stirring for 1 hour, 0.5 part of ammonium persulfate was added. The reaction was further continued for 1 hour. Thereafter, 1 part of a nonionic surfactant (Emulgen 840S manufactured by Kao Corporation) was added, 6 parts of methyl parasulfonate was added, and the mixture was refluxed for 4 hours to prepare a cationic resin emulsion. The solid content was 30%, pH 7, and the zeta potential was +42 mV. Moreover, the film forming property at 0 ° C. was confirmed.
[0025]
(2) Preparation of an anionic emulsion-based amphoteric polymer emulsion 100 parts of methyl methacrylate, 100 parts of butyl acrylate, 1 part of acrylic acid, 200 parts of water, 5 parts of an anionic surfactant (manufactured by Rebenol WX Kao Corporation) Are mixed and emulsified with stirring to prepare an emulsion. Thereafter, the emulsion kept at 80 ° C. was dropped into 50 parts of 60 ° C. warm water in which 1 part of ammonium persulfate was dissolved in a flask equipped with a stirrer, a thermometer and a reflux condenser for 2 hours. Thus, a base emulsion to be a seed latex was synthesized. The zeta potential was -45 mV.
While maintaining the base emulsion at 60 ° C., 7 parts of diethylaminoethyl dimethacrylate was added dropwise to 100 parts of the base emulsion over 1 hour, stirred for 1 hour, and then 0.5 part of ammonium persulfate was added. The reaction was carried out for 1 hour. Thereafter, 1 part of a nonionic surfactant (Emulgen 840S manufactured by Kao Corporation) was added, 6 parts of paratoluenesulfonic acid was added, and the mixture was refluxed for 4 hours to prepare a cationic resin emulsion. The solid content was 30%, pH 7, and the zeta potential was +27 mV. Moreover, the film forming property at 0 ° C. was confirmed.
[0026]
(3) Preparation of anionic resin emulsion 100 parts of methyl methacrylate, 100 parts of butyl acrylate, 1 part of acrylic acid, 200 parts of water, 6 parts of an anionic surfactant (manufactured by Lebenol WX Kao Corporation) are mixed and emulsified. To prepare an emulsion. Then, emulsification was carried out while dropping the emulsified liquid maintained at a temperature of 70 ° C. in 50 parts of hot water of 60 ° C. in which 1 part of ammonium persulfate was dissolved in a flask equipped with a stirrer, a thermometer and a reflux condenser. Polymerization was advanced to prepare an anionic resin emulsion. The solid content was 45%, pH 2.5, and the zeta potential was -36 mV.
[0027]
(4) Preparation of Reference Resin Emulsion 100 parts of methyl methacrylate, 100 parts of butyl acrylate, 1.5 parts of acrylic acid, 200 parts of water and 4 parts of cationic surfactant are mixed to prepare an emulsion.
Thereafter, the emulsion was added dropwise to 50 parts of hot water at 60 ° C. in which 1 part of ammonium persulfate was dissolved in a flask equipped with a stirrer, thermometer and reflux condenser over 2 hours while maintaining the temperature at 70 ° C. Polymerization was advanced to prepare an acrylic resin emulsion. The solid content was 45%, pH 2.5, and the zeta potential was +50 mV. The film formability at 0 ° C. was confirmed.
[0028]
Example 1
After mixing 200 parts of water with 35 parts of the amphoteric polymer emulsion prepared in (1), 65 parts of anionic colloidal silica (Snowtex 30 manufactured by Nissan Chemical Industries, Ltd.) was added dropwise over 5 minutes. The antifouling coating agent of Example 1 was obtained by stirring.
[0029]
Example 2
The antifouling coating agent of Example 2 was prepared by adding and mixing 30 parts of the anionic resin emulsion prepared in (3) to 100 parts of the antifouling coating agent of Example 1.
[0030]
Example 3
After mixing 200 parts of water with 35 parts of the amphoteric polymer emulsion prepared in (2), 65 parts of anionic colloidal silica (Snowtex 30 manufactured by Nissan Chemical Industries, Ltd.) was added dropwise over 5 minutes and stirred thoroughly. Thus, the antifouling coating agent of Example 3 was obtained.
[0031]
Comparative Example 1
In 35 parts of the resin emulsion prepared in (4), 200 parts of water was mixed, and 65 parts of anionic colloidal silica (Snowtex 30 manufactured by Nissan Chemical Industries, Ltd.) was dripped over 5 minutes while stirring sufficiently. The coating agent of Comparative Example 1 was used.
