JP2005033564A - Optical transmitting/receiving unit - Google Patents

Optical transmitting/receiving unit Download PDF

Info

Publication number
JP2005033564A
JP2005033564A JP2003271105A JP2003271105A JP2005033564A JP 2005033564 A JP2005033564 A JP 2005033564A JP 2003271105 A JP2003271105 A JP 2003271105A JP 2003271105 A JP2003271105 A JP 2003271105A JP 2005033564 A JP2005033564 A JP 2005033564A
Authority
JP
Japan
Prior art keywords
optical
transmission
light
light receiving
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003271105A
Other languages
Japanese (ja)
Inventor
Junichi Kubota
潤一 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2003271105A priority Critical patent/JP2005033564A/en
Publication of JP2005033564A publication Critical patent/JP2005033564A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To satisfy a required parallelism of a transmission/reception optical axis without being influenced by variation in various components. <P>SOLUTION: In an application where the transmission optical axis 18 is aligned with an optical receiver 62 in both vertical direction and horizontal direction, four light receiving elements 21b obtained by dividing the light receiving surface by two light receiving element dividing lines 211b and 212b are employed. A light transmitting unit 10 and a light receiving unit 20 are coupled through a mechanism section 91 rotating independently about regulation rotational axes 911b and 912b which are parallel, respectively, with two light receiving element dividing lines 211b and 212b. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光無線伝送装置の光送受信ユニットに関し、特に受信機に対して光信号を送信する送信機の光送受信ユニットに関する。   The present invention relates to an optical transmission / reception unit of an optical wireless transmission apparatus, and more particularly to an optical transmission / reception unit of a transmitter that transmits an optical signal to a receiver.

従来より、空間光を用いてデジタルデータ伝送を行う光空間伝送技術がある。一般に、これを応用した双方向光空間伝送システムでは、データの送受信を行う光送受信機を対向させて1:1あるいは1:nの形態で使用する。このシステムを構成する各光送受信機は、発光ダイオードやレーザダイオードなどの半導体発光素子を用いた光送信手段と、フォトダイオードなどの半導体受光素子を用いた光受信手段から構成される光送受信ユニットを備えている。   Conventionally, there is an optical space transmission technique for performing digital data transmission using spatial light. In general, in a bidirectional optical space transmission system to which this is applied, optical transceivers that transmit and receive data are opposed to each other and are used in a 1: 1 or 1: n form. Each optical transceiver constituting this system includes an optical transmission / reception unit composed of an optical transmission means using a semiconductor light emitting element such as a light emitting diode or a laser diode, and an optical reception means using a semiconductor light receiving element such as a photodiode. I have.

ここで、1つの伝送路を構成する2つの光送受信機間の距離を十分にとりたい場合、あるいは高速な伝送路を構成したい場合には、光送信手段が空間へ送出する光エネルギーを高める必要がある。しかし広い範囲に対し高い光エネルギーを送出することは伝送相手のいない不必要なエリアへのエネルギー送出が多く、非常にエネルギー効率が悪い。そこで光送信手段として、半導体発光素子から送出された光をレンズなどでビーム状に変換してから空間へ送出する方法がとられている。あるいは光受信手段として、空間から到来する光をレンズなどにより効率良く受光素子へ取り込む方法もある。   Here, when a sufficient distance between the two optical transceivers constituting one transmission path is desired, or when a high-speed transmission path is desired, it is necessary to increase the optical energy transmitted from the optical transmission means to the space. is there. However, sending high light energy over a wide range often involves sending energy to an unnecessary area where there is no transmission partner, which is very inefficient. Therefore, as a light transmitting means, a method is adopted in which light transmitted from a semiconductor light emitting element is converted into a beam shape by a lens or the like and then transmitted to space. Alternatively, as a light receiving means, there is a method in which light coming from space is efficiently taken into a light receiving element by a lens or the like.

また、システムの形態によっては、光送信手段と光受信手段の両方にレンズなどを用いた光送受信ユニットを有する光送受信機で構成することがある。この場合、送信手段、受信手段共に狭い角度範囲(高指向性)を有することから、伝送路を確保するには両手段の光軸を伝送相手に向けるための光軸合わせが必要である。その際の前提として、光送受信ユニットには光送信手段の光軸と光受信手段の光軸が同じ方向に向いていることが要求される。   Further, depending on the form of the system, the optical transmitter / receiver may include an optical transmitter / receiver unit using lenses or the like for both the optical transmitter and the optical receiver. In this case, since both the transmission means and the reception means have a narrow angle range (high directivity), it is necessary to align the optical axes so that the optical axes of both means are directed to the transmission partner in order to secure the transmission path. As a premise at that time, the optical transmission / reception unit is required to have the optical axis of the optical transmission means and the optical axis of the optical reception means oriented in the same direction.

その一例として、下記の特許文献1では、出射角の狭い光送信手段と入射角の狭い光受信手段を有する光送受信ユニットを搭載する光送受信装置に関して、光軸合わせを行う具体的な機構を提案している。特許文献1の図8、図11にあるように、一般的な光送受信ユニットは、光送信手段と光受信手段を並列に配置し、両者を構成する要素すべてが同一部材に取り付けられた構成となっている。これにより送受信の両光軸は略平行を保つことができる。
特開平10−276131号公報
As an example, Patent Document 1 below proposes a specific mechanism for optical axis alignment for an optical transmission / reception apparatus equipped with an optical transmission / reception unit having a light transmission means with a narrow emission angle and a light reception means with a narrow incidence angle. is doing. As shown in FIGS. 8 and 11 of Patent Document 1, a general optical transmission / reception unit has a configuration in which an optical transmission unit and an optical reception unit are arranged in parallel, and all elements constituting both are attached to the same member. It has become. Thereby, both optical axes of transmission and reception can be kept substantially parallel.
Japanese Patent Laid-Open No. 10-276131

光空間伝送システムに、より高速かつ長距離での伝送を求められた場合、光エネルギーの更なる効率化を図り、光送信手段からの送出光を極めて狭い出射角のものとする必要がある。また出射角が狭いため、送受信の両光軸の平行度への要求も厳しくなる。しかしながら、従来の光送受信ユニット構造では、発光素子の光学的ばらつきや保持部材形状のばらつきにより、送信光軸の振れが大きくなり、要求される送受信両光軸の平行度を満足できないという問題点があった。   When the optical space transmission system is required to transmit at a higher speed and longer distance, it is necessary to further improve the efficiency of the light energy and to make the transmitted light from the light transmitting means have an extremely narrow emission angle. Further, since the emission angle is narrow, the requirement for the parallelism of both optical axes for transmission and reception becomes severe. However, in the conventional optical transmission / reception unit structure, there is a problem that the fluctuation of the transmission optical axis increases due to the optical variation of the light emitting element and the variation of the holding member shape, and the required parallelism of both the transmission / reception optical axes cannot be satisfied. there were.

本発明は、各種構成部材のばらつきに左右されず、要求される送受信光軸の平行度を満たすことができる光送受信ユニットを提供することを目的とする。   It is an object of the present invention to provide an optical transmission / reception unit that can satisfy the required parallelism of transmission / reception optical axes without being affected by variations in various components.

本発明は上記目的を達成するために、光送信ユニットと光受信ユニットを別々に構成し、受光素子の受光面の分割線を回転軸として光送信ユニットを回転可能に光受信ユニットに連結して、発光素子の光軸と受光素子の受光軸を平行化するようにしたものである。
すなわち本発明によれば、受信機に対して光信号を送信する光無線伝送装置の光送受信ユニットであって、
前記光信号を出射する発光素子を有する光送信ユニットと、
受光面が水平方向及び/又は垂直方向に分割され、前記受信機から送信される光軸調整用の光を受光して前記発光素子の光軸を前記受信機に合わせるための受光素子を有する光受信ユニットと、
前記受光素子の受光面の分割線に平行な軸を回転軸として前記光送信ユニットを回転可能に前記光受信ユニットに連結して前記発光素子の光軸と前記受光素子の受光軸を平行化するための連結機構とを、
備えた光送受信ユニットが提供される。
In order to achieve the above object, the present invention comprises a light transmitting unit and a light receiving unit separately, and the light transmitting unit is rotatably connected to the light receiving unit with the dividing line of the light receiving surface of the light receiving element as a rotation axis. The optical axis of the light emitting element and the light receiving axis of the light receiving element are made parallel.
That is, according to the present invention, an optical transceiver unit of an optical wireless transmission device that transmits an optical signal to a receiver,
An optical transmission unit having a light emitting element for emitting the optical signal;
Light having a light receiving element whose light receiving surface is divided into a horizontal direction and / or a vertical direction, receives light for optical axis adjustment transmitted from the receiver, and aligns the optical axis of the light emitting element with the receiver A receiving unit;
The optical transmission unit is rotatably connected to the optical receiving unit with an axis parallel to the dividing line of the light receiving surface of the light receiving element as a rotation axis, and the optical axis of the light emitting element and the light receiving axis of the light receiving element are made parallel. A coupling mechanism for
An optical transmission / reception unit is provided.

