JP2005034129A - Probe substrate for detecting nucleic acid - Google Patents

Probe substrate for detecting nucleic acid Download PDF

Info

Publication number
JP2005034129A
JP2005034129A JP2003336317A JP2003336317A JP2005034129A JP 2005034129 A JP2005034129 A JP 2005034129A JP 2003336317 A JP2003336317 A JP 2003336317A JP 2003336317 A JP2003336317 A JP 2003336317A JP 2005034129 A JP2005034129 A JP 2005034129A
Authority
JP
Japan
Prior art keywords
nucleic acid
substrate
probe
insulating layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003336317A
Other languages
Japanese (ja)
Other versions
JP4388336B2 (en
Inventor
Tomoki Inoue
友喜 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003336317A priority Critical patent/JP4388336B2/en
Publication of JP2005034129A publication Critical patent/JP2005034129A/en
Application granted granted Critical
Publication of JP4388336B2 publication Critical patent/JP4388336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a probe substrate for detecting a nucleic acid, capable of miniaturizing the prove substrate on which the probe consisting of the nucleic acid, and the like, are immobilized, for detecting the nucleic acid and improving the detecting accuracy of amount of the nucleic acid to reduce the measurement error. <P>SOLUTION: This probe substrate for detecting the nucleic acid is equipped with the substrate 1 consisting of ceramics, a first circuit layer 2 formed on a first main surface of the substrate 1, a first insulation layer 3 coating the first main surface for covering the first circuit layer 2, a second circuit layer 4 formed on the upper surface of the first insulation layer 3 and electrically connected with the first circuit layer 2 through a penetrating hole formed on the first insulation layer 3, a second insulation layer 5 for covering the second circuit layer 4, installed with an opening part 5a for exposing the one part of the second circuit layer 4, a probe 6 for detecting the nucleic acid, consisting of the immobilized nucleic acid on the second circuit layer 4 exposed from the opening part 5a, a terminal electrode 2a formed on the second main surface of the substrate 1 and a connecting conductor 1a for electrically connecting the terminal electrode 2a with the first circuit layer 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、塩基配列あるいは遺伝子の存在を検出するための、核酸等よりなるプローブを固定化した核酸検出用プローブ基板に関するものである。   The present invention relates to a nucleic acid detection probe substrate on which a probe made of nucleic acid or the like is immobilized for detecting the presence of a base sequence or a gene.

近年、遺伝子学の進歩により、特定の塩基配列あるいは特定の遺伝子の存在を検出することによって、発病の可能性や病気の進行程度等が判断できるようになってきた。この特定の塩基配列あるいは特定の遺伝子の存在を検出する手法として、蛍光検出法やRI(放射性同位元素)強度検出法、電流検出法等がある。   In recent years, advances in genetics have made it possible to determine the possibility of disease onset and the degree of disease progression by detecting the presence of specific base sequences or specific genes. Methods for detecting the presence of this specific base sequence or specific gene include a fluorescence detection method, an RI (radioisotope) intensity detection method, a current detection method, and the like.

蛍光検出法やRI強度検出法は、DNA(Deoxyribonucleic Acid:デオキシリボ核酸)アレイと呼ばれる、スライドガラス等の基板の表面に配列が異なる核酸等からなるプローブを固定化したチップを用いて行われる。核酸等からなるプローブと蛍光色素もしくはRI等で標識した試料遺伝子とを反応させることにより、核酸等からなるプローブの塩基配列に相補的な配列を有する試料遺伝子を核酸等からなるプローブに結合させる。これにより試料遺伝子がDNAアレイ上の核酸等からなるプローブに対して相補的な配列を有するときには、DNAアレイ上の特定の位置に蛍光色素もしくはRI等の標識の信号が得られる。ゆえに、固定化しておいた塩基配列の異なる核酸等からなるプローブのDNAアレイ上における位置があらかじめわかっていれば、試料の遺伝子中に存在する塩基配列を調べることができる。しかしながら、化学反応系が複雑なことから塩基配列あるいは特定の遺伝子の検出に要する時間が長く、操作が煩雑であり、塩基配列あるいは特定の遺伝子の検出に要する経済的な負担も大きいという問題点があった。   The fluorescence detection method and the RI intensity detection method are performed using a chip called a DNA (Deoxyribonucleic Acid: deoxyribonucleic acid) array in which probes made of nucleic acids having different sequences are immobilized on the surface of a substrate such as a slide glass. By reacting a probe made of nucleic acid or the like with a sample gene labeled with a fluorescent dye or RI, a sample gene having a sequence complementary to the base sequence of the probe made of nucleic acid or the like is bound to the probe made of nucleic acid or the like. As a result, when the sample gene has a sequence complementary to a probe made of a nucleic acid or the like on the DNA array, a signal of a label such as a fluorescent dye or RI is obtained at a specific position on the DNA array. Therefore, if the position on the DNA array of probes composed of nucleic acids having different base sequences that have been immobilized is known in advance, the base sequence existing in the gene of the sample can be examined. However, since the chemical reaction system is complicated, it takes a long time to detect a base sequence or a specific gene, the operation is complicated, and the economical burden required for detection of the base sequence or the specific gene is large. there were.

これらの問題点を解決し、優れた再現性および定量性を発揮できる手法として電流検出法が提案されている(特許文献1参照)。電流検出法では、ガラス等の基板上に金等から成る配線層と、さらに配線層の上面にフォトレジスト等の樹脂で覆われた絶縁層と、かつ配線層の一部が露出するような開口部とをもち、その開口部の配線層に核酸等からなるプローブが固定化された核酸検出用プローブ基板が用いられる。核酸等からなるプローブが固定化された開口部付近に試料の核酸等を含む水溶液を滴下して、核酸等からなるプローブと試料の核酸とをハイブリッド化させ、配線層の異なる二つまたは三つの電極間に電圧を印加して生じた反応電流を測定することにより試料中の核酸等の量を検出することができる。
特開平10−146183号公報(3−5頁)
A current detection method has been proposed as a method for solving these problems and exhibiting excellent reproducibility and quantification (see Patent Document 1). In the current detection method, a wiring layer made of gold or the like on a substrate such as glass, an insulating layer covered with a resin such as photoresist on the upper surface of the wiring layer, and an opening that exposes a part of the wiring layer And a nucleic acid detection probe substrate having a probe made of nucleic acid or the like immobilized on the wiring layer of the opening. An aqueous solution containing the nucleic acid of the sample is dropped near the opening where the probe made of nucleic acid or the like is immobilized, and the probe made of nucleic acid or the like and the nucleic acid of the sample are hybridized to form two or three different wiring layers. The amount of nucleic acid or the like in the sample can be detected by measuring a reaction current generated by applying a voltage between the electrodes.
JP-A-10-146183 (page 3-5)

しかしながら、ガラス等の基板上に複数の核酸検出部を隣接させて設けるために複数の配線層を形成した場合、試料の核酸等を含む水溶液を滴下する開口部付近と隣接された反応電流を測定する配線層の端部の端子電極とが同じ基板面上にあるため、核酸検出用プローブ基板をより小型化した場合、試料の核酸等を含む水溶液を滴下する開口部と隣接して設けられた核酸検出部の反応電流を測定する配線層の端部の端子電極との距離が短くなり、開口部から水溶液が流れ出して端子電極間がショートしてしまうという問題があった。これにより核酸検出用プローブ基板をより小型化することが困難であった。   However, when a plurality of wiring layers are formed to provide a plurality of nucleic acid detection parts adjacent to each other on a substrate such as glass, the reaction current adjacent to the vicinity of the opening where the aqueous solution containing the nucleic acid of the sample is dropped is measured. Since the terminal electrode at the end of the wiring layer to be connected is on the same substrate surface, when the probe substrate for nucleic acid detection is further downsized, it is provided adjacent to the opening for dropping the aqueous solution containing the nucleic acid or the like of the sample There was a problem that the distance from the terminal electrode at the end of the wiring layer for measuring the reaction current of the nucleic acid detection unit was shortened, so that the aqueous solution flowed out of the opening and the terminal electrodes were short-circuited. This makes it difficult to further downsize the probe substrate for nucleic acid detection.

従って、本発明は上記問題点に鑑みて完成されたものであり、その目的は、核酸検出用プローブ基板を小型化することができ、さらに核酸量の検出精度を上げて、測定誤差を抑えることができる核酸検出用プローブ基板を提供することにある。   Therefore, the present invention has been completed in view of the above problems, and its purpose is to reduce the size of the probe substrate for nucleic acid detection, further increase the detection accuracy of the amount of nucleic acid, and suppress measurement errors. An object of the present invention is to provide a probe substrate for nucleic acid detection that can be used.

本発明の核酸検出用プローブ基板は、セラミックスからなる基板と、この基板の第1の主面に形成された第1の配線層と、前記第1の配線層を覆って前記第1の主面に被着された第1の絶縁層と、この第1の絶縁層の上面に形成され、前記第1の絶縁層に形成された貫通孔を通して前記第1の配線層と電気的に接続された第2の配線層と、この第2の配線層を覆うとともに前記第2の配線層の一部が露出するように開口部が設けられた第2の絶縁層と、前記開口部より露出した前記第2の配線層に固定された核酸よりなる核酸検出用のプローブと、前記基板の第2の主面に形成された端子電極と、この端子電極と前記第1の配線層とを電気的に接続する接続導体とを具備していることを特徴とするものである。   The probe substrate for nucleic acid detection of the present invention includes a substrate made of ceramic, a first wiring layer formed on a first main surface of the substrate, and the first main surface covering the first wiring layer. A first insulating layer deposited on the first insulating layer and electrically connected to the first wiring layer through a through-hole formed in the first insulating layer. A second wiring layer; a second insulating layer covering the second wiring layer and having an opening provided so as to expose a part of the second wiring layer; and the exposure exposed from the opening. A probe for nucleic acid detection made of nucleic acid fixed to the second wiring layer, a terminal electrode formed on the second main surface of the substrate, and the terminal electrode and the first wiring layer are electrically connected It has a connecting conductor to be connected.

また、本発明の核酸検出用プローブ基板は、上記構成において好ましくは、前記第1の絶縁層は、表面の算術平均粗さが0.1μm以下の樹脂フィルムから成ることを特徴とするものである。   In the nucleic acid detection probe substrate of the present invention, preferably, the first insulating layer is made of a resin film having an arithmetic average roughness of the surface of 0.1 μm or less.

本発明の核酸検出用プローブ基板は、試料の核酸等を含む水溶液を滴下する開口部と、反応電流を測定する端子電極とが、それぞれ基板の第1の主面と第2の主面とに形成されていることから、試料の核酸等を含む水溶液が端子電極まで流れ出して、隣接する2つの端子電極がショートすることを防ぐことができ、さらに、開口部に滴下される核酸等を含む水溶液が端子電極に流れにくいように開口部と端子電極とを離して配置する必要がなく、核酸検出用プローブ基板を小型化することが可能となる。   The probe substrate for nucleic acid detection of the present invention has an opening for dropping an aqueous solution containing nucleic acid of a sample and a terminal electrode for measuring a reaction current on the first main surface and the second main surface of the substrate, respectively. Since it is formed, it is possible to prevent the aqueous solution containing the nucleic acid or the like of the sample from flowing out to the terminal electrode and the two adjacent terminal electrodes from being short-circuited, and further the aqueous solution containing the nucleic acid or the like dropped into the opening Therefore, it is not necessary to dispose the opening and the terminal electrode apart from each other so that it is difficult to flow into the terminal electrode, and the probe substrate for nucleic acid detection can be miniaturized.

また、第1の主面の第1の絶縁層の上面に第2の配線層を具備していることから、表面粗さの粗いセラミックスから成る基板の第1の表面上に非常に滑らかで均一な表面状態の第1の絶縁層を形成し、その上面に核酸等よりなるプローブを固定する第2の配線層を形成することができ、核酸等よりなるプローブを均一に固定化することができるために、核酸量の検出精度を上げて測定誤差を抑えることができる核酸検出用プローブ基板を提供することができる。   Further, since the second wiring layer is provided on the upper surface of the first insulating layer of the first main surface, it is very smooth and uniform on the first surface of the substrate made of ceramics with rough surface roughness. A first insulating layer having a simple surface state can be formed, and a second wiring layer for fixing a probe made of nucleic acid or the like can be formed on the upper surface thereof, and a probe made of nucleic acid or the like can be fixed uniformly. Therefore, it is possible to provide a probe substrate for nucleic acid detection that can increase the detection accuracy of the amount of nucleic acid and suppress measurement errors.

また、好ましくは、第1の絶縁層は、表面の算術平均粗さが0.1μm以下の樹脂フィルムから成ることから、ワニス状の樹脂を用いてスピンコート法等で第1の絶縁層を形成する場合に、基板の外に飛散して無駄となる樹脂の量を減らすことができる。また、表面の算術平均粗さが0.1μm以下であるため、その上面に核酸等よりなるプローブが形成される第2の配線層の表面の凹凸も一様なものとすることができる。その結果、核酸等よりなるプローブを均一に固定化することができる。   Preferably, the first insulating layer is made of a resin film having a surface arithmetic average roughness of 0.1 μm or less, and therefore, the first insulating layer is formed by spin coating or the like using a varnish-like resin. In this case, it is possible to reduce the amount of the resin that is scattered outside the substrate and is wasted. Further, since the arithmetic average roughness of the surface is 0.1 μm or less, the unevenness on the surface of the second wiring layer on which the probe made of nucleic acid or the like is formed can be made uniform. As a result, a probe made of nucleic acid or the like can be immobilized uniformly.

図1は本発明の核酸検出用プローブ基板の実施の形態の一例を示し、(a)は核酸検出用プローブ基板の上面図、(b)は(a)のA−A’線における断面図、(c)は核酸検出用プローブ基板の下面図である。同図において、1はセラミックス等からなる基板、2は基板1の第1の主面に形成された第1の配線層、3は第1の配線層2を覆って第1の主面に被着された第1の絶縁層、4は第1の絶縁層3の上面に形成され、第1の絶縁層3に形成された貫通孔を通して第1の配線層2と電気的に接続された第2の配線層、5は第2の配線層4を覆うように形成された第2の絶縁層、5aは第2の配線層4の一部が露出するように第2の絶縁層5に設けられた開口部、6は開口部5aの第2の配線層4に固定化された核酸等よりなるプローブ、2aは基板1の第2の主面に形成された端子電極、1aは第1の配線層2と端子電極2aとを電気的に接続するための接続導体である。   FIG. 1 shows an example of an embodiment of a probe substrate for nucleic acid detection of the present invention, (a) is a top view of the probe substrate for nucleic acid detection, (b) is a cross-sectional view taken along line AA ′ of (a), (C) is a bottom view of the probe substrate for nucleic acid detection. In the figure, reference numeral 1 denotes a substrate made of ceramics, 2 denotes a first wiring layer formed on the first main surface of the substrate 1, and 3 denotes a first main surface covering the first wiring layer 2 and covering the first main surface. The attached first insulating layer 4 is formed on the upper surface of the first insulating layer 3, and is electrically connected to the first wiring layer 2 through a through hole formed in the first insulating layer 3. The second wiring layer 5 is provided on the second insulating layer 5 so that a part of the second wiring layer 4 is exposed. The second insulating layer 5 is formed so as to cover the second wiring layer 4. 6 is a probe made of nucleic acid or the like immobilized on the second wiring layer 4 of the opening 5a, 2a is a terminal electrode formed on the second main surface of the substrate 1, and 1a is a first electrode It is a connection conductor for electrically connecting the wiring layer 2 and the terminal electrode 2a.

本発明の核酸検出用プローブ基板によれば、試料の核酸等を含む水溶液を滴下する開口部5aと、反応電流を測定する端子電極2aとが、基板1の第1の主面と第2の主面とに分離して設けられていることから、基板1の両主面を有効に活用でき、しかも試料の核酸等を含む水溶液が隣接して設けられた核酸検出用の端子電極2aに流れ出すこともなくなるために、端子電極2aと開口部5aとの距離を離す必要がなくなり、基板1を小型化することが可能となる。   According to the probe substrate for nucleic acid detection of the present invention, the opening 5a for dropping an aqueous solution containing nucleic acid or the like of the sample and the terminal electrode 2a for measuring the reaction current include the first main surface of the substrate 1 and the second main surface. Since it is provided separately from the main surface, both main surfaces of the substrate 1 can be used effectively, and an aqueous solution containing the nucleic acid or the like of the sample flows out to the terminal electrode 2a for nucleic acid detection provided adjacently. Therefore, there is no need to increase the distance between the terminal electrode 2a and the opening 5a, and the substrate 1 can be downsized.

また、基板1の材料にセラミックスを用いたことから、基板1の第1の主面と第2の主面とにかけて電気導通をとるビアホール等の貫通導体から成る接続導体1aを容易に形成でき、さらにセラミックスから成る基板1は、硫酸水溶液や塩酸水溶液等の強酸、水酸化ナトリウム水溶液等の強アルカリに対する耐薬品性が強いため、一旦検出した核酸を取り除き、繰り返し再使用することが可能となる。   Further, since ceramics is used as the material of the substrate 1, the connection conductor 1a made of a through conductor such as a via hole that conducts electricity between the first main surface and the second main surface of the substrate 1 can be easily formed. Furthermore, since the substrate 1 made of ceramics has strong chemical resistance against strong acids such as sulfuric acid aqueous solution and hydrochloric acid aqueous solution and strong alkali such as sodium hydroxide aqueous solution, the nucleic acid once detected can be removed and reused repeatedly.

本発明の基板1の材料としては、アルミナ(Al)セラミックス,ムライト(3Al・2SiO)セラミックス,コーディエライト(2MgO・2Al・5SiO)セラミックス,フォルステライト(2MgO・SiO)セラミックス,炭化ケイ素(SiC)セラミックス,窒化ケイ素(Si)セラミックス等のセラミックスが、タングステンやモリブデン等の高融点金属よりなる接続導体1aと同時焼成によって形成できるため好ましい。また低融点金属の銅を含有する金属で接続導体1aを形成できるガラスとアルミナよりなるセラミックスを用いてもよい。また同時焼成法を用いない場合は、炭酸ガスレーザやその他のレーザ,パンチング,サンドブラスト,エッチング等の手法によって基板1に貫通孔を開けた後、Ag−PdペーストやAgエポキシ樹脂ペースト,Cuペースト,Auペーストを貫通孔に充填し焼成したり、これらを貫通孔の内壁に塗布焼成してその上にCuめっき,Niめっき,Agめっき,Auめっき等を被着させたりすることで、接続導体1aを形成することができる。 Examples of the material of the substrate 1 of the present invention include alumina (Al 2 O 3 ) ceramics, mullite (3Al 2 O 3 .2SiO 2 ) ceramics, cordierite (2MgO.2Al 2 O 3 .5SiO 2 ) ceramics, forsterite ( Ceramics such as 2MgO · SiO 2 ) ceramics, silicon carbide (SiC) ceramics, and silicon nitride (Si 3 N 4 ) ceramics are preferable because they can be formed by simultaneous firing with the connection conductor 1a made of a refractory metal such as tungsten or molybdenum. Further, a ceramic made of glass and alumina capable of forming the connection conductor 1a with a metal containing copper as a low melting point metal may be used. When the co-firing method is not used, a through-hole is formed in the substrate 1 by a method such as carbon dioxide laser, other lasers, punching, sandblasting, etching, etc., and then Ag—Pd paste, Ag epoxy resin paste, Cu paste, Au The connection conductor 1a is formed by filling the paste into the through-holes and firing, or applying and firing these to the inner wall of the through-holes and depositing Cu plating, Ni plating, Ag plating, Au plating or the like thereon. Can be formed.

基板1の第1および第2の主面に被着形成される第1の配線層2および端子電極2aは、W(タングステン)やMo(モリブデン),Mn(マンガン),Cu(銅),Ag(銀),Ni(ニッケル),Pt(白金),Au(金)等のうち少なくとも1種を含む金属を、スクリーン印刷法等の厚膜形成法または蒸着法,スパッタリング法,CVD法,めっき法等の薄膜形成法によって形成される。第1の配線層2および端子電極2aを厚膜形成法で形成する場合は厚さ10〜50μm程度の厚膜とすればよく、薄膜形成法で形成する場合は厚さ0.5〜10μm程度の薄膜とすればよい。   The first wiring layer 2 and the terminal electrode 2a deposited on the first and second main surfaces of the substrate 1 are W (tungsten), Mo (molybdenum), Mn (manganese), Cu (copper), Ag. A metal containing at least one of (silver), Ni (nickel), Pt (platinum), Au (gold), etc., is formed by a thick film formation method such as a screen printing method or a vapor deposition method, a sputtering method, a CVD method, a plating method. It is formed by a thin film forming method such as. When the first wiring layer 2 and the terminal electrode 2a are formed by a thick film formation method, the thickness may be about 10 to 50 μm. When the first wiring layer 2 and the terminal electrode 2a are formed by a thin film formation method, And it is sufficient.

また第1の配線層2および端子電極2aが薄膜から成る場合は、例えば密着金属層,拡散防止層,主導体層の3層構造や、密着金属層,拡散防止層,主導体層,密着金属層の4層構造、密着金属層,主導体層,密着金属層の3層構造であることがよく、密着金属層を入れることで基板1と第1の配線層2との接続強度を上げることができる。また拡散防止層を密着金属層と主導体層との間に入れることで、密着金属層が主導体層に拡散していくことを防ぐことができ、また基板1と第1の配線層2との接続を長期信頼性の高いものとすることができる。   Further, when the first wiring layer 2 and the terminal electrode 2a are formed of a thin film, for example, a three-layer structure of an adhesion metal layer, a diffusion prevention layer, and a main conductor layer, an adhesion metal layer, a diffusion prevention layer, a main conductor layer, and an adhesion metal. It is preferable to have a three-layer structure of a four-layer structure, a close-contact metal layer, a main conductor layer, and a close-contact metal layer, and increase the connection strength between the substrate 1 and the first wiring layer 2 by including the close-contact metal layer. Can do. Further, by placing the diffusion preventing layer between the adhesion metal layer and the main conductor layer, the adhesion metal layer can be prevented from diffusing into the main conductor layer, and the substrate 1 and the first wiring layer 2 The long-term connection can be made highly reliable.

密着金属層は、絶縁基板1との密着性の点で、Ti(チタン),Cr(クロム),Ta(タンタル),Nb(ニオブ),Ni(ニッケル)−Cr(クロム)合金,TaN(窒化タンタル)等のうち少なくとも1種より成るのがよい。なお、密着金属層の厚さは0.01〜0.2μm程度とするのがよい。0.01μm未満では、強固に密着することが困難となり、0.2μmを超えると成膜時の内部応力によって剥離が生じ易くなる。 The adhesion metal layer is Ti (titanium), Cr (chromium), Ta (tantalum), Nb (niobium), Ni (nickel) -Cr (chromium) alloy, Ta 2 N in terms of adhesion to the insulating substrate 1. It is preferable to comprise at least one of (tantalum nitride) and the like. The thickness of the adhesion metal layer is preferably about 0.01 to 0.2 μm. If it is less than 0.01 μm, it is difficult to firmly adhere, and if it exceeds 0.2 μm, peeling tends to occur due to internal stress during film formation.

拡散防止層は、密着金属層と主導体層との相互拡散を防ぐうえで、Pt(白金),Pd(パラジウム),Rh(ロジウム),Ni(ニッケル),Ni−Cr合金,Ti−W合金等のうち少なくとも1種より成るのがよい。拡散防止層の厚さは0.05〜1μm程度とするのがよい。0.05μm未満ではピンホール等の欠陥が発生して拡散防止層としての機能を果たしにくくなり、1μmを超えると成膜時の内部応力により剥離が生じ易くなる。拡散防止層にNi−Cr合金を用いる場合は密着性も確保できるため、密着金属層を省くことも可能である。   The diffusion preventing layer prevents Pt (platinum), Pd (palladium), Rh (rhodium), Ni (nickel), Ni-Cr alloy, Ti-W alloy in order to prevent mutual diffusion between the adhesion metal layer and the main conductor layer. It is good to consist of at least one of these. The thickness of the diffusion preventing layer is preferably about 0.05 to 1 μm. If the thickness is less than 0.05 μm, defects such as pinholes are generated, making it difficult to function as a diffusion preventing layer. If the thickness exceeds 1 μm, peeling is likely to occur due to internal stress during film formation. In the case of using a Ni—Cr alloy for the diffusion preventing layer, the adhesion can be secured, so that the adhesion metal layer can be omitted.

さらに、主導体層は、Au,Cu,Ag,Al(アルミニウム)等のうち少なくとも1種より成るのがよく、その厚さは0.1〜5μm程度とするのがよい。0.1μm未満では電気抵抗が大きくなる傾向があり、5μmを超えると成膜時の内部応力により剥離を生じ易くなる。また、Au,Agは貴金属で高価であることから、なるべく薄く形成することが好ましい。   Further, the main conductor layer is preferably made of at least one of Au, Cu, Ag, Al (aluminum), etc., and its thickness is preferably about 0.1 to 5 μm. If it is less than 0.1 μm, the electric resistance tends to increase. If it exceeds 5 μm, peeling tends to occur due to internal stress during film formation. Further, since Au and Ag are precious metals and expensive, it is preferable to form them as thin as possible.

薄膜形成法の場合のパターン加工は、フォトリソグラフィ法,エッチング法,リフトオフ法等によって行われる。   Pattern processing in the case of a thin film forming method is performed by a photolithography method, an etching method, a lift-off method, or the like.

第1の配線層2を覆うかたちで形成される第1の絶縁層3は、ポリイミド,BCB(ベンゾシクロブテン),エポキシ樹脂,フッ素系樹脂等の有機材料や、酸化ケイ素,酸化アルミニウム,窒化ケイ素,窒化アルミニウム等の無機材料が用いられる。有機材料を用いる場合は、ワニスをスピンコート法,ロールコート法,ダイコート法または印刷法等により塗布し、第1の絶縁層3を形成することができる。一方、無機材料を用いる場合は、蒸着法,スパッタリング法,CVD法等により形成することができる。また有機材料の場合、表面平坦性を良くするうえで、ポリイミドが粘度の調整が容易なため好ましく、またポリイミドは耐薬品性にも優れているため、ポリイミドを用いるのがよい。   The first insulating layer 3 formed to cover the first wiring layer 2 is an organic material such as polyimide, BCB (benzocyclobutene), epoxy resin, fluorine resin, silicon oxide, aluminum oxide, silicon nitride. Inorganic materials such as aluminum nitride are used. When an organic material is used, the first insulating layer 3 can be formed by applying varnish by spin coating, roll coating, die coating, printing, or the like. On the other hand, when an inorganic material is used, it can be formed by vapor deposition, sputtering, CVD, or the like. In the case of an organic material, polyimide is preferable because it is easy to adjust the viscosity for improving surface flatness, and polyimide is also excellent in chemical resistance. Therefore, it is preferable to use polyimide.

そして、セラミックスから成る基板1の表面は焼結体特有の表面ボイド(凹み)があり、基板1表面を研磨して平滑にしても、その表面の算術平均粗さ(Ra)は0.02μm〜0.05μm程度である。実際には接触式の表面粗さ計の針の大きさよりも小さく、深さの深いボイドが多数存在するために、ミクロ的に見れば、基板1の部位によって基板1表面の状態は大きく異なる。これは、基板1を焼結する前のセラミックグリーンシートの組成バラツキや、基板1を焼結する際の焼結炉の温度分布のバラツキなど、基板1特有の製造プロセスに由来するものである。この基板1の表面状態のために、基板1の表面に金等の薄膜よりなる配線層を直接形成した場合、基板1の表面粗さに倣って配線層の表面は同じような算術平均粗さの状態となり、開口部5aにおける配線層の表面状態が基板1の部位によって大きくばらついてしまう。   And the surface of the board | substrate 1 which consists of ceramics has a surface void (dent) peculiar to a sintered compact, Even if the surface of the board | substrate 1 is grind | polished and smoothed, the arithmetic mean roughness (Ra) of the surface is 0.02 micrometer-0.05. It is about μm. Actually, since there are many voids that are smaller than the size of the needle of the contact-type surface roughness meter and deep, the state of the surface of the substrate 1 varies greatly depending on the region of the substrate 1 when viewed microscopically. This is derived from a manufacturing process peculiar to the substrate 1 such as a composition variation of the ceramic green sheet before the substrate 1 is sintered and a temperature distribution variation of the sintering furnace when the substrate 1 is sintered. Due to the surface state of the substrate 1, when a wiring layer made of a thin film such as gold is directly formed on the surface of the substrate 1, the surface of the wiring layer has the same arithmetic average roughness following the surface roughness of the substrate 1. Thus, the surface state of the wiring layer in the opening 5a varies greatly depending on the portion of the substrate 1.

核酸の結合による微小な反応電流を検出することによって、試料中の核酸等の量を検出する電流検出方式の核酸検出用プローブ基板の場合、核酸等よりなるプローブ6の固定化量が、核酸等よりなるプローブ6が固定される第2の配線層4の表面状態に対して非常に敏感に変化する。このため、セラミックスから成る基板1を用いた核酸検出用プローブ基板の場合、核酸等よりなるプローブ6が固定される第2の配線層4の表面状態を均一にすることが非常に重要であり、表面状態を均一にすれば、結果として核酸検出用プローブ基板の検出精度を上げて、測定バラツキを抑えることができる。   In the case of a probe substrate for nucleic acid detection of a current detection system that detects the amount of nucleic acid or the like in a sample by detecting a minute reaction current due to the binding of nucleic acid, the amount of immobilized probe 6 made of nucleic acid or the like is less than nucleic acid or the like. It changes very sensitively to the surface state of the second wiring layer 4 to which the probe 6 is fixed. For this reason, in the case of the probe substrate for nucleic acid detection using the substrate 1 made of ceramics, it is very important to make the surface state of the second wiring layer 4 to which the probe 6 made of nucleic acid or the like is fixed uniform, If the surface state is made uniform, the detection accuracy of the probe substrate for nucleic acid detection can be increased as a result, and measurement variations can be suppressed.

本発明の核酸検出用プローブ基板は、第2の配線層4は第1の絶縁層3の上面に形成されることから、第1の絶縁層3がセラミックスから成る基板1に由来する表面粗さを緩和して平坦な第2の配線層4とすることができ、核酸等よりなるプローブ6を均一に固定化することができるために、核酸量の検出精度を上げて測定誤差を抑えることができる。   In the probe substrate for nucleic acid detection of the present invention, since the second wiring layer 4 is formed on the upper surface of the first insulating layer 3, the surface roughness derived from the substrate 1 in which the first insulating layer 3 is made of ceramics. Can be made flat and the second wiring layer 4 can be made flat, and the probe 6 made of nucleic acid or the like can be fixed uniformly, so that the detection accuracy of the amount of nucleic acid can be increased and measurement errors can be suppressed. it can.

本発明の核酸検出用プローブ基板において第1の絶縁層3の表面の平坦化は、有機材料の場合、粘度を調整したり、塗布を複数回に分けて行ない、その塗布毎に半硬化させたりすればよく、第1の絶縁層3の表面の算術平均粗さを0.1μm以下とすればよい。この第1の絶縁層3の算術平均粗さは、上記鏡面研磨したセラミックスから成る基板1表面の算術平均粗さよりも大きいが、基板1の表面には表面粗さ計の針の大きさよりも小さく、深さの深いボイドが多数存在するために、実際には第1の絶縁層3の表面の方が面全体に一様で微小な凹凸を有する均一な面となっている。このため、核酸検出用プローブ基板の検出精度を上げて測定バラツキを抑えることができる。   In the probe substrate for nucleic acid detection of the present invention, the surface of the first insulating layer 3 is flattened in the case of an organic material by adjusting the viscosity or dividing the coating several times and semi-curing each coating. What is necessary is just to make arithmetic mean roughness of the surface of the 1st insulating layer 3 into 0.1 micrometer or less. The arithmetic average roughness of the first insulating layer 3 is larger than the arithmetic average roughness of the surface of the substrate 1 made of the mirror-polished ceramics, but is smaller than the size of the needle of the surface roughness meter on the surface of the substrate 1. Since there are a large number of deep voids, the surface of the first insulating layer 3 is actually a uniform surface having uniform and minute irregularities on the entire surface. For this reason, it is possible to increase the detection accuracy of the probe substrate for nucleic acid detection and suppress measurement variations.

なお、第1の絶縁層3の表面の算術平均粗さを小さくしすぎると、第1の絶縁層3とその上面に形成される第2の配線層4との密着性が悪くなり易い。この場合、一旦第1の絶縁層3の平坦化を行った後に、微小な凹凸を表面に形成するためにプラズマエッチング処理を施せばよく、このプラズマエッチング処理後の第1の絶縁層3の表面の算術平均粗さが0.05〜0.1μm程度に調整すればよい。このようにプラズマエッチング処理により表面状態を調整した場合には、第1の絶縁層3の表面に存在する異物の付着等に起因する脆弱層を除去でき、しかも第2の配線層4との接合界面を粗面化できるため第1の絶縁層3と第2の配線層4との接合強度を高めることができる。   If the arithmetic average roughness of the surface of the first insulating layer 3 is too small, the adhesion between the first insulating layer 3 and the second wiring layer 4 formed on the upper surface thereof tends to deteriorate. In this case, after the first insulating layer 3 is flattened, a plasma etching process may be performed to form minute irregularities on the surface, and the surface of the first insulating layer 3 after the plasma etching process is performed. The arithmetic average roughness may be adjusted to about 0.05 to 0.1 μm. When the surface state is adjusted by the plasma etching process as described above, the fragile layer due to adhesion of foreign matters existing on the surface of the first insulating layer 3 can be removed, and the bonding with the second wiring layer 4 can be performed. Since the interface can be roughened, the bonding strength between the first insulating layer 3 and the second wiring layer 4 can be increased.

また、第1の絶縁層3の厚みは有機材料の場合には1〜100μm程度が良い。厚みが1μm未満では、絶縁層としての厚みが薄いために第1の配線層2を完全に覆えず、第1の配線層2と第2の配線層4とがショートしてしまう可能性がある。一方、第1の絶縁層3の厚みが100μmを超えると、ワニスの有機材料を形成する際、硬化収縮のために核酸検出用プローブ基板全体が反ってしまい核酸検出用プローブ基板として使えなくなることがあり、また第1の絶縁層3に貫通孔がうまく形成できず、第1の配線層2と第2の配線層4とが貫通孔を通して電気的に良好に接続されにくくなる。なお、第1の絶縁層3に設けられる貫通孔は、フォトリソグラフィ法やエッチング法、レーザアブレーション法等によって形成できる。   The thickness of the first insulating layer 3 is preferably about 1 to 100 μm in the case of an organic material. If the thickness is less than 1 μm, the first wiring layer 2 cannot be completely covered because the thickness as the insulating layer is thin, and the first wiring layer 2 and the second wiring layer 4 may be short-circuited. . On the other hand, if the thickness of the first insulating layer 3 exceeds 100 μm, when the organic material of varnish is formed, the entire nucleic acid detection probe substrate may be warped due to curing shrinkage and cannot be used as the nucleic acid detection probe substrate. In addition, the through hole cannot be formed well in the first insulating layer 3, and the first wiring layer 2 and the second wiring layer 4 are hardly electrically connected through the through hole. The through hole provided in the first insulating layer 3 can be formed by a photolithography method, an etching method, a laser ablation method, or the like.

また、第1の絶縁層3の厚みは、蒸着法、スパッタリング法、CVD法、めっき法等により形成する無機材料の場合、0.5〜10μm程度が良い。0.5μm未満では、緻密な無機材料であっても絶縁を確保するに十分でなく、10μmを超えると成膜時の内部応力により剥離を生じ易くなる。   The thickness of the first insulating layer 3 is preferably about 0.5 to 10 μm in the case of an inorganic material formed by vapor deposition, sputtering, CVD, plating, or the like. If it is less than 0.5 μm, even a dense inorganic material is not sufficient to ensure insulation, and if it exceeds 10 μm, peeling tends to occur due to internal stress during film formation.

一方、接触式の表面粗さ計で測定した第1の絶縁層3の算術平均粗さは、0.01μm以下が好ましく、この表面粗さを超えると、第2の配線層4の上面の表面粗さが下層の第1の絶縁層3の表面に倣って大きくなり、核酸検出用プローブ基板の検出精度を上げて測定バラツキを抑えることが困難になる。   On the other hand, the arithmetic average roughness of the first insulating layer 3 measured with a contact-type surface roughness meter is preferably 0.01 μm or less, and when this surface roughness is exceeded, the surface roughness of the upper surface of the second wiring layer 4 is increased. Increases along the surface of the lower first insulating layer 3, and it becomes difficult to increase the detection accuracy of the probe substrate for nucleic acid detection and suppress measurement variations.

または、第1の絶縁層3は、接着剤層3aを介して基板1および第1の配線層2に接着される、表面の算術平均粗さが0.1μm以下の樹脂フィルムから成るものとしてもよい。この場合、第1の絶縁層3の材料としては、ポリイミド,BCB(ベンゾシクロブテン),エポキシ樹脂,フッ素系樹脂,ポリフェニレンサルファイド樹脂,全芳香族ポリエステル樹脂等の樹脂材料が用いられ、接着剤層3aの材料としては、ポリアミドイミド樹脂,シロキサン変性ポリイミド樹脂,シロキサン変性ポリアミドイミド樹脂等が用いられる。   Alternatively, the first insulating layer 3 may be made of a resin film having a surface arithmetic average roughness of 0.1 μm or less, which is bonded to the substrate 1 and the first wiring layer 2 via the adhesive layer 3a. . In this case, a resin material such as polyimide, BCB (benzocyclobutene), epoxy resin, fluorine resin, polyphenylene sulfide resin, wholly aromatic polyester resin is used as the material of the first insulating layer 3, and the adhesive layer As the material 3a, a polyamideimide resin, a siloxane-modified polyimide resin, a siloxane-modified polyamideimide resin, or the like is used.

図3は、第1の絶縁層3が樹脂フィルムから成る場合の本発明の核酸検出用プローブ基板の実施の形態の他の例を示し、3は樹脂フィルムから成る第1の絶縁層、3aは接着剤層を示す。なお、その他の図1と同じ部位を示す部分には同じ符号を付した。   FIG. 3 shows another example of the embodiment of the probe substrate for nucleic acid detection of the present invention in the case where the first insulating layer 3 is made of a resin film, 3 is a first insulating layer made of a resin film, 3a is The adhesive layer is shown. In addition, the same code | symbol was attached | subjected to the part which shows the other same site | part as FIG.

この第1の絶縁層3は、PET(Polyethylene Terephthalate)フィルムにドクターブレード法等を用いて上記樹脂材料を乾燥後の厚みが10〜200μm程度になるように塗布して乾燥させた後にPETフィルムを剥離し、フィルム状に加工したものを用い、同様のプロセスで形成したフィルム状の接着剤層3aを重ねて、基板1の第1の主面に第1の配線層2を覆うように配置し、これらを加熱プレス装置を用いて加熱しつつ加圧して接着させる。なお、加熱プレス装置内を減圧し、真空状態で加熱しつつ加圧した方が基板1と第1の絶縁層3とを強固に接着できるため、より好ましい。   The first insulating layer 3 is formed by applying the above resin material to a PET (Polyethylene Terephthalate) film using a doctor blade method or the like so that the thickness after drying is about 10 to 200 μm and then drying the PET film. Using a film that has been peeled off and processed into a film shape, a film-like adhesive layer 3a formed by the same process is overlaid and arranged so as to cover the first wiring layer 2 on the first main surface of the substrate 1. These are bonded by applying pressure while heating them using a heating press. Note that it is more preferable to reduce the pressure inside the hot press apparatus and apply pressure while heating in a vacuum state because the substrate 1 and the first insulating layer 3 can be firmly bonded.

PETフィルムにドクターブレード法等を用いて第1の絶縁層3となる樹脂フィルムを作製する際、その表面の算術平均粗さを0.1μm以下とするために、PETフィルムの作製時に、PETフィルムに接触するロール面を鏡面とする方法や、PETフィルムの表面の乾燥が急激におこらないように周辺雰囲気の温度をゆるやかに変化させる方法、あるいは両者の方法を組み合わせた方法で作製したPETフィルムを用いればよい。   When producing a resin film to be the first insulating layer 3 using a doctor blade method or the like on a PET film, in order to make the arithmetic average roughness of the surface 0.1 μm or less, Use a PET film produced by a method in which the contact roll surface is a mirror surface, a method in which the temperature of the surrounding atmosphere is gently changed so that the surface of the PET film does not dry rapidly, or a method in which both methods are combined. That's fine.

また、第1の絶縁層3の厚みは、10〜200μm程度とするのがよい。10μm未満では、基板1に接着する際に誤って破れてしまう虞があり、取り扱いにくい傾向があり、200μmを超えると、第1の配線層2と第2の配線層4とを接続する導体の長さが長くなってしまい導通抵抗が大きくなる傾向がある。また、接着剤層3aは、その乾燥後の厚みが5μm以上で第1の絶縁層3の厚み以下になるようにするのが好ましい。接着剤層3aの乾燥後の厚みが5μm未満では、接着剤として十分な強度が得られない傾向があり、基板1と第1の絶縁層3との剥離が発生しやすくなる。一方、第1の絶縁層3の厚みを超えると、接着剤層3aの硬化収縮の影響を受けて第1の絶縁層3の表面が波打った状態になりやすい。   The thickness of the first insulating layer 3 is preferably about 10 to 200 μm. If it is less than 10 μm, there is a possibility that it may be accidentally broken when adhering to the substrate 1, which tends to be difficult to handle. There is a tendency that the length becomes longer and the conduction resistance becomes larger. The adhesive layer 3a preferably has a thickness after drying of not less than 5 μm and not more than the thickness of the first insulating layer 3. If the thickness of the adhesive layer 3a after drying is less than 5 μm, sufficient strength as an adhesive tends not to be obtained, and peeling between the substrate 1 and the first insulating layer 3 tends to occur. On the other hand, when the thickness of the first insulating layer 3 is exceeded, the surface of the first insulating layer 3 tends to be wavy due to the influence of curing shrinkage of the adhesive layer 3a.

第1の絶縁層3を樹脂フィルムから成るものとしたときには、基板1に形成される貫通孔の内壁に接続導体1aが形成された、すなわち、貫通孔が接続導体1aにより完全に充填されない中空状の接続導体1aとされ、また、第1の導体層2および端子電極2aの貫通孔部分も孔が開いた形状とされても、貫通孔の内壁の接続導体1aを介した状態で第1の配線層2と端子電極2aとが電気的に導通していればよい。この場合、予めフィルム状に加工した第1の絶縁層3を用いるために、フィルム状の第1の絶縁層3が貫通孔の蓋となって核酸等を含む水溶液が基板1の第1の主面側から第2の主面側に流れることがないため好適である。セラミックスより成る基板1に炭酸ガスレーザやその他のレーザ,パンチング,サンドブラスト,エッチング等の手法によって貫通孔を開けた後、第1の配線層2と端子電極2aを形成する際に、貫通孔の内壁部にも金属膜を回り込ませることで接続導体1aを形成し、第1の配線層2と端子電極2の電気導通をとることが可能である。この場合、貫通孔が接続導体1aにより完全に充填されない中空状の接続導体1aとなる。   When the first insulating layer 3 is made of a resin film, the connection conductor 1a is formed on the inner wall of the through hole formed in the substrate 1, that is, the hollow shape in which the through hole is not completely filled with the connection conductor 1a. Even if the through-hole portions of the first conductor layer 2 and the terminal electrode 2a are also open, the first conductor layer 1a is connected via the connection conductor 1a on the inner wall of the through-hole. It is only necessary that the wiring layer 2 and the terminal electrode 2a are electrically connected. In this case, in order to use the first insulating layer 3 processed into a film shape in advance, the aqueous solution containing nucleic acid or the like is used as the first main layer of the substrate 1 with the film-like first insulating layer 3 serving as a lid for the through hole. This is preferable because it does not flow from the surface side to the second main surface side. When the first wiring layer 2 and the terminal electrode 2a are formed after the through hole is formed in the substrate 1 made of ceramics by a method such as carbon dioxide laser, other lasers, punching, sandblasting, etching, etc., the inner wall portion of the through hole is formed. In addition, the connection conductor 1 a can be formed by wrapping the metal film, and the first wiring layer 2 and the terminal electrode 2 can be electrically connected. In this case, the through hole is a hollow connection conductor 1a that is not completely filled with the connection conductor 1a.

また、第1の絶縁層3を樹脂フィルムとすることで、ワニス状の樹脂を用いた場合に比べて、製造コストを抑えることができる。すなわち、ワニス状の樹脂を用いてスピンコート法などで第1の絶縁層3を形成する場合、基板1に塗布される樹脂の量よりも遠心力によって基板1の外に飛散する樹脂の量が多く、結果として実際に第1の絶縁層3を形成する樹脂の量の2倍以上の樹脂が必要となってしまう。樹脂フィルムを用いた場合、基板1に第1の絶縁層3として貼り付ける量だけ切り取って使用するため無駄がなくなり、製造コストを抑えることが可能となる。   In addition, by using the first insulating layer 3 as a resin film, the manufacturing cost can be reduced as compared with the case where a varnish-like resin is used. That is, when the first insulating layer 3 is formed by spin coating or the like using a varnish-like resin, the amount of resin scattered out of the substrate 1 by centrifugal force is larger than the amount of resin applied to the substrate 1. As a result, more than twice the amount of resin that actually forms the first insulating layer 3 is required. In the case of using a resin film, since it is cut and used by the amount to be attached to the substrate 1 as the first insulating layer 3, there is no waste, and the manufacturing cost can be suppressed.

第2の配線層4は、第1の配線層2の説明で記載した薄膜形成法で形成し、最上層はAuとなる構造が好ましい。これは、第2の絶縁層5を形成後、その開口部5aより露出する第2の配線層4の表面に、核酸等よりなるプローブ6が、Auの表面にチオール基を介して吸着され強固に固定されるためである。また、第1の絶縁層3の表面の算術平均粗さが小さく、第2の配線層4と第1の絶縁層3の密着性が不十分な場合は、第1の絶縁層3の表面をプラズマエッチング処理することで、部分的、または、全体的に第1の絶縁層3の算術表面粗さを1μmの範囲で大きくし、アンカー効果による密着性の改善を図ればよい。この場合の第1の絶縁層3の算術表面粗さは0.05〜0.1μm程度とすればよく、セラミックスからなる基板1の表面と比較して大きなボイド等がなく、一様な凹凸の表面が得られるため、第1の絶縁層3の上面に形成される第2の配線層4の表面の算術平均粗さも一様となり、核酸等よりなるプローブ6を均一に固定化することができる。   The second wiring layer 4 is preferably formed by the thin film formation method described in the description of the first wiring layer 2 and the uppermost layer is made of Au. This is because the probe 6 made of nucleic acid or the like is adsorbed to the surface of Au via a thiol group on the surface of the second wiring layer 4 exposed from the opening 5a after the second insulating layer 5 is formed. It is because it is fixed to. Further, when the arithmetic average roughness of the surface of the first insulating layer 3 is small and the adhesion between the second wiring layer 4 and the first insulating layer 3 is insufficient, the surface of the first insulating layer 3 is By performing the plasma etching process, the arithmetic surface roughness of the first insulating layer 3 may be partially or entirely increased within a range of 1 μm to improve the adhesion by the anchor effect. In this case, the arithmetic surface roughness of the first insulating layer 3 may be about 0.05 to 0.1 μm, and there are no large voids compared to the surface of the substrate 1 made of ceramics, and a uniform uneven surface can be obtained. Therefore, the arithmetic average roughness of the surface of the second wiring layer 4 formed on the upper surface of the first insulating layer 3 is also uniform, and the probe 6 made of nucleic acid or the like can be fixed uniformly.

第2の絶縁層5は、第1の絶縁層3と同じ材料でもよく、その他に、フォトレジストを用いることが好ましい。フォトレジストとしては、露光用フォトレジスト、遠紫外用フォトレジスト、X線用フォトレジストおよび電子線用フォトレジスト等がある。第2の絶縁層5の厚みは絶縁性確保のために0.1μm以上が好ましく、また核酸等よりなるプローブ6の固定化のために100μm以下であることが好ましい。   The second insulating layer 5 may be made of the same material as the first insulating layer 3, and it is preferable to use a photoresist. Examples of the photoresist include an exposure photoresist, a far ultraviolet photoresist, an X-ray photoresist, and an electron beam photoresist. The thickness of the second insulating layer 5 is preferably 0.1 μm or more in order to ensure insulation, and is preferably 100 μm or less in order to immobilize the probe 6 made of nucleic acid or the like.

第2の配線層4の上面に核酸等よりなるプローブ6を固定化する場合、その表面を硫酸,混酸,王水,塩化水素などによって洗浄した後、核酸等よりなるプローブ6の固定される側の末端または第2の配線層4の表面にチオール基を導入し、チオール基を介して核酸等よりなるプローブ6の一端が第2の配線層4の表面に吸着され強固に固定化されるようにする。核酸等よりなるプローブ6は1本鎖のDNAのほか1本鎖のRNA(Ribonucleic Acid:リボ核酸)でもよく、また塩基数も特に限定されるものではないが、15塩基〜3000塩基程度の長さであるのがよい。なお、図1に記載されている核酸等よりなるプローブ6は、その大きさを誇張したもので、実際には、第2の絶縁層5の厚みに比べてはるかに小さなものである。   When the probe 6 made of nucleic acid or the like is immobilized on the upper surface of the second wiring layer 4, the surface of the probe 6 made of nucleic acid or the like is fixed after the surface is washed with sulfuric acid, mixed acid, aqua regia, hydrogen chloride or the like. A thiol group is introduced into the terminal of the second wiring layer 4 or the surface of the second wiring layer 4 so that one end of the probe 6 made of nucleic acid or the like is adsorbed to the surface of the second wiring layer 4 through the thiol group and is firmly fixed. To. The probe 6 made of nucleic acid or the like may be single-stranded DNA as well as single-stranded RNA (Ribonucleic Acid: ribonucleic acid), and the number of bases is not particularly limited, but is about 15 to 3000 bases long It is good to be. Note that the probe 6 made of nucleic acid or the like shown in FIG. 1 is exaggerated in size, and actually is much smaller than the thickness of the second insulating layer 5.

第2の配線層4の表面に固定化される核酸等よりなるプローブ6と対(ハイブリッド)を成して検出される核酸としては、各種ウイルス,細菌,寄生虫,真菌等の核酸や各種疾患を有する細胞の核酸または各種ウイルスや各種疾患の細胞の遺伝子、さらにはそれらの遺伝子の一部でもよい。   Examples of nucleic acids detected by forming a pair (hybrid) with a probe 6 made of nucleic acid or the like immobilized on the surface of the second wiring layer 4 include nucleic acids such as various viruses, bacteria, parasites, and fungi, and various diseases. It may be a nucleic acid of a cell having a gene or a gene of a cell of various viruses or various diseases, or a part of those genes.

また、ハイブリッド化された核酸等よりなるプローブ6の検出は、核酸が電圧を印加すると発生する反応電流を利用し、その微弱電流を測定することによって行なうことができる。これにより、第2の配線層4上において対を成した(ハイブリッド化した)核酸等よりなるプローブ6の量を検出することにより、測定対象物となる試料中に存在する核酸と同じ塩基配列の核酸を検出することができる。   Detection of the probe 6 made of a hybridized nucleic acid or the like can be performed by measuring a weak current using a reaction current generated when a voltage is applied to the nucleic acid. Thus, by detecting the amount of the probe 6 made of a nucleic acid paired (hybridized) or the like on the second wiring layer 4, the same base sequence as the nucleic acid present in the sample to be measured is obtained. Nucleic acids can be detected.

さらに、本発明の核酸検出用プローブ基板において、試料の核酸等を含む水溶液がこぼれにくくなる構造として、開口部5a付近を図2のようなすり鉢状(上方に向かって外側に広がる形状)の構造にすることも可能である。図2のように開口部5a付近をすり鉢状の構造とするには、第2の絶縁層5のせり上がる部分の下部に第1の配線層2をダミー層として設ければよい。   Furthermore, in the probe substrate for nucleic acid detection of the present invention, a structure in which the vicinity of the opening 5a has a mortar shape (a shape spreading outwards upward) as shown in FIG. It is also possible to make it. In order to obtain a mortar-like structure in the vicinity of the opening 5a as shown in FIG. 2, the first wiring layer 2 may be provided as a dummy layer below the raised portion of the second insulating layer 5.

また、第1の絶縁層3を算術平均表面粗さが0.1μm以下の樹脂フィルムから成るものとする場合も、同様にして図4に示すようなすり鉢状の構造にすることが可能である。   Further, when the first insulating layer 3 is made of a resin film having an arithmetic average surface roughness of 0.1 μm or less, a mortar-like structure as shown in FIG. 4 can be similarly formed.

なお、本発明は上記の実施の形態に限定されず、本発明の要旨を逸脱しない範囲内で各種変更を施すことは何等差し支えない。   Note that the present invention is not limited to the above-described embodiment, and various modifications may be made without departing from the scope of the present invention.

本発明の核酸検出用プローブ基板の実施の形態の一例を示し、(a)は核酸検出用プローブ基板の上面図、(b)は(a)のA−A’線における断面図、(c)は核酸検出用プローブ基板の下面図である。An example of embodiment of the probe substrate for nucleic acid detection of this invention is shown, (a) is a top view of the probe substrate for nucleic acid detection, (b) is a sectional view taken along line AA ′ in (a), (c) FIG. 3 is a bottom view of a nucleic acid detection probe substrate. 本発明の核酸検出用プローブ基板の実施の形態の他の例を示し、(a)は核酸検出用プローブ基板の上面図、(b)は(a)のA−A’線における断面図、(c)は核酸検出用プローブ基板の下面図である。The other example of embodiment of the probe substrate for nucleic acid detection of this invention is shown, (a) is a top view of the probe substrate for nucleic acid detection, (b) is sectional drawing in the AA 'line of (a), ( c) is a bottom view of the probe substrate for nucleic acid detection. 本発明の拡散検出用プローブ基板の実施の形態の他の例を示し、(a)は核酸検出用プローブ基板の上面図、(b)は(a)のA−A’線における断面図、(c)は核酸検出用プローブ基板の下面図である。The other example of embodiment of the probe board | substrate for diffusion detection of this invention is shown, (a) is a top view of the probe board | substrate for nucleic acid detection, (b) is sectional drawing in the AA 'line of (a), ( c) is a bottom view of the probe substrate for nucleic acid detection. 本発明の拡散検出用プローブ基板の実施の形態の他の例を示し、(a)は核酸検出用プローブ基板の上面図、(b)は(a)のA−A’線における断面図、(c)は核酸検出用プローブ基板の下面図である。The other example of embodiment of the probe board | substrate for diffusion detection of this invention is shown, (a) is a top view of the probe board | substrate for nucleic acid detection, (b) is sectional drawing in the AA 'line of (a), ( c) is a bottom view of the probe substrate for nucleic acid detection.

符号の説明Explanation of symbols

1:基板
1a:接続導体
2:第1の配線層
2a:端子電極
3:第1の絶縁層
4:第2の配線層
5:第2の絶縁層
5a:開口部
6:核酸等よりなるプローブ
DESCRIPTION OF SYMBOLS 1: Board | substrate 1a: Connection conductor 2: 1st wiring layer 2a: Terminal electrode 3: 1st insulating layer 4: 2nd wiring layer 5: 2nd insulating layer 5a: Opening 6: Probe which consists of nucleic acids etc.

Claims (2)

セラミックスから成る基板と、該基板の第1の主面に形成された第1の配線層と、前記第1の配線層を覆って前記第1の主面に被着された第1の絶縁層と、該第1の絶縁層の上面に形成され、前記第1の絶縁層に形成された貫通孔を通して前記第1の配線層と電気的に接続された第2の配線層と、該第2の配線層を覆うとともに前記第2の配線層の一部が露出するように開口部が設けられた第2の絶縁層と、前記開口部より露出した前記第2の配線層に固定された核酸よりなる核酸検出用のプローブと、前記基板の第2の主面に形成された端子電極と、該端子電極と前記第1の配線層とを電気的に接続する接続導体とを具備していることを特徴とする核酸検出用プローブ基板。 A substrate made of ceramic, a first wiring layer formed on the first main surface of the substrate, and a first insulating layer deposited on the first main surface so as to cover the first wiring layer A second wiring layer formed on the upper surface of the first insulating layer and electrically connected to the first wiring layer through a through hole formed in the first insulating layer; And a nucleic acid fixed to the second wiring layer exposed from the opening and a second insulating layer provided with an opening so that a part of the second wiring layer is exposed. A probe for detecting nucleic acid, a terminal electrode formed on the second main surface of the substrate, and a connection conductor for electrically connecting the terminal electrode and the first wiring layer. A probe substrate for nucleic acid detection characterized by the above. 前記第1の絶縁層は、表面の算術平均粗さが0.1μm以下の樹脂フィルムから成ることを特徴とする請求項1記載の核酸検出用プローブ基板。 The probe substrate for nucleic acid detection according to claim 1, wherein the first insulating layer is made of a resin film having an arithmetic average roughness of a surface of 0.1 µm or less.
JP2003336317A 2003-06-27 2003-09-26 Probe substrate for nucleic acid detection Expired - Fee Related JP4388336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003336317A JP4388336B2 (en) 2003-06-27 2003-09-26 Probe substrate for nucleic acid detection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003184724 2003-06-27
JP2003336317A JP4388336B2 (en) 2003-06-27 2003-09-26 Probe substrate for nucleic acid detection

Publications (2)

Publication Number Publication Date
JP2005034129A true JP2005034129A (en) 2005-02-10
JP4388336B2 JP4388336B2 (en) 2009-12-24

Family

ID=34220370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003336317A Expired - Fee Related JP4388336B2 (en) 2003-06-27 2003-09-26 Probe substrate for nucleic acid detection

Country Status (1)

Country Link
JP (1) JP4388336B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170241A (en) * 2007-01-10 2008-07-24 Toyota Central R&D Labs Inc Light-fixing solid-phase carrier and manufacturing method therefor
WO2011099569A1 (en) * 2010-02-10 2011-08-18 藤森工業株式会社 Microchip for platelet examination and platelet examination device using same
JP2012141170A (en) * 2010-12-28 2012-07-26 Japan Aviation Electronics Industry Ltd Electrode device for electrochemical measurement chip
JP2012141173A (en) * 2010-12-28 2012-07-26 Japan Aviation Electronics Industry Ltd Electrode device for electrochemical measurement chip
JP2012141169A (en) * 2010-12-28 2012-07-26 Japan Aviation Electronics Industry Ltd Electrode device for electrochemical measurement chip
JP2013068436A (en) * 2011-09-21 2013-04-18 Kyocer Slc Technologies Corp Gene analysis wiring board
US8425840B2 (en) 2007-11-26 2013-04-23 Fujimori Kogyo Co., Ltd. Microchip and blood monitoring device
WO2023148898A1 (en) * 2022-02-03 2023-08-10 シャープディスプレイテクノロジー株式会社 Cell potential measurement device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170241A (en) * 2007-01-10 2008-07-24 Toyota Central R&D Labs Inc Light-fixing solid-phase carrier and manufacturing method therefor
US8425840B2 (en) 2007-11-26 2013-04-23 Fujimori Kogyo Co., Ltd. Microchip and blood monitoring device
WO2011099569A1 (en) * 2010-02-10 2011-08-18 藤森工業株式会社 Microchip for platelet examination and platelet examination device using same
JP5752055B2 (en) * 2010-02-10 2015-07-22 藤森工業株式会社 Platelet testing microchip and platelet testing apparatus using the same
US8796031B2 (en) 2010-02-10 2014-08-05 Fujimori Kogyo Co., Ltd. Microchip for platelet examination and platelet examination device using same
CN102762991A (en) * 2010-02-10 2012-10-31 藤森工业株式会社 Microchip for platelet examination and platelet examination device using same
US8691062B2 (en) 2010-12-28 2014-04-08 Japan Aviation Electronics Industry, Limited Electrode device for an electrochemical sensor chip
US8470144B2 (en) 2010-12-28 2013-06-25 Japan Aviation Electronics Industry, Limited Electrode device for an electrochemical sensor chip
JP2012141169A (en) * 2010-12-28 2012-07-26 Japan Aviation Electronics Industry Ltd Electrode device for electrochemical measurement chip
US8691061B2 (en) 2010-12-28 2014-04-08 Japan Aviation Electronics Industry, Limited Electrode device for an electrochemical sensor chip
JP2012141173A (en) * 2010-12-28 2012-07-26 Japan Aviation Electronics Industry Ltd Electrode device for electrochemical measurement chip
JP2012141170A (en) * 2010-12-28 2012-07-26 Japan Aviation Electronics Industry Ltd Electrode device for electrochemical measurement chip
JP2013068436A (en) * 2011-09-21 2013-04-18 Kyocer Slc Technologies Corp Gene analysis wiring board
WO2023148898A1 (en) * 2022-02-03 2023-08-10 シャープディスプレイテクノロジー株式会社 Cell potential measurement device

Also Published As

Publication number Publication date
JP4388336B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
US10378103B2 (en) Multi-electrode molecular sensing devices and methods of making the same
JP5160029B2 (en) Fusible conductive inks for use in the manufacture of microfluidic analytical systems
JP4179166B2 (en) Hydrophobic zone device
JP4388336B2 (en) Probe substrate for nucleic acid detection
JP2006322813A (en) Electrochemical sensor array and its manufacturing method
WO2000069219A1 (en) Hot plate and method of producing the same
JP6792539B2 (en) Ceramic heater for fluid heating
WO2001006559A1 (en) Wafer prober
JP4480608B2 (en) Wiring board
JP2006105987A (en) Manufacturing method of analysis module having accessible electrically conductive contact pad for microfluidic analytical system
JP4031812B2 (en) Nucleic acid sensor substrate
JP2006133219A (en) Micro-fluid analytical system
JP2000258376A (en) Micro heater and its manufacturing method
JP3940027B2 (en) Method for producing substrate for nucleic acid sensor and method for producing nucleic acid sensor
JP4309729B2 (en) Nucleic acid sensor substrate
JP5228207B2 (en) Inspection probe
JP3326420B2 (en) Ceramic substrate
JP4671492B2 (en) Detection element
JP3810992B2 (en) Wafer prober and ceramic substrate used for wafer prober
JP4574369B2 (en) Wiring board and manufacturing method thereof
JPH1071737A (en) Manufactur of thermal head
JP2001135714A (en) Ceramic substrate for semiconductor manufacturing/ inspecting device
JP2005337852A (en) Substrate for gas sensor
JP2001135682A (en) Wafer prober and ceramic substrate to be used therefor
JP2009239065A (en) Wiring substrate, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees