JP2005034797A - Exhaust gas cleaning filter and production method of filter element - Google Patents

Exhaust gas cleaning filter and production method of filter element Download PDF

Info

Publication number
JP2005034797A
JP2005034797A JP2003276407A JP2003276407A JP2005034797A JP 2005034797 A JP2005034797 A JP 2005034797A JP 2003276407 A JP2003276407 A JP 2003276407A JP 2003276407 A JP2003276407 A JP 2003276407A JP 2005034797 A JP2005034797 A JP 2005034797A
Authority
JP
Japan
Prior art keywords
exhaust gas
filter
filter element
sewage sludge
incineration ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003276407A
Other languages
Japanese (ja)
Inventor
Yoichi Sugiyama
洋一 杉山
Yoshiro Kobayashi
芳郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2003276407A priority Critical patent/JP2005034797A/en
Publication of JP2005034797A publication Critical patent/JP2005034797A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Processing Of Solid Wastes (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas clarifying filter which can be manufactured at a low cost and can efficiently catch particulate materials in the exhaust gas. <P>SOLUTION: In the exhaust gas cleaning filter for filtering the particulate materials contained in the exhaust gas, either one of a filter element which is made by charging particles obtained by calcining sewage sludge incineration ash or the filter element of a porous body obtained by molding pelletized sewage sludge incineration ash to a prescribed shape and then calcining, or their combination is used as the filter element of the filter. Thereby the particulate materials in the exhaust gas can be efficiently caught and the filter can be manufactured at a low cost. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ディーゼル車から排出される排ガスを浄化するフィルタに関し、特に、下水汚泥焼却灰からなる排ガス浄化用フィルタおよびそのフィルタエレメントの製造方法に関する。   The present invention relates to a filter for purifying exhaust gas discharged from a diesel vehicle, and more particularly to an exhaust gas purification filter made of sewage sludge incineration ash and a method for manufacturing the filter element.

ディーゼルエンジン排ガスなどに含まれる粒子状物質は、1ミクロン以下の微粒子物質が多く、これらが大気中に放出されると、人体に影響を与えるおそれがある。そのため、排ガス発生源においては、排ガス中の微粒子物質を十分に除去し、清浄化された排ガスを排出する必要がある。   Particulate matter contained in diesel engine exhaust gas and the like is mostly particulate matter of 1 micron or less, and if these are released into the atmosphere, there is a risk of affecting the human body. Therefore, in the exhaust gas generation source, it is necessary to sufficiently remove the particulate matter in the exhaust gas and discharge the cleaned exhaust gas.

一般に、これらの粒子状物質を除去する方法として、耐熱性のセラミックフィルタに排ガスを通過させ、フィルタ上に捕捉された粒子状物質を加熱し、燃焼除去する方法が知られている。例えば、炭化珪素粒子を構成材料とする多孔質のハニカム構造体において、その気孔率を所定範囲に収めることにより、自動車排ガスの濾過速度に対応したフィルタが提案されている(例えば、特許文献1参照。)。   Generally, as a method for removing these particulate substances, a method is known in which exhaust gas is passed through a heat-resistant ceramic filter, and the particulate substances trapped on the filter are heated and removed by combustion. For example, in a porous honeycomb structure using silicon carbide particles as a constituent material, a filter corresponding to the filtration rate of automobile exhaust gas has been proposed by keeping the porosity within a predetermined range (see, for example, Patent Document 1). .)

特開2001−199777号公報JP 2001-199777 A

しかしながら、多孔質セラミックスを構成材料とするフィルタは、その形状構造が複雑になるほど、組成が安定した高価な原材料が必要となり、厳密な焼成管理が要求されることから、焼成品が高価になるという問題がある。   However, the more complex the shape structure of the filter made of porous ceramics is, the more expensive raw materials with a stable composition are required, and strict firing control is required. There's a problem.

本発明は、安価に製造され、かつ、排ガス中の粒子状物質を効率的に捕集できる排ガス浄化用フィルタを提供することを課題とする。   An object of the present invention is to provide an exhaust gas purifying filter that is manufactured at low cost and can efficiently collect particulate matter in exhaust gas.

一般に、都市などの下水処理において大量に発生する下水汚泥は、焼却炉などで高温に加熱され、下水汚泥焼却灰の状態に減容された後、廃棄物として埋め立てられている。しかし、新たな埋立地の確保が困難であることから、これらの下水汚泥焼却灰を資源として再利用する方法が望まれている。そこで、本発明者は、この下水汚泥焼却灰(以下、単に焼却灰という。)を、ディーゼルエンジン排ガスの浄化用フィルタとして利用する方法を発案し、鋭意検討した結果、焼却灰を造粒し、得られた造粒体を焼成してなる粒子状の焼成体を排ガス流路内に充填し、これに排ガスを通過させることにより、排ガス中の粒子状物質が効率的に濾過されることを見出したのである。   In general, sewage sludge generated in large quantities in sewage treatment in cities and the like is heated to a high temperature in an incinerator or the like and reduced to a state of sewage sludge incineration ash, and then landfilled as waste. However, since it is difficult to secure a new landfill, a method for reusing these sewage sludge incineration ash as resources is desired. Therefore, the present inventor devised a method of using this sewage sludge incineration ash (hereinafter simply referred to as incineration ash) as a filter for purifying diesel engine exhaust gas, and as a result of earnest examination, granulated incineration ash, It has been found that the particulate matter in the exhaust gas is efficiently filtered by filling the exhaust gas passage with a particulate fired body obtained by firing the obtained granulated body and passing the exhaust gas through the exhaust gas passage. It was.

すなわち、粒子状の焼成体が充填されると、焼成体が複雑に入り組む構造となり、排ガス中の粒子状物質が焼成体と接触する面積が大きくなる。そのため、粒子状物質を焼成体表面に効率的に捕集することができる。さらに、焼成体は、焼却灰の組成に起因して、蓄熱特性に加え、燃焼触媒作用を有するため、焼成体表面に捕集された粒子状物質を効率的に燃焼分解することができる。また、本発明の焼成体は、焼却灰を高温加熱(例えば、1050℃)しているから、使用環境に十分耐えうる耐熱性を備えるとともに、その構造上、互いの拘束力が小さいため、熱膨張などによる変形を考慮する必要がない。   That is, when the particulate fired body is filled, the fired body has a complicated structure, and the area where the particulate matter in the exhaust gas comes into contact with the fired body increases. Therefore, the particulate matter can be efficiently collected on the surface of the fired body. Furthermore, since the fired body has a combustion catalytic action in addition to the heat storage characteristics due to the composition of the incinerated ash, the particulate matter collected on the surface of the fired body can be efficiently decomposed by combustion. In addition, since the fired body of the present invention heats the incineration ash at a high temperature (for example, 1050 ° C.), the fired body has heat resistance sufficient to withstand the use environment, and because of its small mutual binding force, There is no need to consider deformation due to expansion or the like.

また、焼却灰を造粒した造粒体を焼成してなる焼成体に代えて、造粒体を所定形状に成型し、その成型体を焼成してなる多孔質体を用いるようにしてもよい。これによれば、排ガス中の粒子状物質は、多孔質体を通過することにより濾過され、効率的に燃焼分解される。   Further, instead of a fired body obtained by firing a granulated body obtained by granulating the incinerated ash, a porous body obtained by molding the granulated body into a predetermined shape and firing the formed body may be used. . According to this, the particulate matter in the exhaust gas is filtered by passing through the porous body and efficiently burned and decomposed.

本発明によれば、下水汚泥焼却灰を用いることにより、排ガス中の粒子状物質を効率的に捕集する排ガス浄化用フィルタを安価に製造することができる。   According to the present invention, by using sewage sludge incineration ash, an exhaust gas purifying filter that efficiently collects particulate matter in exhaust gas can be manufactured at low cost.

以下、本発明が適用されてなる一実施の形態について説明する。図1は、本発明が適用されてなるディーゼルエンジン排ガス浄化用フィルタの構成を説明する部分断面図ある。図に示すように、排ガス浄化用フィルタ(以下、単にフィルタという。)1は、縦型の容器2と、仕切板3,4と、粒子状の焼成体5とを備えて構成される。容器2は、断面円形の筒状に形成される胴部と、テーパ状に窄められてなる頂部および底部とからなり、頂部および底部の中央には、それぞれ排ガス導入口6、浄化ガス排出口7が形成されている。浄化ガス排出口7には、エルボ型の継手8が接続されている。仕切板3は、例えば胴部の略中央の高さに、胴部内壁を周状に渡して形成される一方、仕切板4は、浄化ガス排出口7の手前の底部内壁を周状に渡して形成されている。容器2内の仕切板3,4に挟まれて形成される空間には、粒子状の焼成体5が充填されている。ここで、焼成体5は、排ガスが導入される際、空間内を流動しないように、満遍なく充填されることが好ましい。仕切板3,4は、排ガス通流時の抵抗が小さく、焼成体5が通り抜けない程度の大きさの孔を複数備える網状部材または多孔質体などを用いることができる。   Hereinafter, an embodiment to which the present invention is applied will be described. FIG. 1 is a partial cross-sectional view illustrating the configuration of a diesel engine exhaust gas purification filter to which the present invention is applied. As shown in the figure, an exhaust gas purifying filter (hereinafter simply referred to as a filter) 1 includes a vertical container 2, partition plates 3 and 4, and a particulate fired body 5. The container 2 includes a barrel portion formed in a cylindrical shape having a circular cross section, and a top portion and a bottom portion constricted in a tapered shape, and an exhaust gas introduction port 6 and a purified gas discharge port are respectively provided in the center of the top portion and the bottom portion. 7 is formed. An elbow joint 8 is connected to the purified gas discharge port 7. The partition plate 3 is formed, for example, at a height approximately at the center of the body portion, with the inner wall of the body portion being circumferentially passed, while the partition plate 4 is circumferentially passed with the inner wall of the bottom portion in front of the purified gas discharge port 7. Is formed. A space formed between the partition plates 3 and 4 in the container 2 is filled with a particulate fired body 5. Here, it is preferable that the fired body 5 is uniformly filled so as not to flow in the space when the exhaust gas is introduced. As the partition plates 3 and 4, a net-like member or a porous body having a plurality of holes having such a small resistance as to pass through the exhaust gas that the fired body 5 cannot pass through can be used.

本実施の形態における焼成体5は、一般に、都市などから排出される下水汚泥を焼却炉などで焼却する際に、焼却炉から排出される粉末状の焼却灰を用いて製造されるものである。すなわち、焼却灰に周知のバインダや界面活性材などの結合材および水などを加えて混練し、造粒してなる造粒体を、周知の焼成方法、例えば1050℃の高温で焼成することにより製造することができる。得られた焼成体7は、例えば直径が0.6〜3.4mmの小さな球状の粒子となる。   The fired body 5 in the present embodiment is generally manufactured using powdered incineration ash discharged from an incinerator when incinerating sewage sludge discharged from a city or the like in an incinerator or the like. . That is, by adding a binder such as a known binder or surfactant and water to the incinerated ash, kneading and granulating the granulated product, by firing it at a known firing method, for example, at a high temperature of 1050 ° C. Can be manufactured. The obtained fired body 7 becomes small spherical particles having a diameter of 0.6 to 3.4 mm, for example.

また、上記の造粒体を所定形状に成型し、得られた成型体を焼成してなる多孔質体を、本実施形態の仕切板として用いるようにしてもよい。この場合において、多孔質体の空隙率は、後述する方法により、排ガスの処理速度、つまり空間速度などを考慮して決める必要がある。   Moreover, you may make it use the porous body formed by shape | molding said granulated body in a predetermined shape and baking the obtained molded object as a partition plate of this embodiment. In this case, the porosity of the porous body must be determined by a method described later in consideration of the exhaust gas treatment speed, that is, the space velocity.

次に、上記のように構成されてなる排ガス浄化装置1について、その動作を説明する。ディーゼルエンジンなどから排出される排ガスは、排ガス流路に連結された排ガス浄化装置1の容器2内に導入され、仕切板3の孔を通過して焼成体5が充填される空間(以下、充填層という。)に導かれる。本実施形態の充填層は、従来の多孔質セラミックスの開孔面積と比べ、排ガス通流方向の開口面積が大きいが、その流路は複雑に入り組む構造となるため、排ガスが焼成体5に接触する面積が大きくなる。そのため、排ガスが充填層を通ると、例えば排ガス中の黒鉛粒子状物質が焼成体5の表面に付着して捕集される。   Next, the operation | movement is demonstrated about the exhaust gas purification apparatus 1 comprised as mentioned above. Exhaust gas discharged from a diesel engine or the like is introduced into the container 2 of the exhaust gas purification device 1 connected to the exhaust gas flow path, passes through a hole in the partition plate 3, and is filled with the fired body 5 (hereinafter referred to as filling). Is called a layer). The packed bed of the present embodiment has a large opening area in the exhaust gas flow direction compared to the opening area of the conventional porous ceramics, but the flow path has a complicated structure. The contact area increases. Therefore, when the exhaust gas passes through the packed bed, for example, graphite particulate matter in the exhaust gas adheres to the surface of the fired body 5 and is collected.

このようにして粒子状物質が次第に除去され、清浄化された排ガスは、仕切板4の孔を通り、浄化ガス排出口7から排出される。一方、焼成体5は、焼却灰の組成に起因して、蓄熱特性および燃焼触媒作用を有するため、焼成体5の表面に捕集された粒子状物質は効率的に燃焼分解される。なお、焼成体5の表面に、予め特定の触媒(例えば、3元触媒)や、捕集物質の濡れ性を考慮した反応促進物質などを付着させるようにしてもよい。   In this way, the particulate matter is gradually removed, and the purified exhaust gas passes through the holes of the partition plate 4 and is discharged from the purified gas discharge port 7. On the other hand, since the fired body 5 has heat storage characteristics and combustion catalytic action due to the composition of the incinerated ash, the particulate matter collected on the surface of the fired body 5 is efficiently decomposed by combustion. Note that a specific catalyst (for example, a three-way catalyst) or a reaction promoting substance considering the wettability of the collected substance may be attached to the surface of the fired body 5 in advance.

本実施形態の焼成体5は、例えば篩などにより粗粒と細粒に分別(例えば、0.6〜1.7mmを細粒、1.8〜3.4mmを粗粒とする)し、所定の配合比で混合させることが好ましい。これによれば、充填層における焼成体5の充填状態が密になるため、排ガス流路がより複雑化され、粒子状物質の捕集効率が向上する。また、焼成体5の粒径を排ガスの進行方向に対し変化させ、粒子状物質を大きさ毎に段階的に捕集するようにしてもよい。   The fired body 5 of the present embodiment is separated into coarse particles and fine particles (for example, 0.6 to 1.7 mm as fine particles and 1.8 to 3.4 mm as coarse particles), for example, with a sieve or the like. It is preferable to mix by the compounding ratio. According to this, since the packed state of the fired body 5 in the packed bed becomes dense, the exhaust gas flow path is further complicated, and the collection efficiency of the particulate matter is improved. Further, the particle size of the fired body 5 may be changed with respect to the traveling direction of the exhaust gas, and the particulate matter may be collected step by step for each size.

次に、本実施形態の排ガス浄化用フィルタに用いるフィルタエレメントについて、図に基づいて説明する。図2は、粒子状の焼成体5を充填させてなるフィルタエレメント11の模式図である。図に示すように、例えば円柱状の空間に充填されたフィルタエレメント11は、黒矢印の側面側から導入される排ガス中の粒子状物質を捕集し、清浄化された排ガスを対向する側面から排出する。フィルタエレメント11は、上述したように、焼却灰からなる粒子状の焼成体5を所定空間に充填し、集積させた構造であるから、原料が安価となり、しかも簡単に製造することができる。また、焼成体5は、造粒した焼却灰を高温焼成しているため、耐熱性を有し、高温による熱膨張、変質または溶損などを起こすことがない。また、焼却灰は重金属などを含む場合があるが、本実施形態は気体接触によるため、これらが溶出することがない。   Next, the filter element used for the exhaust gas purification filter of the present embodiment will be described with reference to the drawings. FIG. 2 is a schematic view of a filter element 11 filled with a particulate fired body 5. As shown in the figure, the filter element 11 filled in a cylindrical space, for example, collects particulate matter in the exhaust gas introduced from the side surface of the black arrow and from the side surface facing the cleaned exhaust gas. Discharge. Since the filter element 11 has a structure in which the particulate fired bodies 5 made of incinerated ash are filled in a predetermined space and accumulated as described above, the raw material is inexpensive and can be easily manufactured. Further, since the fired body 5 is obtained by firing the granulated incinerated ash at a high temperature, the fired body 5 has heat resistance and does not cause thermal expansion, alteration, or erosion due to high temperature. Moreover, although incineration ash may contain a heavy metal etc., since this embodiment is based on gas contact, these do not elute.

図3は、図2のフィルタエレメント11の一側面に、焼却灰からなる多孔質体12を仕切板として設けてなるフィルタエレメント13の模式図である。この多孔質体は、焼却灰を造粒してなる造粒体を、例えば仕切板と相似形状に成型し、焼成することにより製造できる。ここにおいて、多孔質体の空隙率は、造粒体の成型時に、造粒体にかける圧力の大きさにより変化する。すなわち、成型圧力が大きければ、造粒体同士の隙間が小さくなり、空隙率が低下する一方、成型圧力を小さく、または無圧にすると、隙間が大きくなり、空隙率が増加する。多孔質体の空隙率は、排ガスの濾過速度(空間速度)などにより適宜決められる。   FIG. 3 is a schematic view of a filter element 13 in which a porous body 12 made of incinerated ash is provided as a partition plate on one side surface of the filter element 11 of FIG. This porous body can be manufactured by molding a granulated body obtained by granulating incinerated ash into, for example, a shape similar to that of a partition plate, and firing. Here, the porosity of a porous body changes with the magnitude | size of the pressure applied to a granulated body at the time of shaping | molding of a granulated body. That is, if the molding pressure is large, the gap between the granulated bodies is reduced and the porosity is reduced. On the other hand, if the molding pressure is reduced or no pressure is applied, the gap is increased and the porosity is increased. The porosity of the porous body is appropriately determined depending on the filtration rate (space velocity) of the exhaust gas.

なお、本実施形態のフィルタエレメントは、上述の実施形態に限られるものではなく、例えば、フィルタエレメント11の両側面部に多孔質体12を形成させてもよいし、多孔質体12を単独で用いてもよい。   In addition, the filter element of this embodiment is not restricted to the above-mentioned embodiment, For example, the porous body 12 may be formed in the both sides | surfaces part of the filter element 11, and the porous body 12 is used independently. May be.

以上述べたように、本実施形態によれば、安価で大量に発生する下水汚泥焼却灰を再利用してなる粒状の焼成体、多孔質体またはこれらの組み合わせを、排ガス浄化フィルタのフィルタエレメントとして使用することにより、排ガス、特にディーゼルエンジン排ガス中の粒子状物質を効率的に捕集することができる。また、フィルタエレメントを上記構成とすることにより、排ガス浄化フィルタを簡単かつ安価に製造することができる。   As described above, according to the present embodiment, a granular fired body, a porous body, or a combination thereof obtained by reusing sewage sludge incineration ash that is produced in large quantities at low cost is used as a filter element of an exhaust gas purification filter. By using it, particulate matter in exhaust gas, particularly diesel engine exhaust gas, can be efficiently collected. Moreover, the exhaust gas purification filter can be easily and inexpensively manufactured by configuring the filter element as described above.

以下、実施例により本発明の効果について具体的に説明する。図4に本実施例における排ガス浄化用フィルタ試験機の構成図を示す。図に示すように、この試験機は、筒状の容器22内に、排ガスが通流する2枚の仕切板20を設け、それらの仕切板20に挟まれた空間に、汚泥焼却灰を焼成処理してなる市販の軽量細粒材(商品名:スラジライト)を充満させることにより、フィルタエレメント23を形成している。このフィルタエレメント23は、断面がφ200、厚みが20mmの空間からなる。また、容器22の一端は、ディーゼルエンジン21の排気系に接続されている。   Hereinafter, the effect of the present invention will be specifically described by way of examples. FIG. 4 shows a configuration diagram of an exhaust gas purifying filter testing machine in the present embodiment. As shown in the figure, this testing machine is provided with two partition plates 20 through which exhaust gas flows in a cylindrical container 22, and the sludge incineration ash is fired in a space sandwiched between the partition plates 20. The filter element 23 is formed by filling a commercially available lightweight fine-grain material (trade name: sludgelite). The filter element 23 is a space having a cross section of φ200 and a thickness of 20 mm. One end of the container 22 is connected to the exhaust system of the diesel engine 21.

本実施例に用いるディーゼルエンジン21の諸元は以下の通りであり、灯油が燃料として供給される。
1)エンジン
型式 :6D16−T
定格出力:166PS1800RPM
総排気量:7545cc
2)発電機
型式 :デンヨーパワーSP、DCA−125SPMT
このように構成される排ガス浄化用フィルタ試験機において、ディーゼルエンジン21の運転時に排ガスを容器22内に導入し、フィルタエレメント23前後(IN,OUT)の排ガス中のすす濃度を測定することにより、フィルタエレメント23に捕集されるすすの捕集率を求めた。この場合において、ディーゼルエンジン21の負荷(エンジン出力)を0,1,2,3の順に増加させ、各負荷状態における排ガスの流量およびフィルタエレメント23前後の温度を測定した。なお、排ガス温度は、IN側を3箇所、OUT側を1箇所測定した。使用するスラジライトとしては、粗粒(粒径:0.6〜1.7mm)、細粒(粒径:1.8〜3.4mm)の2種類を使用した。
The specifications of the diesel engine 21 used in this embodiment are as follows, and kerosene is supplied as fuel.
1) Engine model: 6D16-T
Rated output: 166PS1800RPM
Total displacement: 7545cc
2) Generator type: Denyo power SP, DCA-125 SPMT
In the exhaust gas purification filter testing machine configured as described above, exhaust gas is introduced into the container 22 when the diesel engine 21 is operated, and the soot concentration in the exhaust gas before and after the filter element 23 (IN, OUT) is measured. The soot collection rate collected by the filter element 23 was determined. In this case, the load (engine output) of the diesel engine 21 was increased in the order of 0, 1, 2, 3, and the exhaust gas flow rate and the temperature around the filter element 23 in each load state were measured. The exhaust gas temperature was measured at three locations on the IN side and one location on the OUT side. As sludgelite to be used, two types of coarse particles (particle size: 0.6 to 1.7 mm) and fine particles (particle size: 1.8 to 3.4 mm) were used.

排ガス中におけるすす(以下、適宜、Sootという。)の濃度は、フィルタエレメント23前後の容器22内に、それぞれスモークメータ(SMOKE METER、AVL社製)を取り付けて測定した。スモークメータの測定原理は、ろ紙に排ガスを通過させた後、ろ紙上の黒色部に光を照射してFSN(Filtrated Smoke Number)を測定し、その測定値に基づいてFSN−Soot換算グラフにより、すす量を求めるものである。   The concentration of soot (hereinafter referred to as “Soot” as appropriate) in the exhaust gas was measured by attaching smoke meters (SMOKE METER, manufactured by AVL) in the containers 22 around the filter element 23. The measurement principle of the smoke meter is that after passing the exhaust gas through the filter paper, the black portion on the filter paper is irradiated with light to measure FSN (Filtered Smoke Number), and based on the measured value, the FSN-Soot conversion graph is used. The amount of soot is calculated.

以上の測定方法により、排ガス浄化用フィルタの捕集率を測定した結果を表1および表2に示す。なお、フィルタエレメント23を構成するスラジライトとして、粗粒を使用した場合を表1に示し、細粒を使用した場合を表2に示す。   Tables 1 and 2 show the results of measuring the collection rate of the exhaust gas purification filter by the above measurement method. In addition, as a sludgelite which comprises the filter element 23, the case where a coarse grain is used is shown in Table 1, and the case where a fine grain is used is shown in Table 2.

Figure 2005034797
Figure 2005034797

Figure 2005034797

表1の結果によれば、エンジン負荷の上昇とともに、排ガス流量が増加し、これにより捕集率が低下する傾向が見られたが、最大で25%以上の高い捕集率が実現できた。これに対し、表2によれば、フィルタエレメント21の粒子を細かくすることにより、負荷変化による捕集率の振れが小さくなり、安定的に高い捕集率が得られることが判った。これは、スラジライトの細粒化にともない、排ガス流路がより複雑化したためと推測される。
Figure 2005034797

According to the results in Table 1, although the exhaust gas flow rate increased with the increase in engine load, and the collection rate tended to decrease, a high collection rate of 25% or more could be realized at the maximum. On the other hand, according to Table 2, it was found that by making the particles of the filter element 21 finer, the fluctuation of the collection rate due to the load change is reduced, and a high collection rate can be stably obtained. This is presumably because the exhaust gas flow path has become more complicated with the finer sludgelite.

本発明を適用してなる排ガス浄化用フィルタの構成図である。It is a block diagram of the filter for exhaust gas purification to which this invention is applied. 本発明を適用してなるフィルタエレメントの模式図である。It is a schematic diagram of a filter element to which the present invention is applied. 本発明を適用してなる他のフィルタエレメントの模式図である。It is a schematic diagram of another filter element to which the present invention is applied. 本発明の一実施例に係る排ガス浄化用フィルタ試験機の構成図である。It is a block diagram of the filter testing machine for exhaust gas purification which concerns on one Example of this invention.

符号の説明Explanation of symbols

1 排ガス浄化用フィルタ
2,22 容器
3,4,20 仕切板
5 焼成体
11,13,23 フィルタエレメント
21 ディーゼルエンジン
DESCRIPTION OF SYMBOLS 1 Exhaust gas purification filter 2,22 Container 3,4,20 Partition plate 5 Sintered body 11,13,23 Filter element 21 Diesel engine

Claims (5)

排ガス中に含まれる粒子状物質を濾過するフィルタであって、該フィルタは、下水汚泥焼却灰を焼成してなる粒子が充填されてなることを特徴とする排ガス浄化用フィルタ。 A filter for purifying particulate matter contained in exhaust gas, wherein the filter is filled with particles obtained by firing sewage sludge incineration ash. 排ガス中に含まれる粒子状物質を濾過するフィルタであって、前記フィルタは、造粒してなる下水汚泥焼却灰を所定形状に成型、焼成してなる多孔質体であることを特徴とする排ガス浄化用フィルタ。 A filter for filtering particulate matter contained in exhaust gas, wherein the filter is a porous body formed by granulating sewage sludge incineration ash into a predetermined shape and firing it. Filter for purification. 排ガス中に含まれる粒子状物質を濾過するフィルタであって、前記排ガスが通過する二枚の仕切板と、該仕切板の間に充填され下水汚泥焼却灰を焼成してなる粒子とを備え、前記仕切板は、前記下水汚泥焼却灰を所定形状に成型、焼成してなる多孔質体であることを特徴とする排ガス浄化用フィルタ。 A filter for filtering particulate matter contained in exhaust gas, comprising: two partition plates through which the exhaust gas passes; and particles formed by burning sewage sludge incineration ash filled between the partition plates, The plate is a porous body formed by molding and firing the sewage sludge incineration ash into a predetermined shape. 下水汚泥焼却灰を造粒し、得られた造粒体を焼成してなる粒子を所定空間に充填することを特徴とする排ガス浄化用フィルタエレメントの製造方法。 A method for producing an exhaust gas purifying filter element, comprising granulating sewage sludge incinerated ash and filling a predetermined space with particles obtained by firing the obtained granulated body. 造粒してなる下水汚泥焼却灰を所定形状に成型し、得られた成型体を焼成することを特徴とする排ガス浄化用フィルタエレメントの製造方法。 A method for producing an exhaust gas purifying filter element, characterized by molding granulated sewage sludge incineration ash into a predetermined shape and firing the resulting molded body.
JP2003276407A 2003-07-18 2003-07-18 Exhaust gas cleaning filter and production method of filter element Withdrawn JP2005034797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003276407A JP2005034797A (en) 2003-07-18 2003-07-18 Exhaust gas cleaning filter and production method of filter element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003276407A JP2005034797A (en) 2003-07-18 2003-07-18 Exhaust gas cleaning filter and production method of filter element

Publications (1)

Publication Number Publication Date
JP2005034797A true JP2005034797A (en) 2005-02-10

Family

ID=34212737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003276407A Withdrawn JP2005034797A (en) 2003-07-18 2003-07-18 Exhaust gas cleaning filter and production method of filter element

Country Status (1)

Country Link
JP (1) JP2005034797A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010051939A (en) * 2008-08-27 2010-03-11 Washiji Sasaki Spherical body aggregate air filter, application thereof
JP2010535696A (en) * 2007-08-03 2010-11-25 エアシブ・インコーポレーテッド Porous body and method
US8679418B2 (en) 2009-04-08 2014-03-25 Errcive, Inc. Substrate fabrication
US9833932B1 (en) 2010-06-30 2017-12-05 Charles E. Ramberg Layered structures

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535696A (en) * 2007-08-03 2010-11-25 エアシブ・インコーポレーテッド Porous body and method
US8623287B2 (en) 2007-08-03 2014-01-07 Errcive, Inc. Porous bodies and methods
US8821803B2 (en) 2007-08-03 2014-09-02 Errcive, Inc. Porous bodies and methods
JP2010051939A (en) * 2008-08-27 2010-03-11 Washiji Sasaki Spherical body aggregate air filter, application thereof
US8679418B2 (en) 2009-04-08 2014-03-25 Errcive, Inc. Substrate fabrication
US9511345B1 (en) 2009-04-08 2016-12-06 Errcive, Inc. Substrate fabrication
US9833932B1 (en) 2010-06-30 2017-12-05 Charles E. Ramberg Layered structures

Similar Documents

Publication Publication Date Title
US8388721B2 (en) Ceramic honeycomb filter and its production method
US5087272A (en) Filter and means for regeneration thereof
JP5982085B2 (en) Porous body and method
JP4528153B2 (en) Method for manufacturing plugged honeycomb structure
JP4398260B2 (en) Silicon carbide based porous material and method for producing the same
US7687008B2 (en) Method for producing ceramic honeycomb filter
EP1251247B1 (en) Exhaust gas purifying filter
WO2003082771A1 (en) Porous material and method for production thereof
JP5527773B2 (en) Honeycomb structure and gas processing apparatus
JP2005034797A (en) Exhaust gas cleaning filter and production method of filter element
JPH0647620U (en) Exhaust gas purification device
JPH0828247A (en) Exhaust emission control device with ash removing mechanism
JP2004167482A (en) Honeycomb filter for exhaust gas cleaning, and its production method
JP4252166B2 (en) Dust removal and harmful gas decomposition equipment
JP6485162B2 (en) Exhaust gas purification filter
KR20090047849A (en) Composition for porous ceramic filter, porous ceramic filter comprising the same and preparation method thereof
JPH0655251B2 (en) Dust removal purifier
JP2008286085A (en) Continuous regeneration type particulate filter
JPH0214711A (en) Exhaust gas cleaning device
Bocci et al. Particulates separation technologies for syngas purification
CN100453774C (en) Diesel particulate filter
JP4773043B2 (en) Ceramic filter structure
JP3186639B2 (en) Ceramic ball for combustion gas purification
KR100587136B1 (en) Catalytic Filter for diesel engine
JP2005314218A (en) Method for controlling fine pore characteristics of porous structure

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003