JP2005034708A - Treatment/removal device for carbon monoxide and others - Google Patents

Treatment/removal device for carbon monoxide and others Download PDF

Info

Publication number
JP2005034708A
JP2005034708A JP2003198299A JP2003198299A JP2005034708A JP 2005034708 A JP2005034708 A JP 2005034708A JP 2003198299 A JP2003198299 A JP 2003198299A JP 2003198299 A JP2003198299 A JP 2003198299A JP 2005034708 A JP2005034708 A JP 2005034708A
Authority
JP
Japan
Prior art keywords
carbon monoxide
gas
oxidation catalyst
catalyst layer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003198299A
Other languages
Japanese (ja)
Inventor
Yoshihisa Hayakawa
義久 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEFUTETSUKU KK
Gastec Corp
Original Assignee
SEFUTETSUKU KK
Gastec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEFUTETSUKU KK, Gastec Corp filed Critical SEFUTETSUKU KK
Priority to JP2003198299A priority Critical patent/JP2005034708A/en
Publication of JP2005034708A publication Critical patent/JP2005034708A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for treating/cleaning a gas containing carbon monoxide and other harmful gases released to a narrow space and a space with insufficient ventilation. <P>SOLUTION: The device controls an oxidation catalyst 4 so as to uniformly warm the oxidation catalyst 4 to an appropriate temperature or previously heat it in order to activate a catalytic reaction and discharges an external gas after the external gas is circulated and oxidized by passing it through the oxidation catalyst layer 4. In the device, a carbon monoxide concentration sensor 9 is arranged near a gas discharge port 3 and characteristics of the device are monitored. A carbon monoxide sensor 10 is arranged near an external air flowing-in port 2 and the treatment device is automatically/manually operated when the concentration of carbon monoxide exceeds a reference value. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、金属の溶接、精錬、製鉄、石炭の乾溜又は喫煙の際などに発生又は空中に拡散する一酸化炭素その他の処理装置に関する。
【0002】
【従来の技術】
金属の溶接、特に炭酸ガスアーク溶接時に発生するヒューム、ガスに対しては、溶接作業者の健康保持の観点から、防塵マスクが用いられている。
従来、溶接作業で発生するヒューム、ガスの内、ヒュームは捕集装置を通して除去し、処理後のガスは室内に放出していた。放出ガスに含まれている一酸化炭素(ガス、以下、同様)の量、毒性についての関心は殆ど無いに等しかった。
ところが測定の結果は、従来、考えられていた量を超えて、一酸化炭素が発生している事が判った。
その為、同室内で作業する第三者に対しても、環境汚染の被害を及ぼす恐れがあることが明らかになった。
【0003】
一酸化炭素は無味無臭で、血液中のヘモグロビンとの結合力が酸素のそれよりも数百倍も強いために、一酸化炭素に対する警報装置又は換気手段が具備されていない狭隘な空間、例えばタンク内で炭酸ガスアーク溶接を行った事で空気中の一酸化濃度が増加すると、作業員は頭痛、目眩いなど一酸化炭素中毒に被災したり、死に至る恐れがあると言った事例も知られている。
【0004】
従来、鉱内作業では一酸化炭素濃度の上昇による作業者の事故防止の目的で、酸化触媒を具備した救命マスクが使用されていた。
又、消防活動に際しては、火災現場における消防士の一酸化炭素吸引事故防止の観点から、酸化触媒を備えた防護マスクが使用されていた。
喫煙室に置かれた空気清浄装置には、炭塵、タールミスト除去用フィルタは設置されているが、タバコの不完全燃焼などから発生する一酸化炭素については処理手段が具体化されておらず、その為に閉鎖空間内での喫煙は、喫煙者のみならず周辺の人々にも悪影響を及ぼす可能性がある。
【0005】
製鉄所において、鉄鉱石や焼結鉱、コークス、石灰石等を高炉内に搬入して熱風を吹き込み銑鉄を得る工程では、多量の一酸化炭素が発生する。
この工程に関するコントロール室、作業員詰め所等は前記高炉の近傍に配置されており、ガス洩れの場合など作業員が一酸化炭素に曝露する可能性がある。
この為、コントロール室などでは、室内のガス濃度を測定して基準値を超えると警報を発するセンサーを設備すると共に、室内に勤務する作業員の安全確保と避難誘導との目的から、各種保護・避難具を配置してある。
【0006】
又、製鉄所では、前記一酸化炭素を燃料ガスとして利用するため、プラント内の作業室等周辺に前記ガスの配管を設置している処もあるが、配管又はその継ぎ手部などからガス洩れが生じた場合に備えて、一酸化炭素濃度センサーの検知による警報装置を設備している処もある。
【0007】
【発明が解決しようとする課題】
本発明は、空気(環境)中に拡散又は含まれる一酸化炭素を処理し、無害化する装置において、一酸化炭素を酸化させる触媒反応を活発化させる為、酸化触媒中に前記触媒を加熱する手段を付設して、触媒の酸化効率が向上する適正温度に保持するよう制御すると共に、一酸化炭素濃度センサーを用いて室内の空気に含まれる一酸化炭素の濃度が基準値(例えば、70ppm)を上回ったことを検出したときは、自動的又は手動的に送風機、圧縮機又はポンプなどの気体搬送装置を稼働させて、当該気体を処理、除去装置内に送り込み、又は吸引して、浄化した気体のみを空間(環境)に排気・放出するようにした、環境衛生を維持する装置を提供する。
【0008】
更に、処理した後の排出側経路中に一酸化炭素濃度センサーを挿入して、放出(排出)気体中に含まれる一酸化炭素濃度をチェックすることにより、装置の機能を監視し、故障検出に備えると共に、処理後の気体の一酸化炭素濃度を所望のレベル以下に保持して、同一環境内で作業する従業者の健康管理を徹底し、作業環境改善問題を解消する事を目的とする。
【0009】
【課題を解決するための手段】
本発明は、上記の目的を達成するために、次に述べるとおりの各構成要件を備えている。
(1)酸化触媒層を通して一酸化炭素など有害ガスを含む気体を流通させ処理する装置において、前記触媒層を可及的均一に加熱する手段を付設すると共に、前記加熱源を制御して、触媒層の温度を適正温度に保持するよう操作する温度センサーを、前記酸化触媒を収容する容器内に一つ以上配置したことを特徴とする一酸化炭素その他の処理、除去装置。
【0010】
(2)酸化触媒層を局部的に加熱しないよう、加熱源と、前記熱源に連結し熱源と触媒層との間の熱拡散・伝導面積を可及的に拡げた伝熱フィンとを、気体流通方向に沿って容器内に埋設したことを特徴とする上記(1)項記載の一酸化炭素その他の処理、除去装置。
(3)容器内の気体流入口側と酸化触媒層前面との間に、前記流入気体の流れを擾乱させる、加熱源を備えた熱良導体より成る網状容量、粒状体層等を介在させたことを特徴とする上記(1)項記載の一酸化炭素その他の処理、除去装置。
【0011】
(4)酸化触媒層を挟んで、気体流入口側と気体流出口側との何れか、若しくは何れにも空隙を設け、前記空隙を介して気体を流通させたことを特徴とする上記(1)乃至(3)項記載のうちの何れか一つの一酸化炭素その他の処理、除去装置。
(5)気体流出口側又はその前面に一酸化炭素濃度センサーを設置して処理気体の一酸化炭素濃度を計測し、前記濃度が所定値を超えた事を検知したとき、表示、警報等の信号を発することを特徴とする上記(1)乃至(4)項記載のうちの何れか一つの一酸化炭素その他の処理、除去装置。
【0012】
(6)外気の一酸化炭素濃度を計測し、前記濃度が所定値を超えた事を検出したとき、一酸化炭素を含む当該気体を気体流入口側に送り込むか、装置を通して流出口側に排出するかする、送風機、圧縮機又はポンプなどの気体送給装置を稼働させることを特徴とする上記(1)乃至(5)項記載のうちの何れか一つの一酸化炭素その他の処理、除去装置。
【0013】
【発明の実施の形態】
酸化触媒層を可能な限り均等で適正温度に加熱する加熱手段を付設すると共に、前記触媒層の所定位置に加熱源を制御する温度センサーを配置して酸化触媒の温度を制御する。
若しくは、酸化触媒層の前側に熱良導体よりなる金属メッシュ容量、粒状体層等を設置し、加熱手段を前記メッシュ層、粒状体層に接触させと共に温度センサーを適所に配置して、酸化触媒層を金属メッシュ容量、粒状体層を介して間接的に加熱、制御する。
【0014】
必要に応じ、酸化触媒層の上流側(外気と装置の気体流入口との間)に除塵フィルターを設ける。
【0015】
装置を稼働状態に置き、気体排出口に設けた一酸化炭素濃度センサーにより処理気体の浄化率を検出して、前記浄化率が所要値を下回わったときは表示、警報等の信号を発し、併せて、装置の能力不足、不良又は故障に備える。
処理装置を予熱又は稼働準備体制に置き、気体中の一酸化炭素含有率が基準値を超えたことを検出したときは、手動又は自動的に装置を作動させる。
【0016】
【実施例】
(その一)
図1は、本発明装置の一実施例の断面図を示すもので、容器1の一方端及び他方端にそれぞれ開口を備え、内部空間に連通する気体流入口2及び排出口3を設けると共に、流入口2と排出口3とを繋ぐ容器内空間に酸化触媒4、例えば酸化銅20%と一酸化マンガン50%とを主成分とする触媒で、一般にはホプカライト(商品名)と呼ばれている顆粒状酸化触媒を充填する。
さらに酸化触媒層4内を流通する気体の流れ方向に沿って、前記触媒4を加熱する熱源(棒ヒータ)5複数本を、前記触媒中に均等に配置、付設する。
【0017】
なお、気体が酸化触媒層4中を均等に流通(酸化触媒を均一に働かせる)するように、流入口2と酸化触媒層4前面との間及び排出口3と酸化触媒層4後面との間には、然るべき空隙を施すことが望ましい。
その際、少なくとも酸化触媒層4前面はメッシュ板により空隙と区画される。
ここでは、稼働時の気体の流れに沿って上流側を「前」、下流側に向かって「後」という。
【0018】
酸化触媒層4が適正温度に温まっていないと触媒4の反応が活性化しないので、稼働時には触媒4の温度を適正値迄、かつ均等に上げおく必要がある。
この説明では、一酸化炭素の酸化を促す触媒反応が活発であるときの酸化触媒4の温度及びその近辺の温度(例えば、60〜80℃)を指して適正温度(値)と称している。
触媒の種類によっては、湿度が大きく影響し反応効率を左右するものがある。例えば、ホプカライトの場合、触媒が湿っていると流通気体により気化熱が奪われ、触媒の温度が仲々適正温度まで上昇しないので、その間、酸化反応が活性化しない。
【0019】
又、ホプカライト(酸化触媒4)の加熱温度には、実質的に上限(Max.150°C)があって、加熱が過ぎると特性が劣化し触媒寿命を縮めるおそれがある。そこで、酸化触媒層4を局所的に劣化温度まで加熱しないよう、熱源5は熱伝導表面を熱良導体材質で形成すると共に、前記表面に複数枚の長手方向に伸びた放射状伝熱フィン7を連設して、酸化媒体4との間の熱伝導、熱拡散面積を拡げ、できる限り触媒層4を均等に加熱するよう構成する。
図1中、前記伝熱フィン7の両外縁は、棒状体熱源5に並行した点線によって表示されている。
【0020】
,T は、酸化触媒層4内に設置した温度センサーで、それぞれ気体の流れ方向に沿って、触媒層4中の上流側と下流側とに別れて配置している。
前記センサーは、棒状体熱源5、伝熱フィン7から適当に隔離し、酸化触媒層4それ自体の温度を検出するものでなければならない。
前記温度センサーT ,T は、それぞれ触媒4の温度が適正値以下に冷えていることを検出したとき、熱源5を働かせる。温度センサーT は触媒層4の温度が適正値に近接したことを検知したとき、温度センサーT は、付近の触媒層4の温度が劣化温度に近接したことを検知すると加熱手段を切る。
【0021】
上述の部材は、熱源5により酸化触媒層4を均等に適正温度まで予熱して装置を待機状態にするか、立上り時間を経て稼働状態にするための必須の要件で、何れにしても、温度センサーT ,T の何れもが、酸化触媒層4の適正温度を感知したとき、装置が稼働準備体制にあることを表示する。
又、酸化触媒の劣化を防ぎ、事故防止の目的で加熱暴走を遮断する保安、保護装置の作用も、温度センサーT ,T の検出信号に依存する。
【0022】
酸化触媒層4は熱容量があるので、熱源5、伝熱フィン7を働かせて加温しても、急速には全体の温度が適正値まで上がらない(急激に温めようとして短時間に大熱量を供給すると、酸化触媒4の劣化を招く恐れがある。)。
酸化触媒4が湿っている場合は、潜熱が奪われて乾燥する迄、適正温度に上がらない。
酸化触媒層4全体の温度が均一に適正値まで上がる迄の間、処理装置に稼働を強いても触媒全体の反応が効果的に行われないから、装置が本格的稼働体制に入る迄には、立上りに若干の時間(例えば40分程度、季節によって変動する)が必要になる。
従って、急いで一酸化炭素等のガスを処理しなければならない(装置の立上り時間を短縮させる。)場合は、予熱して酸化触媒4を適正値近く迄に保持して置く必要がある。
【0023】
その際は、送風機、圧縮機又はポンプなどの吸、排気装置を作動させる必要はなく、熱源5及び温度センサーT ,T 並びに制御手段が、触媒を適正温度に維持するのに有効に作動する。
酸化触媒4を適正温度近くに予熱するとき、容器1の外周壁、蓋及び底面を断熱材で隈無く被覆して置くと効果的である。
なお、蓋については、熱源5及び酸化触媒4の取替え、補充の事を考慮して、取付け取外し可能な構造とする。
なお、熱源5を容器の底から触媒内に挿入したときには、底面の断熱材も取付け取外し可能な構造であって良い。
前記断熱材の代わりに、二重真空壁を廻らしても良い。
【0024】
装置の立上り時間をゼロにできれば、常時、装置を稼働準備体制に置くことができ、例えば、突発的な一酸化炭素の発生、一酸化炭素濃度センサーの所定濃度出力信号による自動稼働、溶接と同時進行の気体処理等、利用態様を拡げる事ができる。
【0025】
気体に含まれる一酸化炭素の浄化率は、T ≧T (適正温度)の条件のときに向上するので、温度センサーT ,T の何れもが、触媒層4の温度が適正値に近接し又は、適正値に達したことを検知すると、先に述べたように待機(立上り時間)表示を変換して、稼働準備完了表示に切り替える。
所要時間経過後も表示が稼働準備完了に切り替わらないときは、加熱手段5又は温度センサーT ,T 並びに制御手段の故障が考えられる。
【0026】
装置が稼働中は通気温が触媒層4を冷す一方、処理によって反応熱が生じるので、触媒層4に対する外部加熱は、前記熱収支を考慮する必要がある。
例えば、稼働中の酸化触媒層4内の温度勾配は、気体受入れ側温度が概して低く気体排出側の温度が高い傾向がある(図1参照)。
図1中、別の熱源5に沿って、二点鎖線で示す直線が触媒層4の温度勾配を示すモデルで、温度の高低は、横方向の長さ(幅)で示されている。
【0027】
触媒反応速度が速まり、反応熱が酸化触媒4を温め適正温度を上回り、劣化温度に近付くときは、温度センサーT が早期に熱源5を切って、触媒4が劣化する温度を上回らないよう制御しなければならない。
【0028】
装置に外気を流通させるため、所要特性を備えた送風機、圧縮機又はポンプなど何れかの吸、排気部を、それぞれの機能に沿うように装置の気体流入口2又は排出口3の何れかに連結する。
【0029】
今、適正温度に温まった酸化触媒4を通して、粉塵、一酸化炭素をなどの有害ガスを含む外気を気体流入口2を通して触媒層4内を流通させると、一酸化炭素の酸化により触媒層内全域で生じた反応熱は気体の移動に伴って排出口3側に運ばれる結果、触媒層4は適切な反応温度範囲を維持し、効率良く外気を浄化し、排出口3に到達する迄の間に大方、無害な炭素ガスなどにして処理される。
従って排出気体を再度、外気に放出しても、さきに述べた不都合は生じない。
【0030】
外気がヒュームなどの粉塵を含むときには、それらが酸化触媒4に付着して触媒寿命を短くする恐れがあるから、上流側、装置の気体流入口2の前側に除塵フィルタ6を設置して置く。
この種の除塵フィルタ6は、ジェット噴射、振動などを加えることで再生するのが容易であるから、その種の操作を容易にするため、処理装置(酸化触媒層4)とは別個に設置することが好ましい。
除塵フィルタ6設置の事情は、実施例(その二)以下についても同様である。
【0031】
装置の稼働を終了して、外気の送入、排出を停止すると、稼働中に流通気体によって反応熱が搬出され平衡を保っていた酸化触媒層4の温度が急上昇し、それで触媒4の特性を劣化させる恐れがある。この状況は、触媒層4の加熱手段5を切った程度では防止することができない場合がある。
そこで、触媒層中の当該熱量を総て装置外に搬出するまでの間、稼働を停止した後も、暫時、送風機、圧縮機又はポンプなどの気体送給装置を動かして装置を空冷することが望ましい〔前記操作の必要性は、実施例(その二)以下についても同様である。〕。
【0032】
装置が稼働準備体制にあり酸化触媒層4が適正温度を維持していても、稼働時、気体排出口3において基準値を満足する処理気体が得られない(その態様は、第3実施例の説明のところで後述する。)ときには、(故障は別として)装置に容量を超えた処理を強いている恐れがあるから、単位時間当たりの気体処理量を減少させるとか、容器内に充填した酸化触媒層4の厚さを増加させるか、する必要がある(この点についても後述する)。
【0033】
図2は、図1におけるII−II線に沿った加熱源5、放射状伝熱フィン7の断面図を示し、放射状伝熱フィン7の両側面には、酸化触媒4の顆粒が接触、充填している。酸化触媒4の加熱は、熱源5及び熱良導体の放射状伝熱フィン7を通じて行われ、触媒4の顆粒を均等に温める。
処理気体は、図で、酸化触媒4の顆粒の間を通って酸化を促されながら、紙面に対し垂直方向、例えば上から下に、若しくは下から上に流通する。
【0034】
上記実施例では、酸化触媒層4を適正温度まで加熱をするのに、複数本の棒状電熱手段5を触媒層4内に配置したが、触媒の加熱手段はこれに限られず、例えば、容器の外周面を取り巻いた電熱線(断熱材の内側)を利用するとか、伝熱パイプを巡らして加熱蒸気、加熱液体を通し、触媒層4を均等に加熱すことも可能である。
その際にも、温度センサーの設置並びにその作用は、不可欠である。
【0035】
実施例(その二)
酸化触媒層4が反応適温以下の一部触媒を抱えることは、装置の機能上又は経済的に不利、不都合であるから、当該領域の酸化触媒4を実質上、ゼロにするか、若しくは酸化触媒4に換えて、熱伝導が良好で、安価、寿命が長く、かつ流体抵抗が少ない銅(アルミニュームなども同効)メッシュ8、粒状体層(充填をしたときポーラスで通気性が良好である必要がある。)などを置換、充填することが考えられている。
【0036】
図3は、本件発明の別の実施例の概略断面図を示すもので、装置の気体受入れ口と、酸化触媒層4前面との間を埋めて、熱の良導体からなる銅メッシュ8を配置したものである。望ましくは、気体受入れ側に隙間を設けるが、銅メッシュ8の流体抵抗如何では、必ずしもこれを必要としない。
しかし、使用上の都合から、銅メッシュ8と酸化触媒(パラジウム)層4との間を流体抵抗が小さく触媒4の顆粒が銅メッシュ側に洩れない程度の網状体で区画しても良い。
又、酸化触媒層4と銅メッシュ8との間には、熱輻射を著しくは妨げない程度の隙間を設けることもできる。
【0037】
熱源5は銅メッシュ8内に複数本、前記メッシュに接触させ、容量内に均等に配置し、銅メッシュ8を均一に温める。
銅メッシュ8の構成にもよるが、材質が熱の良導体であるから、熱源5には必ずしも伝熱フィンを施すことを要しない。又、熱源の一部のみを銅メッシュ8に接触させるだけでも良い。
酸化触媒層4は、銅メッシュ8を介して、適正温度迄温められるから、本実施例の場合、酸化触媒層4内の熱源5は不要である。
【0038】
は、銅メッシュ8内に配置した温度センサーで、温度センサーT は、銅メッシュ8全体が適正温度乃至劣化温度近く迄温まっているか、否かの監視をする。
銅メッシュ8の加熱温度は、近接若しくは接触する酸化触媒4が劣化する温度以下であれば良い〔酸化触媒の種類よっては、劣化温度が高いものもある。例えば、パラジウム、劣化温度(200℃位)が高い上に、湿度に影響を受けることも少ない。〕。
【0039】
図3において、温度センサーT を一点鎖線で囲んで紡錘形を象った図は、酸化触媒4を充分予熱した(以下、特に断わらない限り、稼働時ではない。)ときの、銅メッシュ8と酸化触媒層4内の温度分布(勾配)線図である。図で、横方向の長さが当該箇所の温度の高さを示す。
銅メッシュ8、酸化触媒層4内では、両者の接触部(若干離れている場合もある。)付近が高温であるが、しかし、酸化触媒4の劣化温度よりも相当に低温(但し、適正温度よりも高温)になっている。
温度センサーT は、銅メッシュ8の温度が触媒の劣化温度に近接したことを感知すると、熱源5を遮断する。
【0040】
銅メッシュ8の温度は、外気への放熱(輻射熱)によって、上流側に向かって若干下がっている。
酸化触媒層4の下流側、温度センサーT 付近の酸化触媒層4の温度は、適正値に近い(温度センサーT は、酸化触媒層4の下流側、処理気体排出面に近接して配置されている。)。
温度センサーT が、適正値近くを検知したときには、温度分布線図から見て、酸化触媒層4内は少なくとも適正温度に温まっている事が確実であるから、それに基づき、装置が稼働準備体制に入ったことを表示する。
なお、この場合、酸化触媒層4内の温度センサーT は設置する必要がない。
温度センサーT の作用は、温度センサーT のそれと、略、重複するところがあるからである。
【0041】
酸化触媒層4を均一に加熱するのを補助するため、酸化触媒層4の外周面を囲んで断熱層を設け、銅メッシュ8からの伝熱が総て、酸化触媒層4を温めるよう構成することもできる。例えば、本実施例で採用する断熱構造は、さきに実施例(その一)で説明したものと同様とする。
又、この処理装置においても、酸化触媒層4は熱容量を有するから、全体が適正温度に温まる迄に若干の立上り時間が必要なことは、実施例(その一)と同様である。この立上り時間を短縮若しくはゼロにする目的から上述のように、銅メッシュ8を介して、酸化触媒層4を予熱した状態を解説した。
【0042】
この状態で装置を稼働し、酸化触媒層4内に外気を流通させると、上述の温度勾配線図は、外気の流入によって銅メッシュ8の温度が若干冷えて先狭まりの状態に変わり、一酸化炭素の酸化によって酸化触媒層4が温まって尻拡がりの様相を呈する。
外気の処理が著しく進み、温度センサーT が、酸化触媒4の劣化温度に近い値を検出したときは、熱源5を切る。
【0043】
銅メッシュ、金網等を通過する外気は温められて酸化触媒層4に届く頃は、温度の上で酸化触媒4に負荷を掛ける事が少ない。又、触媒層4前面に均一な加熱空気を供給する事ができ、直接加熱の場合よりも触媒層内の温度勾配が小さくなる。
【0044】
酸化触媒層4には気体流通抵抗があるから、気体受入れ側全面を外気に曝露すような空隙を設ければ、受入れ口側から流入した気体の流線は、酸化触媒層4の全面で空隙内に拡散するが、酸化触媒層4前面の銅メッシュ8は、上記空隙の効果も兼ね備えている。
その状態は、酸化触媒層4の気体排出側においても同様であるから、触媒層排出側と気体排出口との間にも所要の空隙を設けて、充填触媒層にデッドスペースを作らないよう、酸化触媒を効率的に利用する事が望ましい。
【0045】
斯くするときは、仮りに、装置に予熱を与えることなく直ちに稼働し、酸化触媒4が含湿している場合でも、外気は急速に温まる銅メッシュ8、銅金網等を通過する間に温められて触媒層4に達するために、酸化触媒層を均一に加熱、乾燥させるから、酸化触媒4の立上りを早め、早期に酸化反応が活性化する。
【0046】
上記装置において、触媒層4内の温度センサーT に換えて、排気口3内に温度センサーT を配置する(点線を用いて信号伝達手段を示している)こともできる。温度センサーT の作用は、略、温度センサーT の機能を代行するものである。
又、銅メッシュ8中に配置した温度センサーT の代わりに、温度センサーT を、酸化触媒層4内適所に設ける(点線を用いて信号伝達手段を示している)こともできる。
温度センサーT は、酸化触媒層4全体が均一に適正温度に温められたか否かを検出し、これによって銅メッシュ内の加熱手段5の入・切を制御するものである。
【0047】
酸化触媒層4内の処理気体の流れに添った温度センサーT の位置、即ち、比較的に上流側か、下流側に近いかによって、温度センサーT によって検知する触媒層4内の温度状態が異なる。例えば、温度センサーT の位置が、銅メッシュ8内の温度センサーT に近接しているのであれば、その機能は、温度センサーT と略、同一である。
温度センサーT の位置が下流側に遠退くに連れて、酸化触媒層4の気体導入面側から、温度センサーT の位置迄の酸化触媒層の温度が、どの様に温められているか検出することができるものとなる。
しかしながら、そうした場合、銅メッシュ8内の温度センサーT によって、酸化触媒層4が、劣化温度に近接して温められてはいない事の保証をする必要があるかも知れない。
温度センサーT の位置は極端には、温度センサーT と重なって良い。
【0048】
実施例(その三)
図4(a)は、本発明装置の他の実施例の一部を断面略図で示すもので、装置の気体の排出口3側に、一酸化炭素濃度センサー9を取り付けたものである。
なお、図4(a)に付した符号は、実施例(その一1、二)に述べたものと、同一である〔図4(b)の場合も同様〕。
即ち、装置の主要部は、実施例(その一、二)そのものである〔実施例(その四)においても、事情は同じである。〕。
この実施例装置に接続した気体送給装置を稼働させている間、一酸化炭素濃度センサー9により排気の浄化率を検出し、装置の処理機能の良否を測定して、その測定値が所定値以上であったときは、表示又は信号に重ねて警報を発する。
【0049】
浄化不良の表示がなされたときは、装置が稼働準備完了体制にあるか否かのチェックが必要で、装置が稼働準備状態を示す迄、待機する事を要する。
装置が稼働準備体制にあっても、なお、センサー9の表示又は信号が適性値を示さないときは、
処理装置の機能低下(酸化触媒4の劣化)。
外気に含まれる一酸化炭素濃度が、処理装置の処理容量(特性)をオーバーしている。
等が、考えられるが、
何れにしても当該排気を、狭隘な空間、換気不充分な空間にその侭、連続して放出をした場合は、作業員の一酸化炭素中毒、死亡などの事故発生の恐れがあるので、早急に対策を講じる必要がある。
【0050】
上記のうち、一酸化炭素濃度が装置の処理容量をオーバーしている事が明らかな場合は、装置の構成にもよるが、酸化触媒4を補充して触媒層4の厚さ(深さ)を大きくする手段もある。結局、処理気体の酸化触媒層4内での流路を伸ばして、その間に一酸化炭素などの処理をより促進させる事である。
その際、若干は酸化触媒層4の流体抵抗が増減して、処理気体容量が変動する事が予想されるが、特に、留意をする程の事は無い。
濃度センサー9の測定値を見ながら、適正値になるまで、酸化触媒4を補充又は、排除する。
セット後に再度、装置を作動体制に復帰させる。
【0051】
実施例(その四)
本発明のその他の実施例を、図4(b)の一部断面略図で示す。
この実施例では、装置を設置した環境中に一酸化炭素濃度センサー10を配置し、外気中の一酸化炭素濃度が基準値をオーバーした場合は、処理装置に連結された送風機、圧縮機又はポンプなどの気体送給手段を稼働させて、環境中の気体を処理装置内に送り込むか、吸入させる。
一酸化炭素が急に発生した場合にも発生し易い環境に対応させるるにも、当然に、それ以前に装置を稼働準備体制に置くよう、予熱して置かねばならない。
【0052】
処理装置を通して適正に浄化された気体は、再び環境中に放出するか、環境外に放出する。
装置を稼働準備体制に保持して置けば、一酸化炭素濃度センサー10が環境中に基準値以上の一酸化炭素が放出された事を検出したときは直ちに、自動的に装置を稼働させ外気の処理を進め、作業中の環境基準を維持することができる。
若しくは、一酸化炭素濃度センサー10による警告、表示に基づき、手動動作で、装置を稼働させても良い。
【0053】
【発明の効果】
本件発明は、以上の通り、作業中、不可避的に発生又は放散される一酸化炭素その他の有毒ガスを含む空気を効率良く浄化して、当該作業に従事又は近接して場所を占める人員の健康、衛生管理を図り、特に、狭隘な空間、換気不充分な作業環境における作業員の健康、人命に係る事故の安全を確保する。
【図面の簡単な説明】
【図1】本発明の一実施例の概略断面図である。
【図2】図1におけるII−II線に沿った熱源の断面図を示す。
【図3】本発明の別の実施例の概略断面図である。
【図4】本発明の他の、若しくはその他の実施例の一部概略断面図である。
【符号の説明】
1 容器(タンク)
2 気体受入れ口
3 気体排出口
4 酸化触媒(層)
5 熱源
6 除塵フィルター
7 熱伝導フィン
8 銅メッシュ
9,10 一酸化炭素濃度センサー
Tn 温度センサー n:
[0001]
[Technical field to which the invention belongs]
The present invention relates to a carbon monoxide or other processing apparatus that is generated or diffuses in the air during metal welding, refining, iron making, coal distillation, smoking, or the like.
[0002]
[Prior art]
Dust masks are used for fume and gas generated during metal welding, particularly carbon dioxide arc welding, from the viewpoint of maintaining the health of the welding operator.
Conventionally, of the fumes and gases generated in the welding operation, the fumes are removed through a collecting device, and the treated gas is discharged into the room. There was little concern about the amount of carbon monoxide (gas, hereinafter the same) contained in the released gas, and toxicity.
However, the result of the measurement showed that carbon monoxide was generated in excess of the amount conventionally considered.
As a result, it has become clear that there is a risk of environmental pollution for third parties working in the room.
[0003]
Since carbon monoxide is tasteless and odorless, and its ability to bind hemoglobin in the blood is several hundred times stronger than that of oxygen, it is not equipped with a warning device or ventilation means for carbon monoxide, such as a narrow space, such as a tank It is also known that when carbon monoxide arc welding increases the concentration of air monoxide in the air, workers may suffer from carbon monoxide poisoning, such as headaches and dizziness, or even death. Yes.
[0004]
Conventionally, life masks equipped with an oxidation catalyst have been used in mine work for the purpose of preventing workers' accidents due to an increase in the concentration of carbon monoxide.
In fire fighting activities, a protective mask equipped with an oxidation catalyst has been used from the viewpoint of preventing a carbon monoxide suction accident by a fireman at the fire site.
The air purifier placed in the smoking room is equipped with a filter for removing coal dust and tar mist, but there is no specific processing method for carbon monoxide generated from incomplete combustion of tobacco. Therefore, smoking in a closed space may adversely affect not only smokers but also the surrounding people.
[0005]
In an ironworks, iron ore, sintered ore, coke, limestone, etc. are carried into a blast furnace and hot air is blown to obtain pig iron to generate a large amount of carbon monoxide.
A control room, a worker stuffing station, and the like related to this process are arranged in the vicinity of the blast furnace, and there is a possibility that workers may be exposed to carbon monoxide in the case of gas leakage.
For this reason, in control rooms, etc., a sensor that issues an alarm when the gas concentration in the room is measured and exceeds the reference value is installed, and various protections and measures are taken for the purpose of ensuring the safety of workers working in the room and evacuation guidance. Evacuation equipment is arranged.
[0006]
In addition, in order to use the carbon monoxide as a fuel gas at steelworks, there are places where the gas pipes are installed around the work room or the like in the plant, but gas leaks from the pipes or joints thereof. In the event that it occurs, there is also a place where an alarm device is installed by detection of a carbon monoxide concentration sensor.
[0007]
[Problems to be solved by the invention]
The present invention heats the catalyst in an oxidation catalyst in order to activate a catalytic reaction for oxidizing carbon monoxide in an apparatus for treating and detoxifying carbon monoxide diffused or contained in air (environment). A means is attached to control the catalyst to maintain an appropriate temperature at which the oxidation efficiency of the catalyst is improved, and the concentration of carbon monoxide contained in the indoor air using a carbon monoxide concentration sensor is a reference value (for example, 70 ppm). When it is detected that the gas was exceeded, the gas carrier device such as a blower, a compressor or a pump is automatically or manually operated, and the gas is treated, sent into the removal device, or sucked to be purified. Provided is an apparatus for maintaining environmental sanitation by exhausting / releasing only gas to a space (environment).
[0008]
Furthermore, by inserting a carbon monoxide concentration sensor into the exhaust path after processing and checking the concentration of carbon monoxide contained in the released (exhaust) gas, the function of the device is monitored to detect failures. In addition, the objective is to eliminate the problem of improving the work environment by maintaining the carbon monoxide concentration of the gas after treatment at a desired level or less, thoroughly managing the health of employees working in the same environment.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following constituent elements.
(1) In an apparatus for circulating and treating a gas containing a harmful gas such as carbon monoxide through an oxidation catalyst layer, a means for heating the catalyst layer as uniformly as possible is attached, and the heating source is controlled to provide a catalyst. An apparatus for treating and removing carbon monoxide and the like, wherein one or more temperature sensors that operate to maintain the temperature of the layer at an appropriate temperature are arranged in a container that contains the oxidation catalyst.
[0010]
(2) Gas is used to prevent the oxidation catalyst layer from being heated locally, and a heat transfer fin connected to the heat source and having a heat diffusion / conduction area between the heat source and the catalyst layer increased as much as possible. The carbon monoxide and other treatment and removal apparatus described in the above item (1), which is embedded in a container along the flow direction.
(3) Between the gas inlet side in the container and the front surface of the oxidation catalyst layer, a mesh capacity, a granular material layer, etc. made of a good heat conductor having a heating source that disturbs the flow of the inflowing gas is interposed. A carbon monoxide or other treatment / removal apparatus as described in (1) above.
[0011]
(4) The above (1), wherein a gap is provided on either or both of the gas inlet side and the gas outlet side across the oxidation catalyst layer, and the gas is circulated through the gap. ) To (3), any one of the carbon monoxide and other treatment and removal apparatuses.
(5) Install a carbon monoxide concentration sensor on the gas outlet side or in front of it, measure the carbon monoxide concentration of the treatment gas, and detect that the concentration exceeds a predetermined value. The carbon monoxide or other treatment / removal device according to any one of the above items (1) to (4), wherein the device emits a signal.
[0012]
(6) When the carbon monoxide concentration in the outside air is measured and it is detected that the concentration exceeds a predetermined value, the gas containing carbon monoxide is sent to the gas inlet side or discharged to the outlet side through the device. A gas feeding device such as a blower, a compressor or a pump is operated, and the carbon monoxide or other treatment or removal device according to any one of the above (1) to (5), .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
A heating means for heating the oxidation catalyst layer as uniformly as possible to an appropriate temperature is provided, and a temperature sensor for controlling a heating source is disposed at a predetermined position of the catalyst layer to control the temperature of the oxidation catalyst.
Alternatively, a metal mesh capacity made of a good heat conductor, a granular material layer, etc. are installed on the front side of the oxidation catalyst layer, a heating means is brought into contact with the mesh layer, the granular material layer, and a temperature sensor is arranged at an appropriate place, and the oxidation catalyst layer Is heated and controlled indirectly through a metal mesh capacity and granular layer.
[0014]
If necessary, a dust filter is provided upstream of the oxidation catalyst layer (between the outside air and the gas inlet of the apparatus).
[0015]
Place the device in operation and detect the purification rate of the processing gas by the carbon monoxide concentration sensor provided at the gas outlet. When the purification rate falls below the required value, a signal such as a display or alarm is issued. In addition, in preparation for a lack of capability, failure or failure of the device.
When the processing apparatus is placed in a preheating or operation preparation system and it is detected that the carbon monoxide content in the gas exceeds the reference value, the apparatus is operated manually or automatically.
[0016]
【Example】
(Part 1)
FIG. 1 shows a cross-sectional view of an embodiment of the apparatus of the present invention. The container 1 has openings at one end and the other end, respectively, and is provided with a gas inlet 2 and an outlet 3 communicating with the internal space. An oxidation catalyst 4, for example, a catalyst containing 20% copper oxide and 50% manganese monoxide as main components in the space in the container connecting the inlet 2 and the outlet 3 is generally called hopcalite (trade name). Fill with granular oxidation catalyst.
Further, a plurality of five heat sources (bar heaters) for heating the catalyst 4 are arranged and attached uniformly in the catalyst along the flow direction of the gas flowing through the oxidation catalyst layer 4.
[0017]
In addition, between the inflow port 2 and the front surface of the oxidation catalyst layer 4 and between the discharge port 3 and the rear surface of the oxidation catalyst layer 4 so that the gas flows uniformly in the oxidation catalyst layer 4 (acting the oxidation catalyst uniformly). It is desirable to provide an appropriate gap.
At that time, at least the front surface of the oxidation catalyst layer 4 is separated from the gap by the mesh plate.
Here, the upstream side is referred to as “front” along the gas flow during operation, and “rear” toward the downstream side.
[0018]
Since the reaction of the catalyst 4 is not activated unless the oxidation catalyst layer 4 is heated to an appropriate temperature, it is necessary to raise the temperature of the catalyst 4 to an appropriate value evenly during operation.
In this description, the temperature of the oxidation catalyst 4 when the catalytic reaction that promotes the oxidation of carbon monoxide is active and the temperature in the vicinity thereof (for example, 60 to 80 ° C.) are referred to as appropriate temperature (value).
Depending on the type of catalyst, there are some which affect the reaction efficiency due to the great influence of humidity. For example, in the case of hopcalite, if the catalyst is wet, the heat of vaporization is taken away by the flowing gas, and the temperature of the catalyst does not gradually rise to an appropriate temperature, so that the oxidation reaction is not activated during that time.
[0019]
Further, the heating temperature of the hopcalite (oxidation catalyst 4) has an upper limit (Max. 150 ° C.), and if the heating is excessive, the characteristics deteriorate and the catalyst life may be shortened. Therefore, in order to prevent the oxidation catalyst layer 4 from being locally heated to the deterioration temperature, the heat source 5 has a heat conductive surface formed of a good thermal conductor material, and a plurality of radial heat transfer fins 7 extending in the longitudinal direction are connected to the surface. And the heat conduction and heat diffusion area between the oxidation medium 4 and the catalyst layer 4 are heated as evenly as possible.
In FIG. 1, both outer edges of the heat transfer fins 7 are indicated by dotted lines parallel to the rod-like body heat source 5.
[0020]
T1  , T2  Is a temperature sensor installed in the oxidation catalyst layer 4 and arranged separately on the upstream side and the downstream side in the catalyst layer 4 along the gas flow direction.
The sensor must be appropriately separated from the rod-like body heat source 5 and the heat transfer fin 7 and detect the temperature of the oxidation catalyst layer 4 itself.
The temperature sensor T1  , T2  Activates the heat source 5 when it is detected that the temperature of the catalyst 4 has cooled below the appropriate value. Temperature sensor T1  When detecting that the temperature of the catalyst layer 4 is close to an appropriate value, the temperature sensor T2  When detecting that the temperature of the nearby catalyst layer 4 is close to the deterioration temperature, the heating means is turned off.
[0021]
The above-mentioned member is an indispensable requirement for preheating the oxidation catalyst layer 4 to an appropriate temperature by the heat source 5 to put the apparatus in a standby state or to put it in an operating state after a rise time. Sensor T1  , T2  In any case, when an appropriate temperature of the oxidation catalyst layer 4 is detected, it is displayed that the apparatus is ready for operation.
The temperature sensor T also works as a safety and protection device to prevent the oxidation catalyst from degrading and to prevent thermal runaway for the purpose of preventing accidents.1  , T2  Depends on the detection signal.
[0022]
Since the oxidation catalyst layer 4 has a heat capacity, even if the heat source 5 and the heat transfer fins 7 are used for heating, the entire temperature does not rapidly increase to an appropriate value (a large amount of heat is generated in a short time in an attempt to warm up rapidly). If supplied, the oxidation catalyst 4 may be deteriorated.)
When the oxidation catalyst 4 is moist, it does not rise to an appropriate temperature until the latent heat is taken away and it dries.
Until the temperature of the entire oxidation catalyst layer 4 uniformly rises to an appropriate value, even if the processing apparatus is forced to operate, the reaction of the entire catalyst is not effectively performed. Some time is required for the rise (for example, about 40 minutes, which varies depending on the season).
Therefore, when a gas such as carbon monoxide has to be processed quickly (reducing the rise time of the apparatus), it is necessary to preheat and keep the oxidation catalyst 4 close to an appropriate value.
[0023]
In that case, it is not necessary to operate the suction and exhaust devices such as a blower, a compressor or a pump, and the heat source 5 and the temperature sensor T1  , T2  In addition, the control means operates effectively to maintain the catalyst at the proper temperature.
When the oxidation catalyst 4 is preheated close to an appropriate temperature, it is effective to cover the outer peripheral wall, lid and bottom surface of the container 1 with a heat insulating material.
The lid has a structure that can be attached and removed in consideration of replacement and supplementation of the heat source 5 and the oxidation catalyst 4.
In addition, when the heat source 5 is inserted into the catalyst from the bottom of the container, the heat insulating material on the bottom surface may be attached and removed.
A double vacuum wall may be used instead of the heat insulating material.
[0024]
If the start-up time of the equipment can be reduced to zero, the equipment can always be put into an operation preparation system. For example, sudden carbon monoxide generation, automatic operation using a predetermined concentration output signal of the carbon monoxide concentration sensor, and simultaneous welding It is possible to expand the use mode such as gas treatment in progress.
[0025]
The purification rate of carbon monoxide contained in the gas is T2  ≧ T1  The temperature sensor T is improved when the condition is (appropriate temperature).1  , T2  In any case, when it is detected that the temperature of the catalyst layer 4 is close to the proper value or has reached the proper value, the standby (rise time) display is converted to the operation ready display as described above. Switch.
If the display does not switch to “ready for operation” even after the required time has elapsed, the heating means 5 or the temperature sensor T1  , T2  A failure of the control means is also conceivable.
[0026]
While the temperature of the apparatus cools the catalyst layer 4 while the apparatus is in operation, reaction heat is generated by the treatment. Therefore, the external heating of the catalyst layer 4 needs to consider the heat balance.
For example, the temperature gradient in the oxidation catalyst layer 4 in operation tends to have a generally low gas receiving temperature and a high gas discharging temperature (see FIG. 1).
In FIG. 1, along another heat source 5, a straight line indicated by a two-dot chain line is a model indicating a temperature gradient of the catalyst layer 4, and the level of temperature is indicated by a length (width) in the horizontal direction.
[0027]
When the catalyst reaction speed increases and the reaction heat warms the oxidation catalyst 4 above the appropriate temperature and approaches the deterioration temperature, the temperature sensor T2  However, it is necessary to control so that the heat source 5 is turned off early and the temperature at which the catalyst 4 deteriorates is not exceeded.
[0028]
In order to circulate the outside air through the apparatus, either the air intake or exhaust part such as a blower, a compressor or a pump having the required characteristics is connected to either the gas inlet 2 or the outlet 3 of the apparatus so as to follow each function. Link.
[0029]
Now, when outside air containing harmful gases such as dust and carbon monoxide is circulated through the catalyst layer 4 through the gas inlet 2 through the oxidation catalyst 4 heated to an appropriate temperature, the entire area in the catalyst layer is oxidized by the oxidation of carbon monoxide. As a result of the reaction heat generated in the above, the catalyst layer 4 maintains an appropriate reaction temperature range, efficiently cleans the outside air, and reaches the discharge port 3 as a result of being transported to the discharge port 3 side as the gas moves. In most cases, it is processed into harmless carbon gas.
Therefore, even if the exhaust gas is discharged again to the outside air, the above-mentioned disadvantage does not occur.
[0030]
When the outside air contains dust such as fume, they may adhere to the oxidation catalyst 4 and shorten the catalyst life. Therefore, a dust filter 6 is installed upstream and in front of the gas inlet 2 of the apparatus.
Since this kind of dust removal filter 6 can be easily regenerated by applying jet injection, vibration, etc., it is installed separately from the processing apparatus (oxidation catalyst layer 4) in order to facilitate this kind of operation. It is preferable.
The circumstances of installing the dust filter 6 are the same for the second embodiment and below.
[0031]
When the operation of the apparatus is terminated and the sending and discharging of the outside air is stopped, the temperature of the oxidation catalyst layer 4 that has been kept in equilibrium by the reaction heat being carried out by the flowing gas during operation rapidly rises. There is a risk of deterioration. This situation may not be prevented by turning the heating means 5 of the catalyst layer 4 off.
Therefore, even after the operation is stopped until all the heat amount in the catalyst layer is carried out of the apparatus, the apparatus can be air-cooled by moving a gas feeding apparatus such as a blower, a compressor or a pump for a while. Desirable [Necessity of the operation is the same in the second embodiment and below. ].
[0032]
Even if the apparatus is in an operation preparation system and the oxidation catalyst layer 4 maintains an appropriate temperature, a processing gas that satisfies the reference value cannot be obtained at the gas outlet 3 during operation (the mode is the same as that of the third embodiment). (It will be described later in the description.) In some cases (aside from failure), there is a risk of forcing the apparatus to exceed the capacity, so the gas processing amount per unit time is reduced or the oxidation catalyst layer filled in the container It is necessary to increase the thickness of 4 (this point will also be described later).
[0033]
FIG. 2 is a cross-sectional view of the heating source 5 and the radial heat transfer fins 7 along the line II-II in FIG. 1, and the granules of the oxidation catalyst 4 are in contact with and filled on both sides of the radial heat transfer fins 7. ing. The heating of the oxidation catalyst 4 is performed through the heat source 5 and the radial heat transfer fins 7 of a good heat conductor, and the granules of the catalyst 4 are evenly heated.
In the figure, the processing gas flows in a direction perpendicular to the paper surface, for example, from top to bottom or from bottom to top, while being urged to oxidize through the granules of the oxidation catalyst 4.
[0034]
In the above embodiment, a plurality of rod-shaped electric heating means 5 are arranged in the catalyst layer 4 in order to heat the oxidation catalyst layer 4 to an appropriate temperature. However, the catalyst heating means is not limited to this. It is also possible to heat the catalyst layer 4 evenly by using a heating wire (inside the heat insulating material) surrounding the outer peripheral surface, or by passing heating steam and heating liquid around the heat transfer pipe.
In this case, the installation of the temperature sensor and its operation are indispensable.
[0035]
Example (2)
It is disadvantageous or disadvantageous for the function of the apparatus or economically that the oxidation catalyst layer 4 has a part of the catalyst having a temperature lower than the optimum reaction temperature. Therefore, the oxidation catalyst 4 in the region is made substantially zero or the oxidation catalyst. In place of No. 4, copper (aluminum, etc. is also effective) mesh 8 having good heat conduction, low cost, long life and low fluid resistance, granular layer (when filled, porous and good air permeability) It is conceivable to replace or fill in.
[0036]
FIG. 3 shows a schematic cross-sectional view of another embodiment of the present invention, in which a copper mesh 8 made of a good heat conductor is disposed so as to fill a space between the gas receiving port of the apparatus and the front surface of the oxidation catalyst layer 4. Is. Desirably, a gap is provided on the gas receiving side, but this is not necessarily required depending on the fluid resistance of the copper mesh 8.
However, for convenience in use, the mesh between the copper mesh 8 and the oxidation catalyst (palladium) layer 4 may be partitioned with a network that has low fluid resistance and does not allow the granules of the catalyst 4 to leak to the copper mesh side.
Further, it is possible to provide a gap between the oxidation catalyst layer 4 and the copper mesh 8 so as not to significantly disturb the heat radiation.
[0037]
A plurality of heat sources 5 are brought into contact with the mesh in the copper mesh 8 and are arranged uniformly in the capacity, thereby heating the copper mesh 8 uniformly.
Although depending on the configuration of the copper mesh 8, the heat source 5 is not necessarily provided with heat transfer fins because the material is a good conductor of heat. Further, only a part of the heat source may be brought into contact with the copper mesh 8.
Since the oxidation catalyst layer 4 is warmed to an appropriate temperature via the copper mesh 8, the heat source 5 in the oxidation catalyst layer 4 is not necessary in this embodiment.
[0038]
T3  Is a temperature sensor placed in the copper mesh 8 and the temperature sensor T3  Monitors whether or not the entire copper mesh 8 is warmed to an appropriate temperature or near a deterioration temperature.
The heating temperature of the copper mesh 8 should just be below the temperature which the oxidation catalyst 4 which adjoins or contacts deteriorates. [Depending on the kind of oxidation catalyst, there exists a thing with a high deterioration temperature. For example, palladium has a high deterioration temperature (about 200 ° C.) and is hardly affected by humidity. ].
[0039]
In FIG. 3, the temperature sensor T3  The figure of the spindle shape surrounded by the alternate long and short dash line shows the temperature distribution in the copper mesh 8 and the oxidation catalyst layer 4 when the oxidation catalyst 4 is sufficiently preheated (hereinafter, unless otherwise specified). It is a (gradient) diagram. In the figure, the length in the horizontal direction indicates the height of the temperature at the location.
In the copper mesh 8 and the oxidation catalyst layer 4, the vicinity of the contact portion (which may be slightly separated) is high, but the temperature is considerably lower than the deterioration temperature of the oxidation catalyst 4 (however, the appropriate temperature). Higher).
Temperature sensor T3  When detecting that the temperature of the copper mesh 8 is close to the deterioration temperature of the catalyst, the heat source 5 is shut off.
[0040]
The temperature of the copper mesh 8 is slightly lowered toward the upstream side due to heat radiation (radiant heat) to the outside air.
Temperature sensor T downstream of oxidation catalyst layer 45  The temperature of the nearby oxidation catalyst layer 4 is close to an appropriate value (temperature sensor T5  Is disposed on the downstream side of the oxidation catalyst layer 4 and close to the processing gas discharge surface. ).
Temperature sensor T5  However, when a value close to the appropriate value is detected, it is certain that the oxidation catalyst layer 4 is warmed to at least the appropriate temperature as seen from the temperature distribution diagram. Is displayed.
In this case, the temperature sensor T in the oxidation catalyst layer 4 is used.4  Need not be installed.
Temperature sensor T4  The function of the temperature sensor T3  This is because there is an overlap with that.
[0041]
In order to assist in uniformly heating the oxidation catalyst layer 4, a heat insulating layer is provided so as to surround the outer peripheral surface of the oxidation catalyst layer 4, and the heat transfer from the copper mesh 8 is entirely heated to heat the oxidation catalyst layer 4. You can also For example, the heat insulating structure employed in the present embodiment is the same as that described in the first embodiment (part 1).
Also in this processing apparatus, since the oxidation catalyst layer 4 has a heat capacity, it is necessary to have a slight rise time until the whole is heated to an appropriate temperature, as in the first embodiment. The state in which the oxidation catalyst layer 4 is preheated through the copper mesh 8 as described above for the purpose of shortening or eliminating the rise time has been described.
[0042]
When the apparatus is operated in this state and the outside air is circulated in the oxidation catalyst layer 4, the temperature gradient diagram described above changes to a narrowed state due to the temperature of the copper mesh 8 being slightly cooled by the inflow of the outside air. The oxidation catalyst layer 4 is warmed by the oxidation of the carbon, and the appearance of spreading the bottom is exhibited.
The processing of outside air has progressed significantly, and the temperature sensor T5  However, when a value close to the deterioration temperature of the oxidation catalyst 4 is detected, the heat source 5 is turned off.
[0043]
When the outside air that passes through the copper mesh, the wire mesh, etc. is warmed and reaches the oxidation catalyst layer 4, the load on the oxidation catalyst 4 is less likely to increase in temperature. Further, uniform heated air can be supplied to the front surface of the catalyst layer 4, and the temperature gradient in the catalyst layer becomes smaller than in the case of direct heating.
[0044]
Since the oxidation catalyst layer 4 has gas flow resistance, if a void is formed so that the entire surface of the gas receiving side is exposed to the outside air, the streamlines of the gas flowing in from the receiving port side are voids on the entire surface of the oxidation catalyst layer 4. Although it diffuses in, the copper mesh 8 of the oxidation catalyst layer 4 front surface also has the effect of the said space | gap.
Since the state is the same on the gas discharge side of the oxidation catalyst layer 4, a necessary gap is also provided between the catalyst layer discharge side and the gas discharge port so as not to create a dead space in the packed catalyst layer. It is desirable to use the oxidation catalyst efficiently.
[0045]
In such a case, even if the apparatus operates immediately without preheating the apparatus and the oxidation catalyst 4 is moist, the outside air is warmed while passing through the rapidly heated copper mesh 8, copper wire mesh, and the like. In order to reach the catalyst layer 4, the oxidation catalyst layer is uniformly heated and dried, so that the oxidation catalyst 4 is accelerated and the oxidation reaction is activated early.
[0046]
In the above apparatus, the temperature sensor T in the catalyst layer 45  In place of the temperature sensor T in the exhaust port 36  (The signal transmission means is shown using a dotted line). Temperature sensor T6  The effect of the temperature sensor T5  It acts as a proxy for
Also, a temperature sensor T arranged in the copper mesh 83  Instead of temperature sensor T4  Can be provided at a suitable position in the oxidation catalyst layer 4 (the signal transmission means is shown using a dotted line).
Temperature sensor T4  Detects whether or not the entire oxidation catalyst layer 4 has been uniformly heated to an appropriate temperature, and thereby controls on / off of the heating means 5 in the copper mesh.
[0047]
Temperature sensor T along with the flow of process gas in the oxidation catalyst layer 44  Of the temperature sensor T, that is, whether it is relatively upstream or downstream.4  The temperature state in the catalyst layer 4 to be detected differs depending on. For example, temperature sensor T4  Is the temperature sensor T in the copper mesh 83  Is close to the temperature sensor T3  Are substantially the same.
Temperature sensor T4  Is moved away from the downstream side, the temperature sensor T from the gas introduction surface side of the oxidation catalyst layer 4.4  It is possible to detect how the temperature of the oxidation catalyst layer up to the position is warmed.
However, in such a case, the temperature sensor T in the copper mesh 83  Therefore, it may be necessary to ensure that the oxidation catalyst layer 4 is not warmed close to the degradation temperature.
Temperature sensor T4  In the extreme, the temperature sensor T5  You can overlap with.
[0048]
Example (Part 3)
FIG. 4A shows a part of another embodiment of the apparatus of the present invention in a schematic cross-sectional view, in which a carbon monoxide concentration sensor 9 is attached to the gas outlet 3 side of the apparatus.
In addition, the code | symbol attached | subjected to Fig.4 (a) is the same as what was described in the Example (the 1 and 2) [the same also in the case of FIG.4 (b)].
That is, the main part of the apparatus is the embodiment (part 1 or 2) itself [the situation is the same in the embodiment (part 4). ].
While operating the gas feeding device connected to the apparatus of this embodiment, the exhaust gas purification rate is detected by the carbon monoxide concentration sensor 9, the quality of the processing function of the device is measured, and the measured value is a predetermined value. If this is the case, an alarm is issued over the display or signal.
[0049]
When the purification failure is displayed, it is necessary to check whether or not the apparatus is ready for operation, and it is necessary to wait until the apparatus indicates an operation ready state.
Even if the device is ready for operation, if the sensor 9 display or signal does not show an appropriate value,
Reduced function of the processing apparatus (deterioration of the oxidation catalyst 4).
The concentration of carbon monoxide contained in the outside air exceeds the processing capacity (characteristic) of the processing apparatus.
Etc. are considered,
In any case, if the exhaust is continuously released into a confined space or insufficiently ventilated, there is a risk of accidents such as carbon monoxide poisoning or death of workers. It is necessary to take measures.
[0050]
Among the above, when it is clear that the carbon monoxide concentration exceeds the processing capacity of the apparatus, depending on the configuration of the apparatus, the oxidation catalyst 4 is replenished and the thickness (depth) of the catalyst layer 4 is increased. There is also a means to increase the value. After all, the flow path in the oxidation catalyst layer 4 of the processing gas is extended, and the treatment of carbon monoxide or the like is further promoted during that time.
At that time, it is expected that the fluid resistance of the oxidation catalyst layer 4 slightly increases and decreases and the processing gas volume fluctuates, but there is nothing special to note.
While observing the measured value of the concentration sensor 9, the oxidation catalyst 4 is replenished or removed until an appropriate value is reached.
The device is returned to the operating system again after setting.
[0051]
Example (4)
Another embodiment of the present invention is shown in the partial cross-sectional schematic diagram of FIG.
In this embodiment, when the carbon monoxide concentration sensor 10 is arranged in the environment where the apparatus is installed, and the carbon monoxide concentration in the outside air exceeds the reference value, a blower, a compressor or a pump connected to the processing device. The gas supply means such as the above is operated, and the gas in the environment is sent into the processing apparatus or inhaled.
In order to cope with the environment where carbon monoxide is suddenly generated, naturally, the apparatus must be preheated so that the apparatus is put in an operation preparation system before that.
[0052]
The gas properly purified through the treatment apparatus is released again into the environment or released out of the environment.
If the device is kept in an operation preparation system, when the carbon monoxide concentration sensor 10 detects that carbon monoxide exceeding the reference value has been released into the environment, the device is automatically operated and the outside air is discharged. Processing can be promoted and environmental standards can be maintained during work.
Alternatively, the apparatus may be operated manually based on a warning and display by the carbon monoxide concentration sensor 10.
[0053]
【The invention's effect】
As described above, the present invention efficiently purifies air containing carbon monoxide and other toxic gases that are inevitably generated or diffused during work, and the health of personnel who occupy or are close to the work. , Hygiene management, especially to ensure the safety of workers in a confined space and in a work environment with insufficient ventilation, and safety related to human lives.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a heat source along the line II-II in FIG.
FIG. 3 is a schematic cross-sectional view of another embodiment of the present invention.
FIG. 4 is a partial schematic cross-sectional view of another or other embodiment of the present invention.
[Explanation of symbols]
1 Container (tank)
2 Gas inlet
3 Gas outlet
4 Oxidation catalyst (layer)
5 heat sources
6 Dust removal filter
7 Heat conduction fins
8 Copper mesh
9,10 Carbon monoxide concentration sensor
Tn temperature sensor n:1  ~6

Claims (6)

酸化触媒層を通して一酸化炭素など有害ガスを含む気体を流通させ処理する装置において、前記触媒層を可及的均一に加熱する手段を付設すると共に、前記加熱源を制御して、触媒層の温度を適正温度に保持するよう操作する温度センサーを、前記酸化触媒を収容する容器内に一つ以上配置したことを特徴とする一酸化炭素その他の処理、除去装置。In an apparatus for circulating and processing a gas containing a harmful gas such as carbon monoxide through an oxidation catalyst layer, a means for heating the catalyst layer as uniformly as possible is provided, and the temperature of the catalyst layer is controlled by controlling the heating source. A carbon monoxide or other treatment / removal apparatus, wherein at least one temperature sensor that operates to maintain the temperature at a proper temperature is disposed in a container containing the oxidation catalyst. 酸化触媒層を局部的に加熱しないよう、加熱源と、前記熱源に連結し熱源と触媒層との間の熱拡散・伝導面積を可及的に拡げた伝熱フィンとを、気体流通方向に沿って容器内に埋設したことを特徴とする請求項1記載の一酸化炭素その他の処理、除去装置。In order not to locally heat the oxidation catalyst layer, a heat source and a heat transfer fin connected to the heat source and having a heat diffusion / conduction area between the heat source and the catalyst layer as wide as possible are arranged in the gas flow direction. The carbon monoxide and other treatment / removal device according to claim 1, wherein the device is embedded in a container along the surface. 容器内の気体流入口側と酸化触媒層前面との間に、前記流入気体の流れを擾乱させる、加熱源を備えた熱良導体より成る網状容量、粒状体層等を介在させたことを特徴とする請求項1記載の一酸化炭素その他の処理、除去装置。Between the gas inlet side in the container and the front surface of the oxidation catalyst layer, a network capacity composed of a good thermal conductor having a heating source, a granular material layer, etc. are interposed to disturb the flow of the inflowing gas. The carbon monoxide or other treatment / removal apparatus according to claim 1. 酸化触媒層を挟んで、気体流入口側と気体流出口側との何れか、若しくは何れにも空隙を設け、前記空隙を介して気体を流通させたことを特徴とする請求項1乃至3記載のうちの何れか一つの一酸化炭素その他の処理、除去装置。4. A gas passage is provided through any one of the gas inlet side and the gas outlet side, or a gas gap is provided between the gas inlet side and the gas outlet side with the oxidation catalyst layer interposed therebetween. Carbon monoxide or any other treatment or removal device. 気体流出口側又はその前面に一酸化炭素濃度センサーを設置して処理気体の一酸化炭素濃度を計測し、前記濃度が所定値を超えた事を検知したとき、表示、警報等の信号を発することを特徴とする請求項1乃至4記載のうちの何れか一つの一酸化炭素その他の処理、除去装置。A carbon monoxide concentration sensor is installed on the gas outlet side or in front of it to measure the carbon monoxide concentration of the processing gas, and when it detects that the concentration exceeds the specified value, it issues a signal such as a display or alarm The carbon monoxide or other treatment / removal apparatus according to any one of claims 1 to 4. 外気の一酸化炭素濃度を計測し、前記濃度が所定値を超えた事を検出したとき、一酸化炭素を含む当該気体を気体流入口側に送り込むか、装置を通して流出口側に排出するかする、送風機、圧縮機又はポンプなどの気体送給装置を稼働させることを特徴とする請求項1乃至5記載のうちの何れか一つの一酸化炭素その他の処理、除去装置。When the carbon monoxide concentration in the outside air is measured and it is detected that the concentration exceeds a predetermined value, the gas containing carbon monoxide is sent to the gas inlet side or discharged to the outlet side through the device. A gas feeding device such as a blower, a compressor, or a pump is operated, and the carbon monoxide or other treatment / removal device according to any one of claims 1 to 5.
JP2003198299A 2003-07-17 2003-07-17 Treatment/removal device for carbon monoxide and others Pending JP2005034708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003198299A JP2005034708A (en) 2003-07-17 2003-07-17 Treatment/removal device for carbon monoxide and others

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003198299A JP2005034708A (en) 2003-07-17 2003-07-17 Treatment/removal device for carbon monoxide and others

Publications (1)

Publication Number Publication Date
JP2005034708A true JP2005034708A (en) 2005-02-10

Family

ID=34208112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003198299A Pending JP2005034708A (en) 2003-07-17 2003-07-17 Treatment/removal device for carbon monoxide and others

Country Status (1)

Country Link
JP (1) JP2005034708A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010511507A (en) * 2006-12-07 2010-04-15 ベコー テヒノロギース ゲーエムベーハー Gas purification device
KR101832849B1 (en) * 2015-11-30 2018-02-27 선문대학교 산학협력단 Toxic gas removal device automatically
CN115069058A (en) * 2022-07-20 2022-09-20 广西绿健环保科技有限公司 Pyrolysis oven catalytic system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010511507A (en) * 2006-12-07 2010-04-15 ベコー テヒノロギース ゲーエムベーハー Gas purification device
KR101475539B1 (en) * 2006-12-07 2014-12-22 베코 테크놀로지스 게엠베하 Purification unit for gases
KR101832849B1 (en) * 2015-11-30 2018-02-27 선문대학교 산학협력단 Toxic gas removal device automatically
CN115069058A (en) * 2022-07-20 2022-09-20 广西绿健环保科技有限公司 Pyrolysis oven catalytic system

Similar Documents

Publication Publication Date Title
JP4931406B2 (en) Method and apparatus for processing gas containing nitrous oxide
JP4978644B2 (en) Air treatment equipment
US20080135041A1 (en) Kitchen ventilator system
US20160059047A1 (en) Method, apparatus, and system for providing controlled atmosphere in confined spaces
TWI323332B (en) Continuous kiln with unit of dealing with discharge gas
JP3159673B2 (en) Fume and gas treatment method in shield gas arc welding
CN107597083A (en) Regenerating active carbon purifier and system
KR101535464B1 (en) Smoking booth
JP2005034708A (en) Treatment/removal device for carbon monoxide and others
JP3138311U (en) Pollution-free waste incinerator
JP4617010B2 (en) Purification equipment for contaminated soil
EP2688625A1 (en) Apparatus for decomposition of nitrous oxide in a gas stream
CN215255846U (en) Environment-friendly fireproof door with expansion sealing element
CN207413434U (en) Regenerating active carbon purifier
CN207413433U (en) Regenerating active carbon purifier and system
JP2011143435A (en) Reflowing apparatus
JP4350554B2 (en) Condensation prevention method in piping
JP5111531B2 (en) Air treatment device and cooking device
CN207446270U (en) Regenerating active carbon purifier
JP3637807B2 (en) Hot air generator, air purifier, dehumidifier, waste disposal device, garbage disposal device
JP2003214772A (en) Heating furnace
US11445732B2 (en) System and method for identifying an emissions control failure in an indoor smoker
KR100688391B1 (en) System for processing total-hydrocarbon by catalyst oxidation
KR20190112547A (en) Ventilation system for internal cleaning of pipes
CN211425082U (en) Hot air recirculation system of dirt nitre integrated device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060605

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602