以上説明したように本発明によれば、光送信ユニットと光受信ユニットを別々に構成し、受光素子の受光面の分割線を回転軸として光送信ユニットを回転可能に光受信ユニットに連結して、発光素子の光軸と受光素子の受光軸を平行化するようにしたので、送受信光軸の高い平行度を補償できるため、送信光の指向性を極めて高くする(出射角を狭くする)ことが可能になる。これにより、伝送システムの伝送速度の向上と伝送距離の長距離化を図ることができ、また、レンズや素子、保持部材などの各部品に求められる精度を抑えることになり、部品製造コストを下げる効果もある。さらに受光素子の受光面の分割線に平行な軸を回転軸として光送信ユニットを回転するので、調整が容易になり、調整工程の簡易化さらには調整費用のコストダウンも図れる。   As described above, according to the present invention, the optical transmission unit and the optical reception unit are configured separately, and the optical transmission unit is rotatably connected to the optical reception unit with the dividing line of the light receiving surface of the light receiving element as the rotation axis. Since the optical axis of the light emitting element and the light receiving axis of the light receiving element are made parallel, the high parallelism of the transmission / reception optical axis can be compensated, so that the directivity of the transmitted light is made extremely high (the emission angle is narrowed). Is possible. As a result, the transmission speed of the transmission system can be improved and the transmission distance can be increased, and the accuracy required for each component such as the lens, element, and holding member can be suppressed, and the component manufacturing cost can be reduced. There is also an effect. Furthermore, since the optical transmission unit is rotated about the axis parallel to the dividing line of the light receiving surface of the light receiving element, the adjustment is facilitated, the adjustment process is simplified, and the adjustment cost is reduced.

以下、図面を参照して本発明の実施の形態について説明する。図1は本発明が使われると予想される光空間映像伝送システムのイメージの一例を示す説明図である。この図1の例は、映像表示装置(例えばプラズマ・ディスプレイ・パネル(PDP)テレビのような高品位表示装置)50側に設置された光受信装置62に対して、映像表示装置50が表示するデジタル映像信号データを光無線により伝送する光空間映像伝送システム5であり、この光空間映像伝送システム5は映像表示装置50に接続(設置)された光受信装置62に対して、チューナなどの映像制御装置51上に置かれた光送信装置61よりデジタル映像信号を光無線により伝送を行う。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram showing an example of an image of an optical space video transmission system expected to be used with the present invention. In the example of FIG. 1, the video display device 50 displays on the optical receiver 62 installed on the video display device (for example, a high-definition display device such as a plasma display panel (PDP) television) 50. This is an optical spatial video transmission system 5 that transmits digital video signal data by optical wireless, and this optical spatial video transmission system 5 provides an image of a tuner or the like to an optical receiver 62 connected (installed) to the video display device 50. A digital video signal is transmitted by optical wireless from an optical transmission device 61 placed on the control device 51.

この光空間映像伝送システム5では、光送信装置61は送信光19を送出することにより光受信装置62へデジタル映像データを伝送する。限られた光エネルギーで効率よくデータを伝送するため、この送信光19は狭い出射角(高指向性)を有する。ここで、この送信光19が光受信装置62に確実に当たることが重要な伝送条件となる。このように、送信光19を光受信装置62へ当てることが必要な光空間映像伝送システム5には、光軸調整(光軸合わせ)という機能が求められる。   In this optical space video transmission system 5, the optical transmission device 61 transmits digital video data to the optical reception device 62 by transmitting the transmission light 19. In order to transmit data efficiently with limited light energy, the transmission light 19 has a narrow emission angle (high directivity). Here, it is an important transmission condition that the transmission light 19 reliably strikes the optical receiver 62. As described above, the optical space video transmission system 5 that needs to apply the transmission light 19 to the optical receiver 62 is required to have a function of optical axis adjustment (optical axis alignment).

図1の光空間映像伝送システム5を家庭で使用する場合、光送信装置61はチューナなどの映像制御装置51上もしくはそれが収まるラック上に置かれることが予想される。その場合、通常行われる部屋の掃除などにより、光送信装置61の置かれる位置が移動する可能性は十分に考えられる。このとき送信光19の光軸がずれ、送信光19が光受信装置62に当たらない状況となり、データ伝送を行えなくなるので、その度にユーザが光軸を調整しなければならなくなる。   When the optical space video transmission system 5 of FIG. 1 is used at home, the optical transmission device 61 is expected to be placed on the video control device 51 such as a tuner or on a rack in which it is accommodated. In that case, there is a sufficient possibility that the position where the optical transmission device 61 is placed is moved by cleaning the room normally performed. At this time, the optical axis of the transmission light 19 is deviated, and the transmission light 19 does not hit the optical receiver 62, and data transmission cannot be performed. Therefore, the user must adjust the optical axis each time.

そこで、この状況を回避することを目的として、光送信装置61には自動的に光軸を調整する機能の搭載が期待される。この機能について簡単に述べる。まず光受信装置62が基準信号光39を送出する。一方の光送信装置61は、その基準信号光39を検出しながら、機械的に送信光19の光軸を調整する。基準信号光39を検出した信号レベルが最適値になる方向(位置)を見つけ、その位置で停止すると、光送信装置61の送信光19が光受信装置62に当たることになる。ここで、光受信装置62が送出する基準信号光39には広い出射角(低指向性)が必要となる。   Therefore, for the purpose of avoiding this situation, the optical transmitter 61 is expected to be equipped with a function for automatically adjusting the optical axis. This function is briefly described. First, the optical receiver 62 transmits the reference signal light 39. One optical transmission device 61 mechanically adjusts the optical axis of the transmission light 19 while detecting the reference signal light 39. When the direction (position) where the signal level at which the reference signal light 39 is detected becomes the optimum value is found and stopped at that position, the transmission light 19 of the optical transmission device 61 strikes the optical reception device 62. Here, the reference signal light 39 transmitted by the optical receiver 62 needs a wide emission angle (low directivity).

次に、図2を用いて前記したような本発明が用いられると予想される光空間伝送システムの具体的構成例を示す。この図2で示す光空間伝送システムの例では、光送信装置61は、ここには記載していない外部のデータ発生機器から送られる信号(例えば映像信号)を受信し、光空間伝送を行うための処理を行う送信信号処理回路14によって処理された信号を発光素子ドライバ13により発光素子11を駆動し発光レンズ12を介して送信光19を空間へ送出する。   Next, a specific configuration example of an optical space transmission system in which the present invention is expected to be used will be described with reference to FIG. In the example of the optical space transmission system shown in FIG. 2, the optical transmission device 61 receives a signal (for example, a video signal) sent from an external data generation device not described here and performs optical space transmission. The signal processed by the transmission signal processing circuit 14 that performs the above processing is driven by the light-emitting element driver 13 by the light-emitting element driver 13, and the transmission light 19 is transmitted to the space via the light-emitting lens 12.

光受信装置62は光送信装置61によって伝送される送信光19を受光するための比較的広い入射角(低指向性)の光受信素子(例えばPDやAPD及び集光レンズなどで構成される)41によって受信し、受光回路42で電気的に増幅するなどの処理を加え、ここでは記載されていない外部機器(例えば受像装置など)へ送信するための信号処理を行う受信信号処理回路43を備え、加えて、光受信装置62は低い指向性を持つ光送信素子(例えばLED又はこれにレンズを加えたもの)31及びその基準信号を発生する発信回路33、発光素子ドライバ32を持ち、光送信装置61へ自身の位置を示すため基準信号光39を送信する。   The optical receiver 62 has a relatively wide incident angle (low directivity) for receiving the transmission light 19 transmitted by the optical transmitter 61 (for example, a PD, an APD, a condensing lens, etc.). A reception signal processing circuit 43 that performs processing such as reception by 41 and electrical amplification by the light receiving circuit 42, and signal processing for transmission to an external device (for example, an image receiving device) not described here. In addition, the light receiving device 62 has a light transmitting element (for example, an LED or a lens added thereto) 31 having a low directivity, a transmitting circuit 33 that generates a reference signal thereof, and a light emitting element driver 32, and transmits light. A reference signal light 39 is transmitted to the device 61 to indicate its position.

光送信装置61は、光受信装置62からの基準信号光39を受信するための複数の受光素子21(例えばPD)を持ち、受光レンズ22を介して受信した各受光素子21の受信信号を受光回路23で電気的に増幅するなどの処理を加える。この受光回路23で処理された各受光素子21からの受信信号は信号セレクト回路24を用いて制御部70からの制御によって特定の受信信号のみを選択し、受信レベル検出回路25でその受信レベルを検出し、制御部70へその結果を渡す。   The optical transmission device 61 has a plurality of light receiving elements 21 (for example, PDs) for receiving the reference signal light 39 from the optical receiving device 62 and receives the reception signals of the respective light receiving elements 21 received via the light receiving lens 22. Processing such as electrical amplification by the circuit 23 is added. For the received signal from each light receiving element 21 processed by the light receiving circuit 23, only a specific received signal is selected by the control from the control unit 70 using the signal select circuit 24, and the received level is detected by the reception level detecting circuit 25. Detect and pass the result to the control unit 70.

制御部(例えば、MPUやDSPなど)70は、光送信装置61からの送信光19の送信光軸18を光受信装置62へ合わせるために適時、信号セレクト回路24を用いて必要な受光素子21による受信信号を選択し、受信レベル検出回路25によって得られる各信号のレベルを比較して駆動制御部80を制御し、パン駆動手段81及びチルト駆動手段82(例えば、ステッピングモータなど)を制御し、発光素子11及び受光素子21の向きを調整する。ここで重要なのは光送信装置61における送信光19の送信光軸18と、基準信号光39の受信光軸28の平行度である。その重要性について図3、図4、図5を用いて簡単に説明し、図6、図7、図8でその目的を達成するための具体的構造の実施例を示す。   The control unit (for example, MPU, DSP, etc.) 70 receives the light receiving element 21 required by using the signal selection circuit 24 in a timely manner to align the transmission optical axis 18 of the transmission light 19 from the optical transmission device 61 with the optical reception device 62. Is selected, the level of each signal obtained by the reception level detection circuit 25 is compared, the drive controller 80 is controlled, and the pan driver 81 and the tilt driver 82 (for example, a stepping motor) are controlled. The directions of the light emitting element 11 and the light receiving element 21 are adjusted. What is important here is the parallelism between the transmission optical axis 18 of the transmission light 19 and the reception optical axis 28 of the reference signal light 39 in the optical transmission device 61. The importance will be briefly described with reference to FIGS. 3, 4, and 5, and examples of specific structures for achieving the object are shown in FIGS. 6, 7, and 8. FIG.

まず、双方向に光信号のやりとりを行う光空間伝送システムでの光軸に対する基本的な考え方を説明する。図3は理想的な通信状況を図示しており、一対の光送受信ユニット90が対向した様子である。各光送受信ユニット90は、発光素子11と受光素子21がそれぞれの送信光軸18、受信光軸28が平行になるよう配置されている。ここで、一方の送信光軸18と相手の受信光軸28が同一直線上にある場合、送信光の指向性にかかわらず伝送路が確立される。逆方向の伝送路についても同様である。つまり光送受信ユニット90内で送信光軸18と受信光軸28が平行を保つことができれば、理想の双方向伝送路を確立できる。   First, the basic concept of the optical axis in an optical space transmission system that exchanges optical signals in both directions will be described. FIG. 3 illustrates an ideal communication state in which a pair of optical transmission / reception units 90 face each other. In each optical transmission / reception unit 90, the light emitting element 11 and the light receiving element 21 are arranged so that the transmission optical axis 18 and the reception optical axis 28 are parallel to each other. Here, when one transmission optical axis 18 and the other reception optical axis 28 are on the same straight line, a transmission path is established regardless of the directivity of the transmission light. The same applies to the reverse transmission path. That is, if the transmission optical axis 18 and the reception optical axis 28 can be kept parallel in the optical transmission / reception unit 90, an ideal bidirectional transmission path can be established.

しかし、実際には図4に示すように、光学素子のばらつきや組立時のばらつきにより送信光軸18と受信光軸28の平行が崩れ、理想的な双方向伝送路の確保ができない。ここで関係するのが送信光19の指向性(出射角)である。送信光19の出射角が広ければ送信光軸18がずれても送信光19は受光素子21’に到達し、伝送路は確保される。   However, as shown in FIG. 4, in reality, the transmission optical axis 18 and the reception optical axis 28 are not parallel due to variations in optical elements and variations in assembly, and an ideal bidirectional transmission path cannot be secured. Here, the directivity (exit angle) of the transmission light 19 is related. If the emission angle of the transmission light 19 is wide, the transmission light 19 reaches the light receiving element 21 'even if the transmission optical axis 18 is displaced, and a transmission path is secured.

ところが、前記した本発明が用いられると予想されるシステムでは、伝送性能(伝送距離、伝送速度など)を確保するために、送信光の指向性を極力高く(出射角を狭く)する必要がある。この場合、図5に示すように、光学素子や組立時のばらつきによる光軸ずれが発生すると、送信光19が受光素子21’に当たらない状況となり伝送路が確保できないことになる。   However, in the system in which the present invention is expected to be used, in order to ensure transmission performance (transmission distance, transmission speed, etc.), it is necessary to make the directivity of transmitted light as high as possible (narrow the emission angle). . In this case, as shown in FIG. 5, when an optical axis shift occurs due to variations in optical elements or assembly, the transmission light 19 does not hit the light receiving element 21 ', and a transmission path cannot be secured.