[0032]
Comparative Example 2
A dispersion obtained by adding 30 parts of the anionic resin emulsion prepared in (3) to 100 parts of the antifouling coating agent prepared in Comparative Example 1 was used as the coating agent of Comparative Example 2.
[0033]
Comparative Example 3
To 35 parts of the anionic resin emulsion prepared in (3), 200 parts of water are mixed, and 65 parts of anionic colloidal silica (Snowtex 30 manufactured by Nissan Chemical Industries, Ltd.) are added dropwise over 5 minutes. The coating agent of Comparative Example 3 was obtained by stirring.
[0034]
The results of measuring and evaluating the antifouling property, film forming property and water resistance of the antifouling coating agents of Examples and Comparative Examples are shown in Table 1.
Moreover, the image (magnification 250,000) which observed the cross section of the coating film prepared by apply | coating the antifouling coating agent of Example 1 on a polyester resin film (hereinafter referred to as PET) with a transmission electron microscope (hereinafter referred to as TEM). 1) Since the anionic colloidal silica (black portion) is adsorbed and dispersed around the amphoteric polymer emulsion (white portion) as shown in FIG. 1 which is a photograph, the shape of the amphoteric polymer emulsion particles is maintained. Yes. On the other hand, as shown in FIG. 2, which is a TEM video photograph (magnification 250,000 times) of the cross section of the coating film of Comparative Example 3, anionic colloidal silica (black part) is uniformly adsorbed and dispersed around the emulsion (white part). The amphoteric polymer emulsions were found to be fused together, and from this, it was presumed that the contact angle was increased and the antifouling property was deteriorated.
[0035]
[Table 1]
Figure 2005036045
Evaluation Method Film-forming property A coating liquid of about 40 g / m 2 is applied to PET, and the film-forming state of the coating film is observed in an environment at 25 ° C.
Contact angle Kyowa Interface Science Co., Ltd. contact angle meter (model CA-X type) is used to measure the contact angle when one drop is dropped on the surface on which water droplets are formed.
Stain resistance, and other evaluation 6mm thick slate plate in an aqueous acrylic resin coating material 2 kg / m 2 coated with iron (the Joripatsuto JP-100 Aica Kogyo Co., Ltd.), after curing for 3 days, carried on the surface thereof The antifouling coating agent of the example and the coating agent of the comparative example were applied at a rate of about 40 g / m 2 and further cured for 1 day. The presence or absence, etc.) was visually evaluated. ◎ No rain streaks, no black. × indicates rain streaks and darkening.
The antifouling coating agent and coating agent applied on PET in the water resistance test 1 are cured for 1 day, and then immersed in water at room temperature for 1 day, and the state of the coating film is observed. The case where there is no abnormality is defined as “good”.
[0036]
【The invention's effect】
The antifouling coating agent according to the present invention is an amphoteric polymer emulsion in which anionic colloidal silica is dispersed, and the latter is electrically adsorbed and dispersed around the former as seen in TEM photography. In the example, it is finished, and the characteristics of the former, such as film formability, adhesiveness, water resistance, etc. and the hydrophilicity of the latter, as is apparent from the measurement results of the contact angle, are obtained. As observed, it has been finished with performance such as antifouling property, film-forming property, and water resistance.
For this reason, it can be used as a coating material for various applications in addition to a top coating agent for paints that require antifouling properties.
[Brief description of the drawings]
FIG. 1 is a photograph of a cross section of a part where an antifouling coating agent of Example 1 is formed on PET observed with a TEM (magnification of 250,000 times).
FIG. 2 is a photograph of a cross-section of a portion where the antifouling coating agent of Comparative Example 3 was formed on PET observed with TEM (magnification 250,000 times).

Claims (4)

カルボキシル変性した合成ゴムラテックスまたは合成樹脂系エマルジョンを種ラテックスとし、これを下記一般式[I]で示されるモノマー、またはこれらと共重合可能なエチレン性不飽和モノマー[II]との混合物を添加重合して得られるシード重合体の一般式[I]で示されるモノマーによって導入された
Figure 2005036045
を、酸または塩で中和するか、または4級化剤で4級アンモニウム塩化することにより、負の表面電位を有するアニオン性及び/またはノニオン性の樹脂エマルジョン粒子表面にカチオン性を付与させて得られた両性重合体エマルジョンに、アニオン性コロイダルシリカが分散された分散液からなり、該両性重合体エマルジョン粒子表面に、該アニオン性コロイダルシリカが吸着・分散されていることを特徴とする防汚コート剤。
一般式
Figure 2005036045
(ただし、式中のRはHまたはCHを、Rは炭素数2〜5のアルキル基を、R及びRはH又は炭素数1〜5のアクリル基を、Aは
Figure 2005036045
を示し、R、R、Rは単量体が水に対し難溶性または不溶性である範囲で選ばれる。)
Carboxyl-modified synthetic rubber latex or synthetic resin emulsion is used as a seed latex, and this is added to a monomer represented by the following general formula [I] or a mixture with an ethylenically unsaturated monomer [II] copolymerizable therewith. The seed polymer thus obtained was introduced by the monomer represented by the general formula [I]
Figure 2005036045
Is neutralized with an acid or salt, or quaternary ammonium salified with a quaternizing agent to impart cationicity to the surface of the anionic and / or nonionic resin emulsion particles having a negative surface potential. The resulting amphoteric polymer emulsion comprises a dispersion in which anionic colloidal silica is dispersed, and the anionic colloidal silica is adsorbed and dispersed on the surface of the amphoteric polymer emulsion particles. Coating agent.
General formula
Figure 2005036045
(In the formula, R 1 is H or CH 3 , R 2 is an alkyl group having 2 to 5 carbon atoms, R 3 and R 4 are H or an acrylic group having 1 to 5 carbon atoms, and A is
Figure 2005036045
R 1 , R 3 and R 4 are selected in the range where the monomer is hardly soluble or insoluble in water. )
カチオン性を付与された両性重合体エマルジョンに、アニオン性コロイダルシリカが吸着・分散されたのち、合成ゴムラテックスまたは合成樹脂系エマルジョンが追加、混合されて仕上げられていることを特徴とする請求項1記載の防汚コート剤。2. An anionic colloidal silica is adsorbed and dispersed in an amphoteric polymer emulsion imparted with a cationic property, and then a synthetic rubber latex or a synthetic resin emulsion is added and mixed to finish. The antifouling coating agent described. カルボキシル変性した合成ゴムラテックスまたは合成樹脂系エマルジョンを種ラテックスとし、この種ラテックスを中和してpH6以上とした後、下記一般式[I]で示されるモノマー、またはこれらと共重合可能なエチレン性不飽和モノマー[II]との混合物を添加した後、ラジカル重合開始剤を用いて重合して得られるシード重合体に、酸または塩を添加して一般式[I]で示される単量体によって導入された
Figure 2005036045
を中和するか、または4級化剤を添加して一般式[I]で示される単量体によって導入された
Figure 2005036045
を4級アンモニウム塩化し、負の表面電位を有するアニオン性及び/またはノニオン性の樹脂エマルジョン粒子表面にカチオン性を付与させて得られた両性重合体エマルジョンに、アニオン性コロイダルシリカを分散して、該両性重合体エマルジョンの周囲に、該アニオン性コロイダルシリカを吸着・分散させて仕上げることを特徴とする防汚コート剤の製造方法。
一般式
Figure 2005036045
(但し、式中のRはHまたはCHを、Rは炭素数2〜5のアルキル基を、R及びRはH又は炭素数1〜5のアクリル基を、Aは
Figure 2005036045
を示し、R、R、Rは単量体が水に対し難溶性または不溶性である範囲で選ばれる。)
Carboxyl-modified synthetic rubber latex or synthetic resin emulsion is used as seed latex, and the seed latex is neutralized to pH 6 or higher, and then the monomer represented by the following general formula [I] or an ethylene copolymerizable therewith After adding a mixture with the unsaturated monomer [II], an acid or salt is added to the seed polymer obtained by polymerization using a radical polymerization initiator, and the monomer represented by the general formula [I] is added. Introduced
Figure 2005036045
Or introduced by a monomer of general formula [I] with the addition of a quaternizing agent
Figure 2005036045
Quaternary ammonium salt, anionic colloidal silica is dispersed in an amphoteric polymer emulsion obtained by imparting cationicity to the surface of anionic and / or nonionic resin emulsion particles having a negative surface potential, A method for producing an antifouling coating agent, characterized by adsorbing and dispersing the anionic colloidal silica around the amphoteric polymer emulsion.
General formula
Figure 2005036045
(In the formula, R 1 is H or CH 3 , R 2 is an alkyl group having 2 to 5 carbon atoms, R 3 and R 4 are H or an acrylic group having 1 to 5 carbon atoms, and A is
Figure 2005036045
R 1 , R 3 and R 4 are selected in the range where the monomer is hardly soluble or insoluble in water. )
カチオン性を付与された両性重合体エマルジョンにアニオン性コロイダルシリカを吸着・分散させたのち、合成ゴムラテックスまたは合成樹脂系エマルジョンを追加、配合して仕上げることを特徴とする請求項3記載の防汚コート剤の製造方法。4. The antifouling agent according to claim 3, wherein the anionic colloidal silica is adsorbed and dispersed in the amphoteric polymer emulsion imparted with a cationic property, and then a synthetic rubber latex or a synthetic resin emulsion is added and blended. A method for producing a coating agent.
JP2003197923A 2003-07-16 2003-07-16 Antifouling coating agent and method for producing the same Expired - Fee Related JP3682880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003197923A JP3682880B2 (en) 2003-07-16 2003-07-16 Antifouling coating agent and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003197923A JP3682880B2 (en) 2003-07-16 2003-07-16 Antifouling coating agent and method for producing the same

Publications (3)

Publication Number Publication Date
JP2005036045A true JP2005036045A (en) 2005-02-10
JP2005036045A5 JP2005036045A5 (en) 2005-08-11
JP3682880B2 JP3682880B2 (en) 2005-08-17

Family

ID=34207890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003197923A Expired - Fee Related JP3682880B2 (en) 2003-07-16 2003-07-16 Antifouling coating agent and method for producing the same

Country Status (1)

Country Link
JP (1) JP3682880B2 (en)

Also Published As

Publication number Publication date
JP3682880B2 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
EP1926778B1 (en) Vibration damping composition
JPS6128703B2 (en)
JPWO2007023821A1 (en) Damping emulsion
JP2008138217A (en) Aqueous resin dispersion, aqueous resin composition, and method for producing aqueous resin composition
JP2637955B2 (en) Aqueous coating composition
SE444441B (en) INTERNAL SOFT ADDITION POLYMER PARTICLES IN THE FORM OF A LATEX OR PARTICULAR PARTICLES OR AS A COMPONENT IN A WATER BASED POLISH COMPOSITION
JP4124714B2 (en) Thickener for water-based damping material
JP2005211856A (en) Structure carrying hydrophilic function
JP3682880B2 (en) Antifouling coating agent and method for producing the same
JP2004115665A (en) Emulsion for water-based vibration-damping material
JP2606701B2 (en) Paint composition
JP5685002B2 (en) Emulsion for damping material and damping material composition
JP2630460B2 (en) Water-based glossy paint composition
JP3380059B2 (en) Acrylic emulsion containing alkoxysilyl group
JP3582920B2 (en) Aqueous paint composition for road marking
JP2657216B2 (en) Paint composition
JP4443089B2 (en) Heat drying emulsion
JP2000239539A (en) Resin composition and its production
JPH11263802A (en) Aqueous resin composition, its preparation and coated article
JP4282145B2 (en) Method for stabilizing dispersion of resin particles
JP5001829B2 (en) Aqueous resin dispersion, aqueous resin composition, and method for producing aqueous resin composition
JP3519119B2 (en) Aqueous coating composition and method for producing the same
JP2001081356A (en) Inorganic pigment and water-based resin composition containing the same
JP3468583B2 (en) Anionic water-dispersed resin composition and method for producing the same
JPH11181210A (en) Stabilized aqueous hardenable composition

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050117

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees