JP2005033960A - Thermoelectric conversion hydrogen battery - Google Patents

Thermoelectric conversion hydrogen battery Download PDF

Info

Publication number
JP2005033960A
JP2005033960A JP2003272900A JP2003272900A JP2005033960A JP 2005033960 A JP2005033960 A JP 2005033960A JP 2003272900 A JP2003272900 A JP 2003272900A JP 2003272900 A JP2003272900 A JP 2003272900A JP 2005033960 A JP2005033960 A JP 2005033960A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
storage alloy
thermoelectric conversion
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003272900A
Other languages
Japanese (ja)
Inventor
Katsushi Saito
克史 斉藤
Tetsuo Nagami
哲夫 永見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003272900A priority Critical patent/JP2005033960A/en
Publication of JP2005033960A publication Critical patent/JP2005033960A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion hydrogen battery capable of efficiently converting thermal energy into electric energy using hydrogen absorbing alloy. <P>SOLUTION: This thermoelectric conversion hydrogen battery comprises a first hydrogen absorbing device (a), a second hydrogen absorbing device (b), and a heat supplying means (c). The first hydrogen absorbing device (a) includes the first hydrogen absorbing alloy of releasing hydrogen at a low temperature or higher . In the second hydrogen absorbing device (b), a hydrogen gas chamber, a hydrogen separation membrane for separating hydrogen molecules into electrons and protons, a proton conduction membrane for re-changing the separated protons into the hydrogen molecules by passing them therethrough and for supplying the hydrogen molecules into the hydrogen gas chamber or the second hydrogen absorbing alloy, and a second hydrogen absorbing alloy releasing of hydrogen at a high temperature, are arranged in this order. The heat supplying means (c) adjusts the temperatures of the first and the second hydrogen absorbing alloys. The hydrogen separation membrane is used for a positive electrode, and the second hydrogen absorbing alloy is used for a negative electrode, or vice versa, thus converting thermal energy of the second hydrogen absorbing alloy into the electric energy. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は水素吸蔵合金を利用する熱電変換水素電池に関する。   The present invention relates to a thermoelectric conversion hydrogen battery using a hydrogen storage alloy.

熱エネルギーを電気エネルギーに変換するためには、各種熱電材料が知られている。しかし、変換効率が数パーセントと低い上に、これを1次電池として用いるにはコストが高いという課題があった。そのため、熱電対として温度測定に利用されている程度であり、1次電池として実用的に用いられることはなかった。   Various thermoelectric materials are known for converting thermal energy into electrical energy. However, the conversion efficiency is as low as several percent, and there is a problem that the cost is high to use it as a primary battery. Therefore, it is only used as a thermocouple for temperature measurement, and has not been practically used as a primary battery.

一方、水素吸蔵合金は、水素を吸蔵する際に熱を放出し、水素を放出する際に熱を吸収する。即ち、水素吸蔵合金が水素を吸蔵・放出する際には、以下の(1)式で示す反応が生ずる。なお(1)式において、「M」は水素吸蔵合金を、「MH」は水素吸蔵合金の金属水素化物を、「△H」は水素吸蔵合金から放出されるエネルギーを意味する。ここで、通常この「△H」は熱として放出される。
2 + 2M ←―――→ 2MH + ΔH …(1)
On the other hand, the hydrogen storage alloy releases heat when storing hydrogen and absorbs heat when releasing hydrogen. That is, when the hydrogen storage alloy stores and releases hydrogen, a reaction represented by the following formula (1) occurs. In the formula (1), “M” means a hydrogen storage alloy, “MH” means a metal hydride of the hydrogen storage alloy, and “ΔH” means energy released from the hydrogen storage alloy. Here, this “ΔH” is usually released as heat.
H 2 + 2M ← ----> 2MH + ΔH (1)

このように水素吸蔵合金は水素を吸蔵する際には熱を放出して発熱する。これは、水素吸蔵合金の合金相に水素原子が侵入して金属水素化物を形成すると、原子間の運動エネルギーが小さくなって、必要とされない運動エネルギーが熱として外部に放出されるからである。   Thus, the hydrogen storage alloy generates heat by releasing heat when storing hydrogen. This is because when a hydrogen atom enters the alloy phase of the hydrogen storage alloy to form a metal hydride, the kinetic energy between the atoms decreases, and unnecessary kinetic energy is released to the outside as heat.

逆に、水素吸蔵合金が水素を放出する際には、ΔHのエネルギーを必要とする。通常、このΔHはやはり熱として与えられる。水素を吸蔵した水素吸蔵合金に熱を与えると、水素化物相中の水素原子の運動が活発になって水素吸蔵合金の外部に放出される。このように水素吸蔵合金が水素を外部に放出すると、水素吸蔵合金は水素化物相からもとの合金相に戻ることになる。   On the contrary, when the hydrogen storage alloy releases hydrogen, energy of ΔH is required. Usually, this ΔH is also given as heat. When heat is applied to the hydrogen storage alloy that has stored hydrogen, the movement of hydrogen atoms in the hydride phase becomes active and is released to the outside of the hydrogen storage alloy. When the hydrogen storage alloy releases hydrogen to the outside as described above, the hydrogen storage alloy returns from the hydride phase to the original alloy phase.

このように、水素を吸蔵・放出する際に水素吸蔵合金が発熱・吸熱するという反応を生ずることを利用して、水素吸蔵合金を用いたヒートポンプや水素吸蔵合金を用いた蓄熱システムが研究されている。   In this way, heat pumps using hydrogen storage alloys and heat storage systems using hydrogen storage alloys have been studied by utilizing the reaction that the hydrogen storage alloy generates and absorbs heat when storing and releasing hydrogen. Yes.

また、加熱により、水素吸蔵合金から水素が放出されることを利用した発電装置も下記特許文献1に開示されている。これによれば、水素を吸蔵した多数の水素貯蔵合金を用意し、加熱による水素放出工程と冷却による水素吸蔵工程を繰返し、発電機に連結したガスタービンを水素により駆動させて発電するものであるが、プロセスが複雑であり、装置も大型なものとならざるをえない。   Further, Patent Document 1 below also discloses a power generation device that utilizes the fact that hydrogen is released from a hydrogen storage alloy by heating. According to this, a large number of hydrogen storage alloys that occlude hydrogen are prepared, a hydrogen release step by heating and a hydrogen occlusion step by cooling are repeated, and a gas turbine connected to a generator is driven by hydrogen to generate electricity. However, the process is complicated and the apparatus must be large.

そこで、下記特許文献2には、電極となる水素吸蔵合金を収容した2つの合金収容体を対にして間隙を設けて対向配置するとともに、該間隙に、電解質を収容した電解質収容体を配置して水素吸蔵合金間に電解質を介在させて電池セルを構成し、さらに前記合金収容体のそれぞれの背部に前記水素吸蔵合金を加熱または冷却するべく熱媒が導入、収容される熱媒収容体を配置したことを特徴とする水素吸蔵合金発電装置が開示されている。   Therefore, in Patent Document 2 below, a pair of two alloy containers that contain a hydrogen storage alloy that serves as an electrode are provided with a gap therebetween, and an electrolyte container that contains an electrolyte is arranged in the gap. A battery medium is constructed by interposing an electrolyte between the hydrogen storage alloys, and a heat medium container for introducing and storing a heat medium to heat or cool the hydrogen storage alloy at the back of each of the alloy containers. A hydrogen storage alloy power generation device characterized by being arranged is disclosed.

特公平7−13469号公報Japanese Patent Publication No. 7-13469 特許第3274356号Japanese Patent No. 3274356

上記特許文献2に開示された水素吸蔵合金発電装置は、小型化が可能であるものの、加熱または冷却される2枚の水素吸蔵合金間が電解質膜が挟まれる程度の狭い間隔しかない。このため、加熱された熱媒体と冷却された熱媒体が近接して配置されることになり、これら熱媒体によって加熱または冷却された2枚の水素吸蔵合金もまた極めて近接して配置されたものとなっている。   Although the hydrogen storage alloy power generation device disclosed in Patent Document 2 can be reduced in size, the hydrogen storage alloy power generation device has only a narrow interval such that an electrolyte membrane is sandwiched between two hydrogen storage alloys to be heated or cooled. For this reason, the heated heat medium and the cooled heat medium are arranged close to each other, and the two hydrogen storage alloys heated or cooled by the heat medium are also arranged very close to each other. It has become.

このため、加熱された熱媒体と冷却された熱媒体の相互間で熱の移動が行われるとともに、加熱または冷却される2枚の水素吸蔵合金間でも反応に関係なく熱の移動が行われることになって、熱管理上の問題とともに、発電効率の低下を招くという問題があった。   Therefore, heat is transferred between the heated heat medium and the cooled heat medium, and heat is transferred between the two hydrogen storage alloys to be heated or cooled regardless of the reaction. As a result, there was a problem that the power generation efficiency was lowered along with the problem of thermal management.

そこで、本発明の目的は、水素吸蔵合金を利用する、熱エネルギーを電気エネルギーに、効率良く変換する熱電熱電変換水素電池を提供することにある。   Therefore, an object of the present invention is to provide a thermoelectric thermoelectric conversion hydrogen battery that efficiently converts heat energy into electric energy using a hydrogen storage alloy.

本発明者らは、水素吸蔵合金が水素を吸蔵する際に水素吸蔵合金に発生した熱を除去する手法を考える中で、水素を吸蔵した際に水素吸蔵合金において発生する熱量自体を電気エネルギーに変換ことができないかと検討を加えた。   The inventors of the present invention are considering a method of removing heat generated in the hydrogen storage alloy when the hydrogen storage alloy stores hydrogen, and the amount of heat generated in the hydrogen storage alloy when storing hydrogen is converted into electrical energy. We examined whether it could be converted.

その結果、水素分子の状態から水素吸蔵合金に水素原子を吸蔵させるのではなく、水素分子をまずプロトン(H+)と電子(e-)との分離しておき、水素吸蔵合金においてこのプロトンとこの電子とを再結合させて生成した水素原子を水素吸蔵合金に吸蔵させるという手法を取った場合に、水素吸蔵合金に向かって流れる電子が有する電気エネルギーを回収することができると考えた。 As a result, instead of allowing the hydrogen storage alloy to store hydrogen atoms from the hydrogen molecule state, the hydrogen molecule is first separated into protons (H + ) and electrons (e ), and this proton and It was considered that the electric energy possessed by the electrons flowing toward the hydrogen storage alloy can be recovered when the hydrogen storage alloy stores hydrogen atoms generated by recombination with these electrons.

以下、この原理を更に詳しく説明する。
ギブスの自由エネルギーを(2)式に示す。
ΔG = ΔH − TΔS …(2)
「ΔG」はギブスの自由エネルギーの変化分を、「ΔH」はエンタルピー変化分を、「T」は絶対温度を、「ΔS」はエントロピー変化分を意味する。
ある温度での異なる水素吸蔵合金の電位V1とV2の差が起電力Eとなる。
E = V1 − V2
= (ΔG1/nF) − (ΔG2/nF) …(3)
ここで、ΔG1 = ΔH1 − TΔS1
ΔG2 = ΔH2 − TΔS2
であり、起電力はある温度での異なる水素吸蔵合金の水素親和性の差によって生じる。
Hereinafter, this principle will be described in more detail.
Gibbs' free energy is shown in equation (2).
ΔG = ΔH−TΔS (2)
“ΔG” means a change in Gibbs free energy, “ΔH” means an enthalpy change, “T” means an absolute temperature, and “ΔS” means an entropy change.
The difference between the potentials V 1 and V 2 of different hydrogen storage alloys at a certain temperature is the electromotive force E.
E = V 1 -V 2
= (ΔG 1 / nF) − (ΔG 2 / nF) (3)
Here, ΔG 1 = ΔH 1 −TΔS 1
ΔG 2 = ΔH 2 −TΔS 2
The electromotive force is caused by the difference in hydrogen affinity of different hydrogen storage alloys at a certain temperature.

(1)式では、このΔHは熱として水素吸蔵合金が水素を吸蔵する際に水素吸蔵合金から放出される。そこで水素をプロトンと電子とに分離して水素吸蔵合金に供給し、この水素吸蔵合金においてプロトンと電子とを再結合させて水素原子を生成し、この生成した水素原子を水素吸蔵合金に吸蔵させることを想定する。   In the equation (1), this ΔH is released from the hydrogen storage alloy as heat when the hydrogen storage alloy stores hydrogen. Therefore, hydrogen is separated into protons and electrons and supplied to the hydrogen storage alloy. In this hydrogen storage alloy, protons and electrons are recombined to generate hydrogen atoms, and the generated hydrogen atoms are stored in the hydrogen storage alloy. Assume that.

この場合、ΔH中のΔG(ギブスの自由エネルギー)として、水素吸蔵合金に向かって流れる電子の電気エネルギーを回収し、電気エネルギーが回収された電子を水素吸蔵合金に供給すれば、水素吸蔵合金において生成した水素原子を吸蔵する際に放出する熱量は、TΔS(=ΔH−ΔG)で示される熱量になると考えられる。   In this case, if ΔG (Gibbs free energy) in ΔH is collected, the electric energy of electrons flowing toward the hydrogen storage alloy is recovered, and the recovered electrons are supplied to the hydrogen storage alloy. The amount of heat released when the generated hydrogen atoms are occluded is considered to be the amount of heat indicated by TΔS (= ΔH−ΔG).

そして、本発明者は、水素分子をプロトンと電子とに分離するには、燃料電池のアノード触媒層に用いられる触媒層を用いることで分離することができ、これにより、電子の電気エネルギーを回収すればよいと考えた。その中で、高温の熱媒体と低温の熱媒体間の断熱性を高める必要性を認識し、本発明に到達した。   Then, the present inventor can separate the hydrogen molecules into protons and electrons by using the catalyst layer used in the anode catalyst layer of the fuel cell, thereby recovering the electric energy of the electrons. I thought I should do it. Among them, the necessity of enhancing the heat insulation between the high-temperature heat medium and the low-temperature heat medium was recognized, and the present invention was reached.

即ち、第1に、本発明は、低温から水素を放出する第1の水素吸蔵合金を有する第1の水素吸蔵装置(a)と、水素ガス室と、水素分子を電子とプロトンとに分離する水素解離膜と、分離した前記プロトンを通過させ、再び水素分子にして前記水素ガス室または第2の水素吸蔵合金に供給するプロトン伝導膜と、高温から水素を放出する第2の水素吸蔵合金とがこの順で配置された、第2の水素吸蔵装置(b)と、更に前記第1及び第2の水素吸蔵合金の温度を調節する熱供給手段(c)とを有し、前記水素解離膜と第2の水素吸蔵合金を正極または負極とし、前記第2の水素吸蔵合金の熱エネルギーを電気エネルギーに変換することを特徴とする熱電変換水素電池である。   That is, first, the present invention separates a first hydrogen storage device (a) having a first hydrogen storage alloy that releases hydrogen from a low temperature, a hydrogen gas chamber, and hydrogen molecules into electrons and protons. A hydrogen dissociation membrane, a proton conducting membrane that allows the separated protons to pass through, and again supplies them as hydrogen molecules to the hydrogen gas chamber or the second hydrogen storage alloy, and a second hydrogen storage alloy that releases hydrogen from a high temperature. Are arranged in this order, and a second hydrogen storage device (b), and further a heat supply means (c) for adjusting the temperature of the first and second hydrogen storage alloys, the hydrogen dissociation film And a second hydrogen storage alloy as a positive electrode or a negative electrode, and the thermal energy of the second hydrogen storage alloy is converted into electric energy.

第2に、本発明は、低温から水素を放出する第1の水素吸蔵合金を有する第1の水素吸蔵装置(a)と、水素ガス室と、水素分子を電子とプロトンとに分離する第1の水素解離膜と、分離した前記プロトンを通過させ、再び水素分子にして前記水素ガス室または第2の水素吸蔵合金に供給するプロトン伝導膜と、第2の水素解離膜と、高温から水素を放出する第2の水素吸蔵合金とがこの順で配置された、第2の水素吸蔵装置(b)と、更に前記第1及び第2の水素吸蔵合金の温度を調節する熱供給手段(c)とを有し、前記第1の水素解離膜と第2の水素解離膜を正極または負極とし、前記第2の水素吸蔵合金の熱エネルギーを電気エネルギーに変換することを特徴とする熱電変換水素電池である。   Secondly, the present invention provides a first hydrogen storage device (a) having a first hydrogen storage alloy that releases hydrogen from a low temperature, a hydrogen gas chamber, and a first that separates hydrogen molecules into electrons and protons. The hydrogen dissociation membrane, the proton conduction membrane that passes the separated protons and supplies them again as hydrogen molecules to the hydrogen gas chamber or the second hydrogen storage alloy, the second hydrogen dissociation membrane, and hydrogen from a high temperature. A second hydrogen storage device (b) in which the second hydrogen storage alloy to be released is arranged in this order, and a heat supply means (c) for adjusting the temperature of the first and second hydrogen storage alloys. A thermoelectric conversion hydrogen battery characterized in that the first hydrogen dissociation film and the second hydrogen dissociation film are used as a positive electrode or a negative electrode, and heat energy of the second hydrogen storage alloy is converted into electric energy. It is.

このように、第1の水素吸蔵装置(a)と第2の水素吸蔵装置(b)は、水素ガス室を介して分離されている。これにより、両者を断熱することができ、熱管理・温度管理上有利なものとなっている。また、両者を断熱することにより、中低温レベルの熱源からでも効率良く電気エネルギーを取り出すことができる。   Thus, the first hydrogen storage device (a) and the second hydrogen storage device (b) are separated via the hydrogen gas chamber. Thereby, both can be insulated and it is advantageous in heat management and temperature management. Also, by insulating both, electrical energy can be efficiently extracted even from a medium-low temperature heat source.

ここで、上記第1及び第2の発明の熱電変換水素電池において、前記第1または第2の水素吸蔵装置を離して配置し、両者と水素ガス室を結び水素ガスを通過させる手段を有することができる。また、この水素ガスを通過させる手段には、水素ガス圧を調整する弁を設けることも出来る。また、この水素ガスを通過させる手段には、水素ガス圧を調整する弁を設けることも出来る。このように、ガス室の他に、例えばガスパイプのような水素吸蔵装置と水素ガス室を結び水素ガスを通過させる手段を設けることによって、第1と第2の水素吸蔵合金間、及び高温の熱媒体と低温の熱媒体間がほぼ完全に断熱され、本発明の熱電変換水素電池の熱管理・温度管理を容易なものとするとともに、発電効率をより向上させることができる。   Here, in the thermoelectric conversion hydrogen battery according to the first and second inventions, the first or second hydrogen storage device is disposed apart from each other, and has means for connecting the hydrogen gas chamber to the two and allowing hydrogen gas to pass therethrough. Can do. Further, a valve for adjusting the hydrogen gas pressure can be provided in the means for allowing the hydrogen gas to pass therethrough. Further, a valve for adjusting the hydrogen gas pressure can be provided in the means for allowing the hydrogen gas to pass therethrough. Thus, in addition to the gas chamber, for example, by providing a hydrogen storage device such as a gas pipe and a means for passing the hydrogen gas through the hydrogen gas chamber, between the first and second hydrogen storage alloys and high-temperature heat. The medium and the low-temperature heat medium are almost completely insulated from each other, facilitating the heat management and temperature management of the thermoelectric conversion hydrogen battery of the present invention, and further improving the power generation efficiency.

本発明の熱電変換水素電池において、プロトン伝導膜は固体高分子電解質膜であることが好ましい。
また、本発明の熱電変換水素電池は、直列に積層して用いることが好ましい。
In the thermoelectric conversion hydrogen battery of the present invention, the proton conducting membrane is preferably a solid polymer electrolyte membrane.
Moreover, it is preferable to use the thermoelectric conversion hydrogen battery of this invention, laminating | stacking in series.

水素吸蔵合金としては、ΔHが異なるものであればよい。一般に、ΔHの差が20以上の場合に、十分な電位差が取れて好ましい。   Any hydrogen storage alloy may be used as long as ΔH is different. Generally, when the difference of ΔH is 20 or more, it is preferable that a sufficient potential difference can be obtained.

本発明の熱電変換水素電池によれば、比較的低レベルの熱源を効率的に電気に変換することのできる1次電池となる。また、充電と放電を繰り返すことのできる2次電池となる。   According to the thermoelectric conversion hydrogen battery of the present invention, it becomes a primary battery capable of efficiently converting a relatively low level heat source into electricity. Further, the secondary battery can be repeatedly charged and discharged.

以下、本発明の水素吸蔵装置の実施の形態について説明する。
本発明において、水素分子を電子とプロトンとに分離する水素解離膜は、例えば高分子電解質膜型燃料電池(PEFC)等のアノード触媒層に用いられる公知の材料を用いて構成することができる。例えば、カーボン粉末に白金触媒を担持し、フッ素系樹脂、例えば、パーフルオロエチレンスルホン酸を混合した材料を用いて構成することができる。この場合、触媒金属としては特に白金に限定されず、白金属に属する他の貴金属を用いることも可能である。
Hereinafter, embodiments of the hydrogen storage device of the present invention will be described.
In the present invention, the hydrogen dissociation membrane that separates hydrogen molecules into electrons and protons can be formed using a known material used for an anode catalyst layer of, for example, a polymer electrolyte membrane fuel cell (PEFC). For example, it can be configured using a material in which a platinum catalyst is supported on carbon powder and a fluorine resin, for example, perfluoroethylenesulfonic acid is mixed. In this case, the catalyst metal is not particularly limited to platinum, and other noble metals belonging to the white metal can be used.

水素解離膜は、概ね5〜20μmとすることが好ましい。この領域とするのは、ガス拡散性とPtの活性点数を両立する上で、この領域に最適値があるからである。   The hydrogen dissociation membrane is preferably about 5 to 20 μm. The reason for this region is that there is an optimum value in this region in order to achieve both gas diffusivity and the number of active points of Pt.

なお、電子とプロトンとに分離する水素解離膜への水素分子(水素ガス)の供給は、固体高分子電解質膜型燃料電池と同様の構成で行うことができる。即ち、水素解離膜に水素分子が均一に供給されるように、水素ガスの流れにとって水素解離膜の上流側に拡散層を積層しておくことが好ましい。そしてこの拡散層に水素ガスを供給する水素流路を備えた集電体を積層しておくことが好ましい。この場合水素流路は集電体の拡散層側の表面に凹状の溝を設けて構成することができる。従って、この場合には集電体、拡散層、水素解離膜、電解質層、(水素解離膜)、水素吸蔵合金という順序で積層されることになる。   The supply of hydrogen molecules (hydrogen gas) to the hydrogen dissociation membrane that separates electrons and protons can be performed with the same configuration as that of the solid polymer electrolyte membrane fuel cell. That is, a diffusion layer is preferably laminated on the upstream side of the hydrogen dissociation film with respect to the flow of hydrogen gas so that hydrogen molecules are uniformly supplied to the hydrogen dissociation film. And it is preferable to laminate | stack the collector provided with the hydrogen flow path which supplies hydrogen gas to this diffusion layer. In this case, the hydrogen flow path can be formed by providing a concave groove on the surface of the current collector on the diffusion layer side. Therefore, in this case, the current collector, the diffusion layer, the hydrogen dissociation film, the electrolyte layer, the (hydrogen dissociation film), and the hydrogen storage alloy are laminated in this order.

この場合、拡散層は、上述の固体高分子電解質膜型燃料電池に用いるのと同様の材料を用いることができる。例えば、カーボンクロス、カーボンフェルト、カーボンペーパ一等の公知の材料を用いて構成することができる。概ね、100〜1000μmの厚さとすることが好ましく、ガス拡散性を確保するための最小限の厚さであれば良い。   In this case, the diffusion layer can be made of the same material as that used for the above-mentioned solid polymer electrolyte membrane fuel cell. For example, a known material such as carbon cloth, carbon felt, or carbon paper can be used. In general, the thickness is preferably 100 to 1000 μm, and may be a minimum thickness for ensuring gas diffusibility.

また、水素ガス流路を備える集電体は固体高分子電解質膜型燃料電池に通常用いる材料で通常の形状に構成することができる。例えば、気密性のあるカーボン板や、JIS G 4311 SUS304(耐熱鋼棒)等を用いた耐食性のある金属板、Auめっき等耐腐食処理を施した金属板等を用いて構成することができる。   In addition, the current collector provided with the hydrogen gas flow path can be formed into a normal shape with a material normally used for a solid polymer electrolyte membrane fuel cell. For example, it can be configured using an airtight carbon plate, a metal plate having corrosion resistance using JIS G 4311 SUS304 (heat-resistant steel rod), a metal plate subjected to corrosion resistance treatment such as Au plating, or the like.

分離したプロトンを水素吸蔵合金に供給するプロトン伝導膜は、固体高分子電解質膜型燃料電池で用いる固体高分子電解質膜を好適に用いることができる。このような固体高分子電解質膜としては、デュポン社の商品名ナフィオン、旭硝子社の商品名フレミオン等のパーフルオロスルホン酸系高分子電解質膜を挙げることができる。固体高分子電解質膜型燃料電池に通常用いられる電解質膜に限定されず、要は水素イオンを移動させることができる材料を適切に選択して用いることができる。   As the proton conductive membrane for supplying the separated protons to the hydrogen storage alloy, a solid polymer electrolyte membrane used in a solid polymer electrolyte membrane fuel cell can be suitably used. Examples of such a solid polymer electrolyte membrane include perfluorosulfonic acid polymer electrolyte membranes such as DuPont's trade name Nafion and Asahi Glass's trade name Flemion. It is not limited to the electrolyte membrane normally used for a solid polymer electrolyte membrane fuel cell, and in short, a material capable of moving hydrogen ions can be appropriately selected and used.

プロトン伝導膜としてパーフルオロスルホン酸系高分子電解質膜のような固体高分子電解質膜を用いた場合には、膜厚は概ね10〜100μmとすることが好ましい。膜厚が余りに薄いと電子短絡や水素のクロスオーバー現象が生ずることになり、余りに厚いとプロトンを水素吸蔵合金に移動させることが困難になるためである。   When a solid polymer electrolyte membrane such as a perfluorosulfonic acid polymer electrolyte membrane is used as the proton conductive membrane, the film thickness is preferably about 10 to 100 μm. If the film thickness is too thin, an electron short circuit or a hydrogen crossover phenomenon will occur, and if it is too thick, it will be difficult to transfer protons to the hydrogen storage alloy.

水素を吸蔵する水素吸蔵合金としては、Ni−MH電池として広く利用されているMnNi5系の他、TiZr系ラーベス相合金、あるいはTiCrV系bcc合金等の水素吸蔵合金を用いることができる。この水素吸蔵合金は粉末状にして用いることが好ましい。この場合、粉末の粒径は概ね25〜150μmとすることが好ましい。この粉末状の水素吸蔵合金をステンレス製等の容器に収納して用いることができる。   As a hydrogen storage alloy for storing hydrogen, a hydrogen storage alloy such as a TiZr system Laves phase alloy or a TiCrV system bcc alloy can be used in addition to a MnNi5 system widely used as a Ni-MH battery. This hydrogen storage alloy is preferably used in powder form. In this case, the particle size of the powder is preferably about 25 to 150 μm. This powdery hydrogen storage alloy can be used in a container made of stainless steel or the like.

なお、スルホン酸系電解質膜を用いる場合、強酸性が予想されるため合金の耐食性が重要となる。この耐食性向上のための表面処理(Ti又はPd等のコーティング)を施すことにより、耐久性も向上される。耐久性の向上の観点からは、Mg系合金については、上記表面処理を施すことが好ましい。   When a sulfonic acid electrolyte membrane is used, the corrosion resistance of the alloy is important because strong acidity is expected. Durability is also improved by applying surface treatment (coating such as Ti or Pd) for improving the corrosion resistance. From the viewpoint of improving durability, the Mg-based alloy is preferably subjected to the above surface treatment.

参考のために、水素吸蔵合金の種類によって、水素吸蔵合金が金属水素化物となった場合の(2)式の標準状態(絶対温度:298K、圧力1101325N/m2(1atm))における標準エンタルピー変化(ΔS0)、標準エントロピー変化(ΔH0)、ギブスの自由エネルギーの変化(ΔG0)が異なる。そこでMgH2、TiH2、VH2、TiCoH1.4等の金属水素化物の標準エントロピー変化、標準エンタルピー変化、そのときのギブスの自由エネルギーの変化を表1に示す。 For reference, the standard enthalpy change in the standard state (absolute temperature: 298 K, pressure 1101325 N / m 2 (1 atm)) of the formula (2) when the hydrogen storage alloy becomes a metal hydride, depending on the type of the hydrogen storage alloy. (ΔS 0 ), standard entropy change (ΔH 0 ), and Gibbs free energy change (ΔG 0 ) are different. Accordingly, Table 1 shows the standard entropy change, standard enthalpy change, and Gibbs free energy change of metal hydrides such as MgH 2 , TiH 2 , VH 2 , and TiCoH 1.4 .

Figure 2005033960
Figure 2005033960

表1から、概ね水素分子1モル当たりの標準エントロピー変化が大きい方が、それだけ水素分子1モル当たりにおいて回収することできる電気エネルギーが大きいと解される。   From Table 1, it can be understood that the larger the standard entropy change per mole of hydrogen molecule, the greater the electrical energy that can be recovered per mole of hydrogen molecule.

以下、実施例及び比較例として、図面を参照しつつ具体的に説明する。
図5に、比較例の熱電変換水素電池の概略を示す。低温で水素を放出する第1の水素吸蔵合金と、水素分子を電子とプロトンとに分離し、分離した前記プロトンを通過させ、再び水素分子にして第1または第2の水素合金に供給するプロトン伝導膜と、高温で水素を放出する第2の水素吸蔵合金とがこの順で配置され、更に前記第1及び第2の水素吸蔵合金の温度を調節する熱供給手段とを有し、前記第1及び第2の水素吸蔵合金を正極または負極とし、前記第2の水素吸蔵合金の熱エネルギーを電気エネルギーに変換する。
Hereinafter, examples and comparative examples will be specifically described with reference to the drawings.
In FIG. 5, the outline of the thermoelectric conversion hydrogen battery of a comparative example is shown. A first hydrogen storage alloy that releases hydrogen at a low temperature, and a proton that separates hydrogen molecules into electrons and protons, passes the separated protons, and supplies them as hydrogen molecules again to the first or second hydrogen alloy. The conductive film and the second hydrogen storage alloy that releases hydrogen at high temperature are arranged in this order, and further includes heat supply means for adjusting the temperature of the first and second hydrogen storage alloys, The first and second hydrogen storage alloys are used as positive electrodes or negative electrodes, and the thermal energy of the second hydrogen storage alloy is converted into electrical energy.

図5の比較例の場合では、薄いプロトン伝導膜を挟んで第1の水素吸蔵合金と第2の水素吸蔵合金が配置されているため、両者間で熱の移動が行われ、また、近接する高温の熱媒体と低温の熱媒体間でも断熱することが困難である。このため、発電効率が低下せざるを得ない。   In the case of the comparative example of FIG. 5, since the first hydrogen storage alloy and the second hydrogen storage alloy are arranged with the thin proton conductive membrane sandwiched therebetween, heat is transferred between them and they are close to each other. It is difficult to insulate even between a high-temperature heat medium and a low-temperature heat medium. For this reason, power generation efficiency must be reduced.

図1に、第1の本発明の熱電変換水素電池の実施例の概略を示す。低温から水素を放出する第1の水素吸蔵合金を有する第1の水素吸蔵装置(a)と、水素ガス室と、水素分子を電子とプロトンとに分離する水素解離膜と、分離した前記プロトンを通過させ、再び水素分子にして第2の水素吸蔵合金に供給するプロトン伝導膜と、高温で水素を放出する第2の水素吸蔵合金とがこの順で配置された、第2の水素吸蔵装置(b)と、更に前記第1及び第2の水素吸蔵合金の温度を調節する熱供給手段(c)とを有し、前記水素解離膜と第2の水素吸蔵合金を正極または負極とし、前記第2の水素吸蔵合金の熱エネルギーを電気エネルギーに変換することを特徴とする熱電変換水素電池である。   In FIG. 1, the outline of the Example of the thermoelectric conversion hydrogen battery of 1st this invention is shown. A first hydrogen storage device (a) having a first hydrogen storage alloy that releases hydrogen from a low temperature, a hydrogen gas chamber, a hydrogen dissociation membrane that separates hydrogen molecules into electrons and protons, and the separated protons A second hydrogen storage device (a second hydrogen storage device) in which a proton conductive membrane that passes through and supplies hydrogen molecules again to the second hydrogen storage alloy and a second hydrogen storage alloy that releases hydrogen at a high temperature are arranged in this order. b) and a heat supply means (c) for further adjusting the temperature of the first and second hydrogen storage alloys, the hydrogen dissociation film and the second hydrogen storage alloy as a positive electrode or a negative electrode, The thermoelectric conversion hydrogen battery is characterized in that the thermal energy of the hydrogen storage alloy 2 is converted into electric energy.

図2に、第2の本発明の熱電変換水素電池の実施例の概略を示す。低温から水素を放出する第1の水素吸蔵合金を有する第1の水素吸蔵装置(a)と、水素ガス室と、水素分子を電子とプロトンとに分離する第1の水素解離膜と、分離した前記プロトンを通過させ、再び水素分子にして第2の水素吸蔵合金に供給するプロトン伝導膜と、第2の水素解離膜と、高温で水素を放出する第2の水素吸蔵合金とがこの順で配置された、第2の水素吸蔵装置(b)と、更に前記第1及び第2の水素吸蔵合金の温度を調節する熱供給手段(c)とを有し、前記第1の水素解離膜と第2の水素解離膜を正極または負極とし、前記第2の水素吸蔵合金の熱エネルギーを電気エネルギーに変換することを特徴とする熱電変換水素電池である。   In FIG. 2, the outline of the Example of the thermoelectric conversion hydrogen battery of 2nd this invention is shown. A first hydrogen storage device (a) having a first hydrogen storage alloy that releases hydrogen from a low temperature, a hydrogen gas chamber, and a first hydrogen dissociation membrane that separates hydrogen molecules into electrons and protons are separated. A proton conducting membrane that allows the protons to pass through and supplies hydrogen molecules again to the second hydrogen storage alloy, a second hydrogen dissociation membrane, and a second hydrogen storage alloy that releases hydrogen at a high temperature in this order. A second hydrogen storage device (b), and a heat supply means (c) for adjusting the temperature of the first and second hydrogen storage alloys, and the first hydrogen dissociation film, The thermoelectric conversion hydrogen battery is characterized in that the second hydrogen dissociation film is used as a positive electrode or a negative electrode, and heat energy of the second hydrogen storage alloy is converted into electric energy.

図1及び図2の本発明の実施例の場合では、第1の水素吸蔵合金と第2の水素吸蔵合金が離れて配置されているため、両者間で熱の移動が行われ難い。また、高温の熱媒体と低温の熱媒体間がほぼ完全に断熱することができる。このため、熱管理・温度管理が容易であり、発電効率も向上する。   In the case of the embodiment of the present invention shown in FIGS. 1 and 2, since the first hydrogen storage alloy and the second hydrogen storage alloy are disposed apart from each other, it is difficult for heat to move between them. Further, the high temperature heat medium and the low temperature heat medium can be almost completely insulated. For this reason, heat management and temperature management are easy, and power generation efficiency is improved.

次に、本発明の熱電変換水素電池の動作を説明する。
図3(a)は、第1の本発明の熱電変換水素電池が起電する場合を示す。低温(例えば、40℃)から水素を放出する第1の水素吸蔵合金に熱供給手段より、例えば40℃程度の熱媒体より熱が供給されると、吸蔵されていた水素分子が放出される。放出された水素分子は、圧力調整弁を有する管を通過して、水素ガス室へ送り込まれる。水素分子は水素ガス室より、水素解離膜へ入り、電子とプロトンに解離される。電子は、水素解離膜を負極として、負荷に給電しつつ、正極である第2の水素吸蔵合金へ流れる。分離したプロトンは、プロトン伝導膜中を通過し、第2の水素吸蔵合金において電子と再結合して水素分子となり、第2の水素吸蔵合金に吸蔵される。図3(b)は、第1の本発明の熱電変換水素電池が起電する別の場合を示す。高温(例えば、80℃)から水素を放出する第2の水素吸蔵合金に熱供給手段より、熱が供給されると、第2の水素吸蔵合金内の水素分子が熱により不安定化し、プロトン伝導膜、水素解離膜中を通過し、反対側の水素ガス室に移動する。これにより、第2の水素吸蔵合金の熱エネルギーが電気エネルギーに変換される。この時、予め第1の水素吸蔵合金に水素を吸蔵させ、水素ガス室内の圧力を低下させておこと、上記反応を促進することができる。
Next, the operation of the thermoelectric conversion hydrogen battery of the present invention will be described.
Fig.3 (a) shows the case where the thermoelectric conversion hydrogen battery of 1st this invention starts an electric power generation. When heat is supplied from the heat supply means to the first hydrogen storage alloy that releases hydrogen from a low temperature (for example, 40 ° C.), for example, from a heat medium of about 40 ° C., the stored hydrogen molecules are released. The released hydrogen molecules pass through a pipe having a pressure regulating valve and are sent into the hydrogen gas chamber. Hydrogen molecules enter the hydrogen dissociation membrane from the hydrogen gas chamber and are dissociated into electrons and protons. Electrons flow to the second hydrogen storage alloy as the positive electrode while supplying power to the load using the hydrogen dissociation film as the negative electrode. The separated protons pass through the proton conducting membrane, recombine with electrons in the second hydrogen storage alloy to form hydrogen molecules, and are stored in the second hydrogen storage alloy. FIG. 3B shows another case where the thermoelectric conversion hydrogen battery of the first aspect of the present invention generates electricity. When heat is supplied from the heat supply means to the second hydrogen storage alloy that releases hydrogen from a high temperature (for example, 80 ° C.), the hydrogen molecules in the second hydrogen storage alloy are destabilized by the heat, and proton conduction It passes through the membrane and hydrogen dissociation membrane and moves to the opposite hydrogen gas chamber. Thereby, the thermal energy of the second hydrogen storage alloy is converted into electric energy. At this time, hydrogen can be occluded in advance in the first hydrogen occlusion alloy to reduce the pressure in the hydrogen gas chamber, and the reaction can be promoted.

図4(a)は、第2の本発明の熱電変換水素電池が起電する場合を示す。低温(例えば、40℃)から水素を放出する第1の水素吸蔵合金に熱供給手段より、例えば40℃程度の熱媒体より熱が供給されると、吸蔵されていた水素分子が放出される。放出された水素分子は、圧力調整弁を有する管を通過して、水素ガス室へ送り込まれる。水素分子は水素ガス室より、第1の水素解離膜へ入り、電子とプロトンに解離される。電子は、水素解離膜を負極として、負荷に給電しつつ、プロトン伝導膜と正極である第2の水素解離膜を通過して第2の水素吸蔵合金へ流れる。分離したプロトンは、プロトン伝導膜中を通過し、第2の水素解離膜において電子と再結合して水素分子となり、第2の水素吸蔵合金に吸蔵される。図4(b)は、第1の本発明の熱電変換水素電池が起電する別の場合を示す。高温(例えば、80℃)から水素を放出する第2の水素吸蔵合金に熱供給手段より、熱が供給されると、第2の水素吸蔵合金内の水素分子が熱により不安定化し、第2の水素解離膜中、プロトン伝導膜、第1の水素解離膜中を通過し、反対側の水素ガス室に移動する。これにより、第2の水素吸蔵合金の熱エネルギーが電気エネルギーに変換される。この時、予め第1の水素吸蔵合金に水素を吸蔵させ、水素ガス室内の圧力を低下させておこと、上記反応を促進することができる。   Fig.4 (a) shows the case where the thermoelectric conversion hydrogen battery of 2nd this invention starts an electric power generation. When heat is supplied from the heat supply means to the first hydrogen storage alloy that releases hydrogen from a low temperature (for example, 40 ° C.) from a heat medium of about 40 ° C., the stored hydrogen molecules are released. The released hydrogen molecules pass through a pipe having a pressure regulating valve and are sent into the hydrogen gas chamber. Hydrogen molecules enter the first hydrogen dissociation film from the hydrogen gas chamber and are dissociated into electrons and protons. Electrons flow to the second hydrogen storage alloy through the proton conducting membrane and the second hydrogen dissociating membrane that is the positive electrode while supplying power to the load with the hydrogen dissociating membrane as the negative electrode. The separated protons pass through the proton conducting membrane, recombine with electrons in the second hydrogen dissociation membrane to form hydrogen molecules, and are stored in the second hydrogen storage alloy. FIG. 4B shows another case where the thermoelectric conversion hydrogen battery of the first aspect of the present invention generates electricity. When heat is supplied from the heat supply means to the second hydrogen storage alloy that releases hydrogen from a high temperature (for example, 80 ° C.), the hydrogen molecules in the second hydrogen storage alloy are destabilized by the heat, and the second The hydrogen dissociation membrane passes through the proton conducting membrane and the first hydrogen dissociation membrane, and moves to the opposite hydrogen gas chamber. Thereby, the thermal energy of the second hydrogen storage alloy is converted into electric energy. At this time, hydrogen can be occluded in advance in the first hydrogen occlusion alloy to reduce the pressure in the hydrogen gas chamber, and the reaction can be promoted.

本発明には、上記の熱電変換水素電池を、電位差を大きくするために電極を薄膜化し、直列に繋ぐことや、IRドロップを小さくするために、並列に繋ぐなどの応用が含まれる。   The present invention includes applications in which the above-described thermoelectric conversion hydrogen batteries are connected in series in order to increase the potential difference, and the electrodes are connected in series to reduce the IR drop.

[結果:電位と電気量]
表2に、図1及び図2の熱電変換水素電池において、各電極を用いた際の、電位と電気量を示す。
[Result: potential and quantity of electricity]
Table 2 shows potential and electric quantity when each electrode is used in the thermoelectric conversion hydrogen battery of FIGS. 1 and 2.

Figure 2005033960
Figure 2005033960

本発明の熱電変換水素電池は、比較的低レベルの熱源を効率的に電気に変換することのできる1次電池となる。また、充電と放電を繰り返すことのできる2次電池となる。   The thermoelectric conversion hydrogen battery of the present invention is a primary battery that can efficiently convert a relatively low level heat source into electricity. Further, the secondary battery can be repeatedly charged and discharged.

第1の本発明の熱電変換水素電池の概略を示した図である。It is the figure which showed the outline of the thermoelectric conversion hydrogen battery of 1st this invention. 第2の本発明の熱電変換水素電池の概略を示した図である。It is the figure which showed the outline of the thermoelectric conversion hydrogen battery of 2nd this invention. 第1の本発明の熱電変換水素電池の動作を示した図である。図3(a)は、第1の本発明の熱電変換水素電池が起電する場合を示す。図3(b)は、第1の本発明の熱電変換水素電池が起する別の場合を示す。It is the figure which showed operation | movement of the thermoelectric conversion hydrogen battery of 1st this invention. Fig.3 (a) shows the case where the thermoelectric conversion hydrogen battery of 1st this invention starts an electric power generation. FIG. 3 (b) shows another case where the thermoelectric conversion hydrogen battery of the first invention occurs. 第2の本発明の熱電変換水素電池の動作を示した図である。図4(a)は、第2の本発明の熱電変換水素電池が起電する場合を示す。図4(b)は、第2の本発明の熱電変換水素電池が起電する別の場合を示す。It is the figure which showed operation | movement of the thermoelectric conversion hydrogen battery of 2nd this invention. Fig.4 (a) shows the case where the thermoelectric conversion hydrogen battery of 2nd this invention starts an electric power generation. FIG. 4B shows another case where the thermoelectric conversion hydrogen battery of the second aspect of the present invention generates electricity. 比較例の熱電変換水素電池の概略を示した図である。It is the figure which showed the outline of the thermoelectric conversion hydrogen battery of a comparative example.

Claims (5)

低温から水素を放出する第1の水素吸蔵合金を有する第1の水素吸蔵装置(a)と、
水素ガス室と、水素分子を電子とプロトンとに分離する水素解離膜と、分離した前記プロトンを通過させ、再び水素分子にして前記水素ガス室または第2の水素吸蔵合金に供給するプロトン伝導膜と、高温から水素を放出する第2の水素吸蔵合金とがこの順で配置された、第2の水素吸蔵装置(b)と、
更に前記第1及び第2の水素吸蔵合金の温度を調節する熱供給手段(c)とを有し、前記水素解離膜と第2の水素吸蔵合金を正極または負極とし、
前記第2の水素吸蔵合金の熱エネルギーを電気エネルギーに変換することを特徴とする熱電変換水素電池。
A first hydrogen storage device (a) having a first hydrogen storage alloy that releases hydrogen from a low temperature;
A hydrogen gas chamber, a hydrogen dissociation membrane that separates hydrogen molecules into electrons and protons, and a proton conducting membrane that passes the separated protons and supplies them again as hydrogen molecules to the hydrogen gas chamber or the second hydrogen storage alloy And a second hydrogen storage device (b) in which a second hydrogen storage alloy that releases hydrogen from a high temperature is arranged in this order;
And a heat supply means (c) for adjusting the temperature of the first and second hydrogen storage alloys, the hydrogen dissociation film and the second hydrogen storage alloy as a positive electrode or a negative electrode,
A thermoelectric conversion hydrogen battery, wherein the thermal energy of the second hydrogen storage alloy is converted into electric energy.
低温から水素を放出する第1の水素吸蔵合金を有する第1の水素吸蔵装置(a)と、
水素ガス室と、水素分子を電子とプロトンとに分離する第1の水素解離膜と、分離した前記プロトンを通過させ、再び水素分子にして前記水素ガス室または第2の水素吸蔵合金に供給するプロトン伝導膜と、第2の水素解離膜と、高温から水素を放出する第2の水素吸蔵合金とがこの順で配置された、第2の水素吸蔵装置(b)と、
更に前記第1及び第2の水素吸蔵合金の温度を調節する熱供給手段(c)とを有し、前記第1の水素解離膜と第2の水素解離膜を正極または負極とし、
前記第2の水素吸蔵合金の熱エネルギーを電気エネルギーに変換することを特徴とする熱電変換水素電池。
A first hydrogen storage device (a) having a first hydrogen storage alloy that releases hydrogen from a low temperature;
A hydrogen gas chamber, a first hydrogen dissociation membrane that separates hydrogen molecules into electrons and protons, and the separated protons are allowed to pass through to be converted again into hydrogen molecules and supplied to the hydrogen gas chamber or the second hydrogen storage alloy. A second hydrogen storage device (b) in which a proton conductive membrane, a second hydrogen dissociation membrane, and a second hydrogen storage alloy that releases hydrogen from a high temperature are arranged in this order;
And heat supply means (c) for adjusting the temperature of the first and second hydrogen storage alloys, the first hydrogen dissociation film and the second hydrogen dissociation film as a positive electrode or a negative electrode,
A thermoelectric conversion hydrogen battery, wherein the thermal energy of the second hydrogen storage alloy is converted into electric energy.
更に、前記第1の水素吸蔵装置と水素ガス室を結び水素ガスを通過させる手段を有することを特徴とする請求項1又は2に記載の熱電変換水素電池。   The thermoelectric conversion hydrogen battery according to claim 1 or 2, further comprising means for connecting the first hydrogen storage device and a hydrogen gas chamber to allow hydrogen gas to pass therethrough. 前記プロトン伝導膜は固体高分子電解質膜であることを特徴とする請求項1〜3のいずれかに記載の熱電変換水素電池。   The thermoelectric conversion hydrogen battery according to claim 1, wherein the proton conducting membrane is a solid polymer electrolyte membrane. 請求項1〜4のいずれかに記載の熱電変換水素電池を直列に積層したことを特徴とする熱電変換水素電池。

A thermoelectric conversion hydrogen battery, wherein the thermoelectric conversion hydrogen batteries according to claim 1 are stacked in series.

JP2003272900A 2003-07-10 2003-07-10 Thermoelectric conversion hydrogen battery Pending JP2005033960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003272900A JP2005033960A (en) 2003-07-10 2003-07-10 Thermoelectric conversion hydrogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003272900A JP2005033960A (en) 2003-07-10 2003-07-10 Thermoelectric conversion hydrogen battery

Publications (1)

Publication Number Publication Date
JP2005033960A true JP2005033960A (en) 2005-02-03

Family

ID=34210314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003272900A Pending JP2005033960A (en) 2003-07-10 2003-07-10 Thermoelectric conversion hydrogen battery

Country Status (1)

Country Link
JP (1) JP2005033960A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846602B2 (en) 2006-04-11 2010-12-07 Honda Motor Co., Ltd. Thermoelectric conversion apparatus
JP2014049357A (en) * 2012-08-31 2014-03-17 Shih-Hang Chou Hydrogen fuel cell
JP2015211484A (en) * 2014-04-24 2015-11-24 トヨタ自動車株式会社 Method for manufacturing solid electrolyte-electrode complex
JP2021521774A (en) * 2018-04-10 2021-08-26 ハイドロゲン ユニヴァース リミテッド Methods and systems using hydrogen jets

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846602B2 (en) 2006-04-11 2010-12-07 Honda Motor Co., Ltd. Thermoelectric conversion apparatus
JP2014049357A (en) * 2012-08-31 2014-03-17 Shih-Hang Chou Hydrogen fuel cell
JP2015211484A (en) * 2014-04-24 2015-11-24 トヨタ自動車株式会社 Method for manufacturing solid electrolyte-electrode complex
JP2021521774A (en) * 2018-04-10 2021-08-26 ハイドロゲン ユニヴァース リミテッド Methods and systems using hydrogen jets
JP7342104B2 (en) 2018-04-10 2023-09-11 ハイドロゲン ユニヴァース リミテッド Method and system of using hydrogen jet

Similar Documents

Publication Publication Date Title
Wang et al. Prospects of fuel cell technologies
US4087976A (en) Electric power plant using electrolytic cell-fuel cell combination
JP6517835B2 (en) Fuel cell stack configuration
TWI612717B (en) Ciht power system
JP6453480B2 (en) Thermoelectrochemical converter with integrated energy storage
JP2007282449A (en) Thermoelectric converter
JP5711687B2 (en) Electrochemical device and power storage system
JP2007103194A (en) Power source provided with solid oxide fuel cell
JP2006236599A (en) Water recovery method for fuel cell power generator
T-Raissi Current technology of fuel cell systems
JP2005033960A (en) Thermoelectric conversion hydrogen battery
JPH07130381A (en) Fuel cell
Gupta et al. Solid oxide fuel cell: a review
JP2003336798A (en) Hydrogen absorbing device and hydrogen absorbing method
JP2004281072A (en) Fuel cell power generation device
JP2012084366A (en) Fuel cell device and secondary fuel cell system
JP6956392B1 (en) Compressor
Devi et al. Effect of cell Temperature on the power output of a PEM fuel cell in a test bed condition
JPH0935736A (en) Solid polymer fuel cell and its operation method
JP2007080587A (en) Fuel cell and electric apparatus
KR102358856B1 (en) Rechargeable electrochemical device for producing electrical energy
Palsson et al. Intermediate temperature SOFC in gas turbine cycles
KR101012404B1 (en) fuel cell power generation system
KR20070076094A (en) Fuel supply apparatus and fuel cell system using same
Takaguchi et al. kW direct methanol fuel cell system