JP2005035904A - Method for producing 2-hydroxycarboxylic acid - Google Patents
Method for producing 2-hydroxycarboxylic acid Download PDFInfo
- Publication number
- JP2005035904A JP2005035904A JP2003198239A JP2003198239A JP2005035904A JP 2005035904 A JP2005035904 A JP 2005035904A JP 2003198239 A JP2003198239 A JP 2003198239A JP 2003198239 A JP2003198239 A JP 2003198239A JP 2005035904 A JP2005035904 A JP 2005035904A
- Authority
- JP
- Japan
- Prior art keywords
- acid
- hydroxycarboxylic acid
- reaction
- producing
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、医薬や農薬などの合成原料として重要な化合物である2−ヒドロキシカルボン酸、さらには2−オキソカルボン酸エステルを製造する方法に関する。
【0002】
【従来の技術】
2−ヒドロキシカルボン酸の一般的な製造法として、(A)2−アセチルオキシ酪酸ニトリルを加水分解する方法(例えば特許文献1参照)、(B)1,2−ブタンジオールを微生物(ロドコッカス)で酸化する方法(例えば特許文献2参照)、(C)ブテンに四二酸化窒素を反応させる方法(例えば特許文献3参照)等が知られている。
【0003】
【特許文献1】
特開平11−180928号公報
【特許文献2】
特開平2−257874号公報
【特許文献3】
特開昭50−14625号公報
【0004】
【発明が解決しようとする課題】
前記(A)の2−アセチルオキシ酪酸ニトリルを加水分解する方法は、反応収率も高く、優れた方法であるが、原料を製造するのに複雑なプロセスを経由するので、工業的製造法とはいえない。(B)の1,2−ブタンジオールを微生物(ロドコッカス)で酸化する方法は、安価な原料から製造できる点は優れているが、基質濃度が低く、長時間の反応時間が必要である等、工業的な製造法とはいえない。(C)のブテンに四二酸化窒素を反応させる方法は特別な設備が必要である等、何れの製造法も工業的製造法としては欠点がある。従って、入手容易な原料から、汎用的な製造装置を使用して2−ヒドロキシカルボン酸を製造する工業的に有利な方法が望まれていた。
【0005】
【課題を解決するための手段】
本発明者らは前記課題を解決する方法について鋭意検討した結果、本発明に到達した。すなわち、一般式(1)
【0006】
【化5】
【0007】
(ここで、R1は炭素数1〜4のアルキル基を示す。)で表されるクロルカルボン酸を、アルカリ水溶液でpHを9以下に保ちながら反応させることで、一般式(2)
【0008】
【化6】
【0009】
(ここで、R1は前記と同様)で表される2−ヒドロキシカルボン酸を製造する方法である。さらには、一般式(2)をエステル化して一般式(3)
【0010】
【化7】
【0011】
(ここで、R1は前記と同様、R2は炭素数1〜4のアルキル基を示す。)で表される2−ヒドロキシカルボン酸エステルを製造し、次いで次亜塩素酸で酸化して一般式(4)
【0012】
【化8】
【0013】
(ここで、R1、R2は前記と同様)で表される2−オキソカルボン酸エステルを製造する方法である。一般に、ハロゲン化物をアルカリ、例えば水酸化ナトリウム水溶液と加熱して、クロル基を水酸基に変換する方法は良く知られているが、一般式(1)の2−クロルカルボン酸の場合には、ナトリウム塩を加熱するとオリゴマーやポリマーが生成する(Liebigs Annalen/Recueil(1997)、(1)、81−85)ことも知られている。また、過剰の水酸化ナトリウムを使用すると脱塩酸反応が進行し、不純物が多く生成し、収率が低下する。脱塩酸を抑制する目的で反応温度80℃以下に低下させると、反応の進行は極端に低下するために、工業的製造法としては採用できない。
【0014】
【化9】
【0015】
設備面では、強アルカリ性の反応液はガラスを腐食することから、グラスライニングの反応設備が使用できず、また、原料の2−クロルカルボン酸中には分解生成物の塩酸が混入していることが多いために、SUSの汎用装置は使用できず、特殊な生産設備が必要となる。このように生産設備の制約も多いことから、2−クロルカルボン酸を原料とする2−ヒドロキシカルボン酸の工業的製造法は知られていなかった。
【0016】
本発明のpHで実施すると、驚くべきことに非常に高い選択率でクロル基が水酸基に変換できることを見出し、本発明を完成させた。尚、本発明を実施するには、原料の2−クロルカルボン酸に耐性のあるグラスライニングの汎用製造設備が一貫して使用できるので、工業的な製造法といえる。
【0017】
【発明の実施の形態】
本発明を具体的に述べる。原料の一般式(1)で表される2−クロルカルボン酸としては、2−クロル酪酸、2−クロル吉草酸、2−クロルヘキサン酸、2−クロルヘプタン酸等が挙げられるが、好ましくは2−クロル酪酸である。これらの2−クロルカルボン酸は化学純度が90%以上のものが好ましいが、カルボン酸をクロル化して得た反応液の濃縮物をそのまま使用することもできる。また、光学活性な2−クロルカルボン酸も同様に使用することができる。
【0018】
反応は2−クロルカルボン酸をそのまま、あるいは溶媒で希釈して実施する。
希釈溶媒としては水、メタノール、エタノール等のアルコール類、あるいはこれらの混合物が挙げられるが、好ましくは水である。
【0019】
使用するアルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属水酸化物、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム等のアルカリ金属炭酸水素塩、炭酸ナトリウム、炭酸カリウム、炭酸リチウム等のアルカリ金属炭酸塩、水酸化カルシウム、水酸化マグネシウム等のアルカリ土類金属水酸化物が挙げられるが、好ましくは水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属水酸化物、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム等のアルカリ金属炭酸水素塩、炭酸ナトリウム、炭酸カリウム、炭酸リチウム等のアルカリ金属炭酸塩であり、特に好ましくは水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウムである。これらは水溶液や固体のままで反応に供給することもできるが、水溶液として滴下する方がpH管理も容易であり、好ましい。アルカリ水溶液の濃度は特に規定しないが、5〜48%水溶液が使用できる。2−クロルカルボン酸を希釈しないで使用する場合には、急激な反応を抑えるためにもアルカリ水溶液の濃度は薄い方が好ましいが、2−クロルカルボン酸を予め溶媒で希釈してある場合には、反応液濃度を実用的な濃度にするために添加するアルカリ水溶液の濃度は濃い方が好ましい。反応温度は80℃以上であるが、好ましくは85℃以上、さらに好ましくは90℃以上である。温度が低いと反応が遅く、工業生産する上で好ましくない。
【0020】
反応時間は2−クロルカルボン酸やアルカリの種類、反応液濃度、反応温度によって異なるが、通常は1〜20時間である。
【0021】
反応方法は、2−クロルカルボン酸をそのまま、あるいは溶媒に希釈して反応装置に仕込み、所定温度で攪拌しながら、アルカリをpHが9以下となるように、好ましくはpH6〜9を維持するように滴下する方法が採用できる。
【0022】
反応終了後、生成物の2−ヒドロキシカルボン酸を単離する。単離法は通常の方法が採用できる。例えば、(i)室温まで冷却してから硫酸、塩酸等の無機酸を添加し、2−ヒドロキシカルボン酸を遊離状態にした後、有機溶媒で抽出する方法、(ii)カルシウム塩として水溶液から濾過分離し、改めて水中で解塩し、遊離した2−ヒドロキシカルボン酸を回収する方法等があり、いずれの方法も採用する事ができる。
【0023】
かくして得られた2−ヒドロキシカルボン酸を炭素数1〜4のアルコールと反応させて2−ヒドロキシカルボン酸エステルを製造する。エステル化反応は硫酸等の酸触媒共存下、2−ヒドロキシカルボン酸とアルコールを加熱する通常の方法が採用できる。ここで製造した2−ヒドロキシカルボン酸エステルを蒸留等で精製するか、あるいは濃縮した粗体を次工程の酸化反応に供する。
【0024】
2−ヒドロキシカルボン酸エステルを酸化して2−オキソカルボン酸エステルを製造する。酸化反応はビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート等のヒンダード2級アミン存在下で次亜塩素酸による酸化法が採用できる。酸化剤として使用する次亜塩素酸はアルカリ金属塩水溶液を使用するのが好ましい。反応液は、予め、または反応の途中で酸を加えて反応液のpHを6以下に保ちながら、次亜塩素酸はアルカリ金属塩水溶液を滴下する方法が好ましい。
【0025】
かくして得られた2−オキソカルボン酸エステルは通常の方法で単離する。例えば、酸性水溶液から有機溶媒で抽出した後、濃縮・蒸留することにより、高純度の2−オキソカルボン酸エステルが得られる。
【0026】
【実施例】
以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
【0027】
なお、実施例において、反応液の組成分析や蒸留品の化学純度分析はHPLC、GCのarea%で算出した。分析条件は対象物によって異なるので一律には記載できないが、代表例として2−クロル酪酸、2−ヒドロキシ酪酸のHPLC分析条件を記載する。
HPLC分析条件
【0028】
参考例1 2−クロル酪酸の製造法
攪拌機、ジムロートコンデンサー、温度計、塩素ガス導入器を装着した1lの4口フラスコに、酪酸441g(5.0モル)と無水酪酸80g(0.5モル)を仕込み、115〜125℃を保ちながら塩素ガスを12l/hr導入し、12時間反応した。反応終了後、水9gを添加して80〜90℃で30分間攪拌して2−クロル酪酸反応液716g得た。化学純度は95.1%であり、多種類の不純物が検出されたが、これを原料とした。
【0029】
実施例1
攪拌機、ジムロートコンデンサー、温度計、塩素ガス導入器を装着した1lの4口フラスコ(ハリオガラス 柴田ハリオ製)に、参考例で製造した2−クロル酪酸200.3g(1.55モル)を仕込み、60℃で攪拌した。pHを7以下に保ちながら25%水酸化ナトリウム水溶液を滴下し、反応液温度を100℃まで昇温させた。100℃にて、pHを7〜9に保ちながら25%水酸化ナトリウム水溶液を約6時間で滴下した。添加した25%水酸化ナトリウム水溶液は505g(3.16モル)であった。
【0030】
反応終了後、攪拌しながら室温まで冷却して分析した結果、2−ヒドロキシ酪酸の収率は93%であり、脱塩酸による副生物クロトン酸は0.3%であった。また、ガラス製のフラスコは全く失透しなかった。
【0031】
実施例2
実施例1と同様にして、pHを6〜7に保ちながら25%水酸化ナトリウム水溶液を約6時間で滴下した。添加した25%水酸化ナトリウム水溶液は482g(3.01モル)であった。同様にして反応液を分析した結果、2−ヒドロキシ酪酸の収率は84%、未反応2−クロル酪酸は約7%であり、脱塩酸による副生物クロトン酸は0.3%であった。また、ガラス製のフラスコは全く失透しなかった。
【0032】
比較例1
攪拌機、温度計、ジムロートコンデンサー、滴下ロートを装着した1lの4口フラスコ(ハリオガラス 柴田ハリオ製)に、2−クロロ酪酸200.3g(1.55モル 化学純度95.1%)を仕込み、60℃で攪拌した。25%水酸化ナトリウム水溶液515g(3.22モル)を滴下しながら100℃に昇温し、約1.5時間で全量を滴下した。反応液のpHは10以上であった。約100℃でさらに7時間攪拌を継続したのち、室温まで冷却した。反応液のpHは12.6であり、分析したところ、2−ヒドロキシ酪酸の収率は88%であったが、フラスコは失透していた。
【0033】
比較例2
比較例1と同様にして、反応温度を70〜80℃で実施したところ、2−クロル酪酸の転化率を80%以上にするために20時間を要した。反応液を分析した結果、2−ヒドロキシ酪酸の収率は77%であり、脱塩酸生成物であるクロトン酸が約7.5%生成していた。
実施例3
実施例1と同様にして、2−ヒドロキシ酪酸150.0g(1.44モル)を含む反応液を得た。室温から35℃で攪拌しながら95%硫酸88g(0.85モル)を約1時間で滴下したのち、メチルエチルケトン400gで2回抽出した。抽出した有機層を濃縮し、2−ヒドロキシ酪酸144.0g(1.38モル)を含む濃縮液180gを得た。
【0034】
攪拌機、温度計、ジムロートコンデンサーを装着した1lの3口フラスコに、濃縮液180gとメタノール441.6g(13.8モル)、および98%硫酸1.6gを仕込み、攪拌しながら約2時間加熱還流した。室温まで冷却後、炭酸ナトリウム1.7gを添加して約10分攪拌した。
【0035】
ジムロートコンデンサーを5段の精留塔に置き換え、常圧でメタノールを回収したのち減圧蒸留に切り替え、70〜74℃/4.0〜0.7kPaの留分として2−ヒドロキシ酪酸メチル139.4g(1.18モル、化学純度97%)を得た。
【0036】
攪拌機、温度計、pHセンサー、滴下ロートを装着した500mlの4口フラスコに、前記2−ヒドロキシ酪酸メチル24.4g(0.2モル)、酢酸エチル90g、サノールLS−770(三共製)から調整した酸化触媒調整液0.4g(参考例2に記載)、水2.3g、12wt%塩酸水溶液2.4gを仕込み、10〜15℃に冷却しながら攪拌した。13%次亜塩素酸ナトリウム水溶液120.0g(日本軽金属製)を5時間かけて添加し、さらに20〜25℃で2時間攪拌した。この間、反応液のpHを3〜4.5保持するために12wt%塩酸水溶液を添加した。反応終了後、反応液に炭酸ナトリウムを添加してpHを6〜6.5に調整したのち、酢酸エチル層を分液した。さらに水層を90gの酢酸エチルで抽出し、両酢酸エチル層を混合し、減圧濃縮して2−オキソ酪酸メチル22.0g(0.19モル)を含む濃縮液28gを得た。
【0037】
約5段の精留塔を装着した蒸留装置に前記濃縮液28gとビスフェノールAタイプのエポキシ化合物YD−128 0.2g(東都化成製)を仕込み、減圧蒸留し、70〜75℃/5.3〜2.7kPaの留分として2−オキソ酪酸メチル20.1g(0.17モル、化学純度98%)を得た。
【0038】
参考例2 サノールLS−770(三共製)から酸化触媒調整液の製造法
攪拌機、温度計、ジムロートコンデンサー、滴下ロートを装着した500mlの4口フラスコに、酢酸エチル225gとビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート(サノールLS−770 三共製)35gを仕込み、常温で攪拌して溶解させた。次いで、攪拌しながら35wt%過酸化水素水35gを添加し、攪拌しながら60℃まで昇温して20時間攪拌した。反応液を静置して2層分離させ、下層の水層を除去した。上層の酢酸エチル層を25gの水で洗浄し、触媒調整液247g得た。
【0039】
【発明の効果】
本発明によれば、通常のグラスライニングの反応設備を使用して2−ヒドロキシカルボン酸を高収率で製造することができる。得られた2−ヒドロキシカルボン酸は医薬中間体として有用な2−オキソカルボン酸エステルの製造原料として使用することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing 2-hydroxycarboxylic acid and further 2-oxocarboxylic acid ester, which are important compounds as synthetic raw materials for pharmaceuticals and agricultural chemicals.
[0002]
[Prior art]
As a general method for producing 2-hydroxycarboxylic acid, (A) a method of hydrolyzing 2-acetyloxybutyric acid nitrile (see, for example, Patent Document 1), (B) 1,2-butanediol is converted into a microorganism (Rhodococcus) Methods for oxidizing (see, for example, Patent Document 2), (C) methods for reacting butene with nitrogen tetraoxide (for example, see Patent Document 3), and the like are known.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-180928 [Patent Document 2]
Japanese Patent Laid-Open No. 2-257874 [Patent Document 3]
Japanese Patent Laid-Open No. 50-14625
[Problems to be solved by the invention]
The method for hydrolyzing 2-acetyloxybutyric acid nitrile of (A) is also an excellent method with a high reaction yield, but since it goes through a complicated process to produce a raw material, I can't say that. The method of oxidizing (B) 1,2-butanediol with a microorganism (Rhodococcus) is excellent in that it can be produced from an inexpensive raw material, but the substrate concentration is low and a long reaction time is required. It is not an industrial manufacturing method. The method of reacting nitrogen tetraoxide with butene of (C) has disadvantages as an industrial production method such that special equipment is required. Therefore, an industrially advantageous method for producing 2-hydroxycarboxylic acid from a readily available raw material using a general-purpose production apparatus has been desired.
[0005]
[Means for Solving the Problems]
As a result of intensive studies on a method for solving the above problems, the present inventors have reached the present invention. That is, the general formula (1)
[0006]
[Chemical formula 5]
[0007]
(Here, R 1 represents an alkyl group having 1 to 4 carbon atoms.) By reacting the chlorocarboxylic acid represented by the formula (2) while maintaining the pH at 9 or less with an aqueous alkaline solution.
[0008]
[Chemical 6]
[0009]
(Where R 1 is the same as described above). Furthermore, general formula (2) is esterified to give general formula (3)
[0010]
[Chemical 7]
[0011]
(Wherein R 1 is the same as described above, R 2 is an alkyl group having 1 to 4 carbon atoms), and the 2-hydroxycarboxylic acid ester represented by Formula (4)
[0012]
[Chemical 8]
[0013]
(Wherein R 1 and R 2 are the same as described above). In general, a method of converting a chloro group to a hydroxyl group by heating a halide with an alkali such as an aqueous sodium hydroxide solution is well known. In the case of 2-chlorocarboxylic acid of the general formula (1), sodium is used. It is also known that oligomers and polymers are formed when salts are heated (Liebigs Analen / Recueil (1997), (1), 81-85). In addition, when excess sodium hydroxide is used, the dehydrochlorination reaction proceeds, a large amount of impurities are generated, and the yield decreases. If the reaction temperature is lowered to 80 ° C. or lower for the purpose of suppressing dehydrochlorination, the progress of the reaction is extremely lowered and cannot be adopted as an industrial production method.
[0014]
[Chemical 9]
[0015]
In terms of equipment, glassy-lined reaction equipment cannot be used because strongly alkaline reaction liquids corrode glass, and the decomposition product hydrochloric acid is mixed in 2-chlorocarboxylic acid as a raw material. For this reason, SUS general-purpose devices cannot be used, and special production facilities are required. Thus, since there are many restrictions on production facilities, an industrial production method of 2-hydroxycarboxylic acid using 2-chlorocarboxylic acid as a raw material has not been known.
[0016]
Surprisingly, it has been found that when carried out at the pH of the present invention, a chloro group can be converted to a hydroxyl group with very high selectivity, and the present invention has been completed. In order to carry out the present invention, it can be said that it is an industrial production method because general-purpose production equipment for glass lining resistant to 2-chlorocarboxylic acid as a raw material can be used consistently.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described. Examples of the 2-chlorocarboxylic acid represented by the general formula (1) of the raw material include 2-chlorobutyric acid, 2-chlorovaleric acid, 2-chlorohexanoic acid, 2-chloroheptanoic acid, etc., preferably 2 -Chlorbutyric acid. These 2-chlorocarboxylic acids preferably have a chemical purity of 90% or more, but a concentrate of the reaction solution obtained by chlorinating the carboxylic acid can be used as it is. Moreover, optically active 2-chlorocarboxylic acid can be used similarly.
[0018]
The reaction is carried out by diluting 2-chlorocarboxylic acid as it is or with a solvent.
Examples of the diluting solvent include water, alcohols such as methanol and ethanol, or a mixture thereof, preferably water.
[0019]
Examples of the alkali used include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide, alkali metal hydrogen carbonates such as sodium hydrogen carbonate, potassium hydrogen carbonate and lithium hydrogen carbonate, sodium carbonate, potassium carbonate, Alkali metal carbonates such as lithium carbonate and alkaline earth metal hydroxides such as calcium hydroxide and magnesium hydroxide can be mentioned, but preferably alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide Alkali metal hydrogen carbonates such as sodium hydrogen carbonate, potassium hydrogen carbonate and lithium hydrogen carbonate, and alkali metal carbonates such as sodium carbonate, potassium carbonate and lithium carbonate, particularly preferably sodium hydroxide, potassium hydroxide and hydrogen carbonate Sodium, potassium bicarbonate, sodium carbonate It is a potassium carbonate. These can be supplied to the reaction in the form of an aqueous solution or solid, but dropping as an aqueous solution is preferable because pH control is easy. The concentration of the alkaline aqueous solution is not particularly limited, but a 5 to 48% aqueous solution can be used. When 2-chlorocarboxylic acid is used without diluting, it is preferable that the concentration of the alkaline aqueous solution is low in order to suppress a rapid reaction. However, when 2-chlorocarboxylic acid is previously diluted with a solvent, The concentration of the aqueous alkali solution added to make the reaction solution concentration practical is preferably higher. Although reaction temperature is 80 degreeC or more, Preferably it is 85 degreeC or more, More preferably, it is 90 degreeC or more. If the temperature is low, the reaction is slow, which is not preferable for industrial production.
[0020]
The reaction time varies depending on the type of 2-chlorocarboxylic acid and alkali, the concentration of the reaction solution, and the reaction temperature, but is usually 1 to 20 hours.
[0021]
The reaction method is such that 2-chlorocarboxylic acid is used as it is or diluted in a solvent and charged into a reaction apparatus, and while stirring at a predetermined temperature, the alkali is preferably maintained at pH 6 to 9 so that the pH is 9 or less. The method of dripping can be adopted.
[0022]
After the reaction is complete, the product 2-hydroxycarboxylic acid is isolated. A usual method can be adopted as the isolation method. For example, (i) a method in which an inorganic acid such as sulfuric acid or hydrochloric acid is added after cooling to room temperature to make 2-hydroxycarboxylic acid in a free state, followed by extraction with an organic solvent, (ii) filtration from an aqueous solution as a calcium salt There is a method of separating, re-salting in water, and recovering free 2-hydroxycarboxylic acid, and any method can be employed.
[0023]
The 2-hydroxycarboxylic acid thus obtained is reacted with an alcohol having 1 to 4 carbon atoms to produce a 2-hydroxycarboxylic acid ester. For the esterification reaction, a usual method of heating 2-hydroxycarboxylic acid and alcohol in the presence of an acid catalyst such as sulfuric acid can be employed. The 2-hydroxycarboxylic acid ester produced here is purified by distillation or the like, or the concentrated crude product is subjected to an oxidation reaction in the next step.
[0024]
2-Hydroxycarboxylic acid ester is oxidized to produce 2-oxocarboxylic acid ester. As the oxidation reaction, an oxidation method using hypochlorous acid can be employed in the presence of a hindered secondary amine such as bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate. As the hypochlorous acid used as the oxidizing agent, an aqueous alkali metal salt solution is preferably used. The reaction solution is preferably added by adding an aqueous alkali metal salt solution to hypochlorous acid while keeping the pH of the reaction solution at 6 or less by adding an acid in advance or in the middle of the reaction.
[0025]
The 2-oxocarboxylic acid ester thus obtained is isolated by a conventional method. For example, high-purity 2-oxocarboxylic acid ester can be obtained by extraction from an acidic aqueous solution with an organic solvent, followed by concentration and distillation.
[0026]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.
[0027]
In the examples, the composition analysis of the reaction solution and the chemical purity analysis of the distillate were calculated by area% of HPLC and GC. The analysis conditions vary depending on the object and cannot be described uniformly, but as typical examples, the HPLC analysis conditions for 2-chlorobutyric acid and 2-hydroxybutyric acid are described.
HPLC analysis conditions
[0028]
Reference Example 1 2-Chlorbutyric Acid Production Method A 1 l 4-necked flask equipped with a stirrer, Dimroth condenser, thermometer, and chlorine gas introducer was charged with 441 g (5.0 mol) butyric acid and 80 g (0.5 mol) butyric anhydride. Then, chlorine gas was introduced at 12 l / hr while maintaining 115 to 125 ° C., and the reaction was carried out for 12 hours. After completion of the reaction, 9 g of water was added and stirred at 80 to 90 ° C. for 30 minutes to obtain 716 g of a 2-chlorobutyric acid reaction solution. The chemical purity was 95.1%, and many types of impurities were detected.
[0029]
Example 1
Into a 1 liter four-necked flask equipped with a stirrer, a Dimroth condenser, a thermometer, and a chlorine gas introducer (Hario Glass manufactured by Shibata Hario) was charged 200.3 g (1.55 mol) of 2-chlorobutyric acid prepared in Reference Example, Stir at 60 ° C. While maintaining the pH at 7 or less, a 25% aqueous sodium hydroxide solution was added dropwise to raise the temperature of the reaction solution to 100 ° C. At 100 ° C., a 25% aqueous sodium hydroxide solution was added dropwise over about 6 hours while maintaining the pH at 7-9. The added 25% aqueous sodium hydroxide solution was 505 g (3.16 mol).
[0030]
As a result of analyzing by cooling to room temperature with stirring after the reaction was completed, the yield of 2-hydroxybutyric acid was 93%, and the byproduct crotonic acid by dehydrochlorination was 0.3%. Further, the glass flask was not devitrified at all.
[0031]
Example 2
In the same manner as in Example 1, a 25% aqueous sodium hydroxide solution was added dropwise over about 6 hours while maintaining the pH at 6-7. The added 25% aqueous sodium hydroxide solution was 482 g (3.01 mol). As a result of analyzing the reaction solution in the same manner, the yield of 2-hydroxybutyric acid was 84%, unreacted 2-chlorobutyric acid was about 7%, and byproduct crotonic acid by dehydrochlorination was 0.3%. Further, the glass flask was not devitrified at all.
[0032]
Comparative Example 1
A 1 l four-necked flask equipped with a stirrer, thermometer, Dimroth condenser, and dropping funnel (Hario Glass, manufactured by Hario Shibata) was charged with 200.3 g of 2-chlorobutyric acid (1.55 mol, chemical purity 95.1%), 60 Stir at ° C. While dropping 515 g (3.22 mol) of 25% aqueous sodium hydroxide solution, the temperature was raised to 100 ° C., and the whole amount was added dropwise in about 1.5 hours. The pH of the reaction solution was 10 or more. After further stirring for 7 hours at about 100 ° C., the mixture was cooled to room temperature. The pH of the reaction solution was 12.6, and when analyzed, the yield of 2-hydroxybutyric acid was 88%, but the flask was devitrified.
[0033]
Comparative Example 2
When the reaction temperature was 70 to 80 ° C. in the same manner as in Comparative Example 1, it took 20 hours to make the conversion rate of 2-chlorobutyric acid 80% or more. As a result of analyzing the reaction solution, the yield of 2-hydroxybutyric acid was 77%, and about 7.5% of crotonic acid as a dehydrochlorination product was produced.
Example 3
In the same manner as in Example 1, a reaction solution containing 150.0 g (1.44 mol) of 2-hydroxybutyric acid was obtained. While stirring at room temperature to 35 ° C., 88 g (0.85 mol) of 95% sulfuric acid was added dropwise over about 1 hour, and then extracted twice with 400 g of methyl ethyl ketone. The extracted organic layer was concentrated to obtain 180 g of a concentrated solution containing 144.0 g (1.38 mol) of 2-hydroxybutyric acid.
[0034]
A 1 liter three-necked flask equipped with a stirrer, thermometer and Dimroth condenser was charged with 180 g of concentrated liquid, 441.6 g (13.8 mol) of methanol, and 1.6 g of 98% sulfuric acid, and heated under reflux for about 2 hours with stirring. did. After cooling to room temperature, 1.7 g of sodium carbonate was added and stirred for about 10 minutes.
[0035]
The Dimroth condenser was replaced with a 5-stage rectification column, methanol was recovered at normal pressure, and then switched to vacuum distillation. 139.4 g of methyl 2-hydroxybutyrate as a fraction of 70 to 74 ° C./4.0 to 0.7 kPa ( 1.18 mol, chemical purity 97%).
[0036]
A 500 ml four-necked flask equipped with a stirrer, thermometer, pH sensor, and dropping funnel was prepared from 24.4 g (0.2 mol) of methyl 2-hydroxybutyrate, 90 g of ethyl acetate and Sanol LS-770 (manufactured by Sankyo). The prepared oxidation catalyst adjustment liquid 0.4 g (described in Reference Example 2), water 2.3 g, and 12 wt% aqueous hydrochloric acid solution 2.4 g were charged and stirred while cooling to 10 to 15 ° C. 120.0 g of 13% sodium hypochlorite aqueous solution (manufactured by Nippon Light Metal) was added over 5 hours, and the mixture was further stirred at 20 to 25 ° C. for 2 hours. During this time, a 12 wt% aqueous hydrochloric acid solution was added to maintain the pH of the reaction solution at 3 to 4.5. After completion of the reaction, sodium carbonate was added to the reaction solution to adjust the pH to 6 to 6.5, and then the ethyl acetate layer was separated. Further, the aqueous layer was extracted with 90 g of ethyl acetate, and both ethyl acetate layers were mixed and concentrated under reduced pressure to obtain 28 g of a concentrated solution containing 22.0 g (0.19 mol) of methyl 2-oxobutyrate.
[0037]
A distillation apparatus equipped with about 5 rectification towers was charged with 28 g of the concentrated liquid and 0.2 g of bisphenol A type epoxy compound YD-128 (manufactured by Tohto Kasei) and distilled under reduced pressure, 70 to 75 ° C./5.3 As a fraction of ˜2.7 kPa, 20.1 g (0.17 mol, chemical purity 98%) of methyl 2-oxobutyrate was obtained.
[0038]
Reference Example 2 Production method of oxidation catalyst adjustment liquid from Sanol LS-770 (manufactured by Sankyo) In a 500 ml four-necked flask equipped with a stirrer, thermometer, Dimroth condenser, and dropping funnel, 225 g of ethyl acetate and bis (2,2,6 , 6-tetramethyl-4-piperidyl) sebacate (Sanol LS-770 Sankyo) 35 g was charged and dissolved by stirring at room temperature. Next, 35 g of 35 wt% hydrogen peroxide water was added with stirring, the temperature was raised to 60 ° C. while stirring, and the mixture was stirred for 20 hours. The reaction solution was allowed to stand to separate two layers, and the lower aqueous layer was removed. The upper ethyl acetate layer was washed with 25 g of water to obtain 247 g of a catalyst adjustment solution.