そこで、図6(a)に示すように光送受信ユニット90を光送信ユニット10と光受信ユニット20に分離することで、光軸がずれていても図6(b)のように光送信ユニット10の送信光軸18を調整することで、送信光19は受光素子21へ到達し、伝送路を確保することが可能となる。   Therefore, by separating the optical transmission / reception unit 90 into the optical transmission unit 10 and the optical reception unit 20 as shown in FIG. 6A, even if the optical axis is shifted, the optical transmission unit 10 as shown in FIG. 6B. By adjusting the transmission optical axis 18, the transmission light 19 reaches the light receiving element 21, and a transmission path can be secured.

次に図7に基づいて以下に光軸調整機構を説明する。光送受信ユニット90は光送信ユニット10と、光受信ユニット20と、両者を360°回転可能に連結する機構部91で構成される。光受信ユニット20では、受光素子21はこの受光素子21からの情報を抽出する光受信基板26上に固定されており、この光受信基板26と受光レンズ22は受信保持部材27に固定される。この際、受光レンズ22の中心と受光素子21の中心が一直線上に並ぶように配置する。この直線が受信光軸28である。   Next, the optical axis adjustment mechanism will be described below with reference to FIG. The optical transmission / reception unit 90 includes an optical transmission unit 10, an optical reception unit 20, and a mechanism unit 91 that couples the optical transmission unit 10 and the optical reception unit 20 so that they can rotate 360 °. In the light receiving unit 20, the light receiving element 21 is fixed on a light receiving substrate 26 that extracts information from the light receiving element 21, and the light receiving substrate 26 and the light receiving lens 22 are fixed to a reception holding member 27. At this time, the center of the light receiving lens 22 and the center of the light receiving element 21 are arranged in a straight line. This straight line is the reception optical axis 28.

同様に、光送信ユニット10では、発光素子11はこの発光素子11を駆動する光送信基板16上に固定されており、この光送信基板16と発光レンズ12は送信保持部材17に固定される。この際、発光レンズ12の中心と発光素子11の中心が一直線上に並ぶように配置し、この直線が送信光軸18になる。機構部91は送信ユニット10を360°回転可能に光受信ユニット20に連結するため、送信保持部材17と受信保持部材27それぞれに固定され、方向関係機構としてボールジョイントを使用する。以上の構成から受信光軸28と送信光軸18の方向関係は360°変更可能となり、その結果両光軸の平行関係を築くことができる。   Similarly, in the optical transmission unit 10, the light emitting element 11 is fixed on the optical transmission board 16 that drives the light emitting element 11, and the optical transmission board 16 and the light emitting lens 12 are fixed to the transmission holding member 17. At this time, the center of the light emitting lens 12 and the center of the light emitting element 11 are arranged on a straight line, and this straight line becomes the transmission optical axis 18. The mechanism unit 91 is fixed to the transmission holding member 17 and the reception holding member 27 in order to connect the transmission unit 10 to the optical reception unit 20 so as to be able to rotate 360 °, and uses a ball joint as a direction-related mechanism. With the above configuration, the directional relationship between the reception optical axis 28 and the transmission optical axis 18 can be changed by 360 °, and as a result, a parallel relationship between both optical axes can be established.

<第1の実施の形態>
ところで、図7に示す構造では、送信ユニット10が360°回転可能であるので、回転方向が無数にあり、光軸調整操作が煩雑となる。そこで、図8は第1の実施の形態として、送信光軸18を光受信装置62に対して垂直方向(又は水平方向)のみ合わせればよい用途に対応した構成を示し、このため受光素子21aは垂直方向(又は水平方向)のみに2分割されている。すなわち、受光素子21として、受光面を受光素子分割直線211aにより2つに分割した2分割受光素子21aを使用した場合、受光素子分割直線211aに平行な調整回転軸911の廻りに回転する機構部91を用いる。この構成によれば、送信光軸18を垂直方向(又は水平方向)にのみ回転させて受信光軸28と平行化すればよいので、光軸調整操作が簡単になる。
<First Embodiment>
By the way, in the structure shown in FIG. 7, since the transmission unit 10 can rotate 360 degrees, there are innumerable rotation directions, and the optical axis adjustment operation becomes complicated. Therefore, FIG. 8 shows a configuration corresponding to an application in which only the vertical direction (or horizontal direction) of the transmission optical axis 18 is aligned with the optical receiver 62 as the first embodiment. It is divided into two parts only in the vertical direction (or horizontal direction). That is, when a two-divided light receiving element 21 a having a light receiving surface divided into two by a light receiving element dividing straight line 211 a is used as the light receiving element 21, a mechanism unit that rotates around an adjustment rotation shaft 911 parallel to the light receiving element divided straight line 211 a. 91 is used. According to this configuration, it is only necessary to rotate the transmission optical axis 18 only in the vertical direction (or horizontal direction) so as to be parallel to the reception optical axis 28, so that the optical axis adjustment operation is simplified.

<第2の実施の形態>
図9は第2の実施の形態として、送信光軸18を光受信装置62に対して垂直方向と水平方向の両方に合わせる用途に対応した構成を示し、このため2分割受光素子21aは垂直方向=2と水平方向=2に4分割されている。すなわち、受光素子21として、受光面を直交する2本の受光素子分割直線211bと212bで4つに分割した4分割受光素子21bを用いた場合、2本の受光素子分割直線211bと212bにそれぞれ平行な調整回転軸911b、912bの廻りに独立に回転する機構部91を用いる。この構成によれば、送信光軸18を垂直方向と水平方向の2方向に回転させて受信光軸28と平行化すればよいので、光軸調整操作が簡単になる。
<Second Embodiment>
FIG. 9 shows a configuration corresponding to an application in which the transmission optical axis 18 is aligned in both the vertical direction and the horizontal direction with respect to the optical receiver 62 as the second embodiment. Therefore, the two-divided light receiving element 21a is in the vertical direction. = 2 and horizontal direction = 2. That is, when the quadrant light-receiving element 21b obtained by dividing the light-receiving surface into four by two light-receiving element division lines 211b and 212b orthogonal to each other is used as the light-receiving element 21, the two light-receiving element division lines 211b and 212b are respectively A mechanism unit 91 that rotates independently around the parallel adjusting rotation shafts 911b and 912b is used. According to this configuration, it is only necessary to rotate the transmission optical axis 18 in two directions, the vertical direction and the horizontal direction, so that the transmission optical axis 18 is parallel to the reception optical axis 28, so that the optical axis adjustment operation is simplified.

本発明が使われると予想される光空間映像伝送システムのイメージの一例を示す説明図である。It is explanatory drawing which shows an example of the image of the optical space video transmission system expected that this invention is used. 本発明が用いられると予想される光空間伝送システムの具体的構成の一例を示す説明図である。It is explanatory drawing which shows an example of the specific structure of the optical space transmission system with which this invention is anticipated to be used. 本発明に係る光空間伝送システムの光軸を示す説明図である。It is explanatory drawing which shows the optical axis of the optical space transmission system which concerns on this invention. 本発明に係る光空間伝送システムの光軸ずれを示す説明図である。It is explanatory drawing which shows the optical axis offset of the optical space transmission system which concerns on this invention. 本発明に係る光空間伝送システムの光軸ずれを示す説明図である。It is explanatory drawing which shows the optical axis offset of the optical space transmission system which concerns on this invention. 本発明に係る光軸調整を示す説明図である。It is explanatory drawing which shows the optical axis adjustment which concerns on this invention. 光軸調整機構を示す説明図である。It is explanatory drawing which shows an optical axis adjustment mechanism. 本発明に係る光送受信ユニットの第1の実施の形態を示す構成図である。It is a block diagram which shows 1st Embodiment of the optical transmission / reception unit which concerns on this invention. 本発明に係る光送受信ユニットの第2の実施の形態を示す構成図である。It is a block diagram which shows 2nd Embodiment of the optical transmission / reception unit which concerns on this invention.

符号の説明Explanation of symbols

5 光空間映像伝送システム
10 光送信ユニット
11 発光素子
12 発光レンズ
13、32 発光素子ドライバ
14 送信信号処理回路
16 光送信基板
17 送信保持部材
18 送信光軸
19 送信光
20 光受信ユニット
21、21’ 受光素子
21a 2分割受光素子
21b 4分割受光素子
22 受光レンズ
23、42 受光回路
24 信号セレクト回路
25 受信レベル検出回路
26 光受信基板
27 受信保持部材
28 受信光軸
31 光送信素子
33 発信回路
39 基準信号光
41 光受信素子
43 受信信号処理回路
50 映像表示装置
51 映像制御装置
61 光送信装置
62 光受信装置
70 制御部
80 駆動制御部
81 パン駆動手段
82 チルト駆動手段
90 光送受信ユニット
91 機構部
211a、211b、212b 受光素子分割直線
911、911a、911b、912b 調整回転軸
DESCRIPTION OF SYMBOLS 5 Optical space video transmission system 10 Optical transmission unit 11 Light emitting element 12 Light emitting lens 13, 32 Light emitting element driver 14 Transmission signal processing circuit 16 Optical transmission board 17 Transmission holding member 18 Transmission optical axis
DESCRIPTION OF SYMBOLS 19 Transmitting light 20 Optical receiving unit 21, 21 'Light receiving element 21a 2 divided light receiving element 21b 4 divided light receiving element 22 Light receiving lens 23, 42 Light receiving circuit 24 Signal selection circuit 25 Reception level detection circuit 26 Optical receiving board
27 reception holding member 28 reception optical axis 31 optical transmission element 33 transmission circuit 39 reference signal light 41 optical reception element 43 reception signal processing circuit 50 video display device 51 video control device 61 optical transmission device 62 optical reception device 70 control unit 80 drive control Part 81 Pan driving means 82 Tilt driving means 90 Optical transmission / reception unit 91 Mechanism parts 211a, 211b, 212b Light receiving element dividing straight lines 911, 911a, 911b, 912b Adjustment rotating shaft

Claims (1)

受信機に対して光信号を送信する光無線伝送装置の光送受信ユニットであって、
前記光信号を出射する発光素子を有する光送信ユニットと、
受光面が水平方向及び/又は垂直方向に分割され、前記受信機から送信される光軸調整用の光を受光して前記発光素子の光軸を前記受信機に合わせるための受光素子を有する光受信ユニットと、
前記受光素子の受光面の分割線に平行な軸を回転軸として前記光送信ユニットを回転可能に前記光受信ユニットに連結して前記発光素子の光軸と前記受光素子の受光軸を平行化するための連結機構とを、
備えた光送受信ユニット。
An optical transceiver unit of an optical wireless transmission device that transmits an optical signal to a receiver,
An optical transmission unit having a light emitting element for emitting the optical signal;
Light having a light receiving element whose light receiving surface is divided into a horizontal direction and / or a vertical direction, receives light for optical axis adjustment transmitted from the receiver, and aligns the optical axis of the light emitting element with the receiver A receiving unit;
The optical transmission unit is rotatably connected to the optical receiving unit with an axis parallel to the dividing line of the light receiving surface of the light receiving element as a rotation axis, and the optical axis of the light emitting element and the light receiving axis of the light receiving element are made parallel. A coupling mechanism for
Optical transmission / reception unit provided.
JP2003271105A 2003-07-04 2003-07-04 Optical transmitting/receiving unit Withdrawn JP2005033564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003271105A JP2005033564A (en) 2003-07-04 2003-07-04 Optical transmitting/receiving unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003271105A JP2005033564A (en) 2003-07-04 2003-07-04 Optical transmitting/receiving unit

Publications (1)

Publication Number Publication Date
JP2005033564A true JP2005033564A (en) 2005-02-03

Family

ID=34209083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003271105A Withdrawn JP2005033564A (en) 2003-07-04 2003-07-04 Optical transmitting/receiving unit

Country Status (1)

Country Link
JP (1) JP2005033564A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2565871A (en) * 2017-04-18 2019-02-27 Purelifi Ltd Mobile device for optical wireless communication

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2565871A (en) * 2017-04-18 2019-02-27 Purelifi Ltd Mobile device for optical wireless communication
US10439714B2 (en) 2017-04-18 2019-10-08 Purelifi Limited Mobile device for optical wireless communication
US10855369B2 (en) 2017-04-18 2020-12-01 Purelifi Limited Mobile device for optical wireless communication

Similar Documents

Publication Publication Date Title
JP6923596B2 (en) High-speed free space optical communication
US6335811B1 (en) Optical space communication apparatus
JP5253500B2 (en) Forming substantially collinear wireless device pairs and mitigating interference effects
CN102017466A (en) Arrays, system and method for bi-directional data transmission
EP1775864B1 (en) Contactless connector
CN101983347A (en) Free space optical interconnect
WO2021051784A1 (en) Data transmission apparatus, lidar, and smart device
US20020080455A1 (en) MEMS based over-the-air optical data transmission system
JP2004015135A (en) Optical space communication unit having direction regulating function
JP2005175842A (en) Photodetector and optical space transmission apparatus
JP2005033564A (en) Optical transmitting/receiving unit
JP2004523160A (en) Window-mounted free-space optical wireless communication system
US20150270655A1 (en) Connector, wireless communication module, wireless communication device, and electronic apparatus
JP2010068435A (en) Optical communication equipment
JP4462048B2 (en) Spatial optical transmission system and optical receiver
US7149427B1 (en) Cooperating array of micromirror devices for wireless optical communication
WO2021068724A1 (en) Data transmission appparatus, lidar and smart device
JP2007068108A (en) Optical spatial transmission apparatus
US7239811B2 (en) Optical-axis directional indicating apparatus for optical communication
JP2007194923A (en) Optical space transmission system
JP2007282144A (en) Optical space communication apparatus
JP4462134B2 (en) Optical signal transmission system
JP2005229277A (en) Optical radio transmitter
JP2003224529A (en) Optical spatial communication apparatus
JP2005086392A (en) Optical space communication device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905