[0039]
【The invention's effect】
According to the present invention, 2-hydroxycarboxylic acid can be produced in a high yield using a normal glass lining reaction equipment. The obtained 2-hydroxycarboxylic acid can be used as a raw material for producing a 2-oxocarboxylic acid ester useful as a pharmaceutical intermediate.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003198239A JP4423494B2 (en) | 2003-07-17 | 2003-07-17 | Method for producing 2-hydroxycarboxylic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003198239A JP4423494B2 (en) | 2003-07-17 | 2003-07-17 | Method for producing 2-hydroxycarboxylic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005035904A true JP2005035904A (en) | 2005-02-10 |
JP4423494B2 JP4423494B2 (en) | 2010-03-03 |
Family
ID=34208074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003198239A Expired - Fee Related JP4423494B2 (en) | 2003-07-17 | 2003-07-17 | Method for producing 2-hydroxycarboxylic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4423494B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102241583A (en) * | 2011-05-13 | 2011-11-16 | 嘉兴市博源生物化工科技有限公司 | Method for synthesizing 2-chlorobutyric acid |
CN102690184A (en) * | 2011-03-24 | 2012-09-26 | 江南大学 | Method for synthesizing alpha-hydroxycarboxylic acid metallic soap by hydrolysis of alpha-halogenated carboxylic acid |
-
2003
- 2003-07-17 JP JP2003198239A patent/JP4423494B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102690184A (en) * | 2011-03-24 | 2012-09-26 | 江南大学 | Method for synthesizing alpha-hydroxycarboxylic acid metallic soap by hydrolysis of alpha-halogenated carboxylic acid |
CN102241583A (en) * | 2011-05-13 | 2011-11-16 | 嘉兴市博源生物化工科技有限公司 | Method for synthesizing 2-chlorobutyric acid |
Also Published As
Publication number | Publication date |
---|---|
JP4423494B2 (en) | 2010-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005170803A (en) | New monomethyl malonate derivative and method for producing the same | |
JP4423494B2 (en) | Method for producing 2-hydroxycarboxylic acid | |
JPH06509553A (en) | Method for producing phenyl ester of substituted acid | |
US20230002305A1 (en) | Processes for preparing a (1,2-dimethyl-3-methylenecyclopentyl)acetate compound and (1,2-dimethyl-3-methylenecyclopentyl)acetaldehyde | |
JP5018067B2 (en) | Method for producing fluorine-containing alkane esters | |
EP1970369B1 (en) | Method for producing purified formylcyclopropane compound and intermediate of such formylcyclopropane compound | |
JP5009306B2 (en) | Process for producing 2-isopropenyl-5-methyl-4-hexen-1-yl 3-methyl-2-butenoate | |
JP5000031B2 (en) | Method for producing aromatic-o-dialdehyde compound | |
JP2003192626A (en) | Method for producing 2-adamantanone | |
US6787665B2 (en) | Production method of substituted benzenes | |
JP2007131600A (en) | Production method for fluorine-containing lactic acid derivative, and its intermediate | |
KR100654923B1 (en) | Process for continuously preparing high purity chiral amide compound | |
JP3001626B2 (en) | 2-Chloropropionaldehyde trimer and method for producing the same | |
JP2008297234A (en) | Method for producing bromotetrafluoroalkanol | |
JP4374987B2 (en) | Method for producing 2-bromocyclopentanone | |
JP2000063321A (en) | Production of long-chain beta-hydroxycarboxylic acid of high optical purity | |
US20180057429A1 (en) | System and method for preparing aromatic derivative | |
JPH11189566A (en) | Production of fluoroalkylcarboxylic acid | |
JP5012175B2 (en) | Method for producing 3,3,3-trifluoro-2-hydroxy-2-trifluoromethylpropanoic acid ester | |
JP2005213149A (en) | Method for producing trifluoromethyl-substituted acetophenone | |
JP4475862B2 (en) | Method for producing hydroxylactone | |
JP3312414B2 (en) | Process for producing dienoic halides | |
JP2001233868A (en) | Method for producing epoxide | |
JP2006327939A (en) | Method for producing tetrahydrofuran thiocarboxylic acid | |
JPH0469371A (en) | Purification of dimethylformamide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060613 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060613 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060613 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090804 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090917 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091110 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091124 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4423494 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121218 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121218 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131218 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131218 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141218 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |