JP2005033254A - Super lightweight electromagnetic wave converging device of high space density reflecting mirror integrated type - Google Patents

Super lightweight electromagnetic wave converging device of high space density reflecting mirror integrated type Download PDF

Info

Publication number
JP2005033254A
JP2005033254A JP2003192818A JP2003192818A JP2005033254A JP 2005033254 A JP2005033254 A JP 2005033254A JP 2003192818 A JP2003192818 A JP 2003192818A JP 2003192818 A JP2003192818 A JP 2003192818A JP 2005033254 A JP2005033254 A JP 2005033254A
Authority
JP
Japan
Prior art keywords
support structure
electromagnetic wave
shape
reflecting mirror
wave focusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003192818A
Other languages
Japanese (ja)
Inventor
Morio Shimizu
盛生 清水
Hironori Sawara
宏典 佐原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Aerospace Laboratory of Japan
Original Assignee
National Aerospace Laboratory of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Aerospace Laboratory of Japan filed Critical National Aerospace Laboratory of Japan
Priority to JP2003192818A priority Critical patent/JP2005033254A/en
Publication of JP2005033254A publication Critical patent/JP2005033254A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/71Arrangements for concentrating solar-rays for solar heat collectors with reflectors with parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/874Reflectors formed by assemblies of adjacent similar reflective facets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic wave converging device capable of integrating and mounting a plurality of reflecting mirrors with high space density and coping with the requirement of a lower cost than that of the conventional confocal type, in the converging device adopting an incorporated large structure coping with the requirement of a large area. <P>SOLUTION: The electromagnetic wave converging device adopts a method of integrating and mounting a plurality of the reflecting mirrors each forming part of a paraboloid of revolution or a curved surface imitating it with high space density while directing the reflecting mirrors in particular directions and for that purpose, employs a form wherein an element support structure for supporting the respective reflecting mirrors at their circumferential edges individually is used for a basic unit and the support structures are coupled to each other for collectively supporting all the reflecting mirrors as the entire support structure or a form wherein a group support structure for collectively supporting some of the reflecting mirrors is used and the other group structure or the element support structure is coupled to the group support structure to obtain the entire support structure. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は太陽エネルギー利用のための集光装置、或いは送受信のための通信用電磁波送受信装置として用いられる電磁波集束装置に関する。
【0002】
【従来の技術】
従来の電磁波集束装置としては、一般に金属の薄膜又は網を放物面形状に成形した電磁波反射面にCFRP(カーボン繊維強化プラスチック)等の軽量かつ剛性の大きな樹脂を塗布したものが用いられているが、大面積要求に対応する一体の大型構造の場合には高精度化、軽量化そして低価格化を同時に成立させることは困難である。高精度化は一般には重量増大を伴い、これを軽量化しながら高精度を保つためには鏡面精度を能動的に制御することなどが要求されかねず、これは大幅な価格の増大につながる。特に、宇宙用電磁波集束装置に要求される画期的な軽量化に対応することができない。
また宇宙用としては超軽量化のために気体膨張式が主に米国で研究されているが、この方式では十分な精度にて回転放物面形状を形成することが極めて困難である。また気体を封入するために、反射面の前方に透明膜を設置する必要があり、焦点部に到達するまでに該気体層を電磁波が2回通過することになる。その透明性が十分ではないために太陽光の集光に場合には特に損失が少なくない。この気体膨張式宇宙用電磁波集束装置についての技術と問題性については非特許文献1、2に紹介されている。また、宇宙用の場合、宇宙デブリが膜に衝突することが想定され、その場合には衝突により生成される穴からの気体が流出してしまうことにより、圧力低下を生じて回転放物面形状の維持が困難となる問題を伴う。また、本発明者達は超軽量太陽集光鏡として高分子膜集光鏡を開発試作し、非特許文献3,非特許文献4に発表している。
【0003】
このような高精度での大型化・軽量化、さらには高空間密度化に応えるために、一個の大型の鏡を数多くの部分に分割して構成する分割(セグメント)鏡の技術が広く採用され、各分割鏡の焦点を共有させることによってこの問題を解決している。しかし、この方式を採用した場合には構成部材として焦点位置に配置する一個の特別な大型送受信部材(部品・装置)が必要となる。この場合、その一つの部材が故障してしまうと、システムの全機能の喪失となる。システムが宇宙空間に設置されたものの場合、デブリが衝突するなどしてこれを破損するとこのシステムはそれで一巻の終わりとなる。しかもこの部材は一般に特注品となるため高価なものである。また、このシステムの全体構成は巨大な集光鏡を構成するため、面積的だけでなく軸方向にも場所をとる三次元構造体となる。従って、これを移送したり保管したりする取り扱いが極めて厄介である。この大面積の反射鏡分割型のシステムは高価格・低信頼性をもたらす欠点と共に輸送負担が大きくなることから、特に宇宙用としては不適である。
このような状況において航空宇宙技術研究所では最近、膜材料による太陽集光鏡を含む超軽量電磁波集束装置の研究を実施し、特願2002−302695号「薄膜展開構造物、そのための薄膜展開方法並びに薄膜展開ユニット及び薄膜展開システム」と、特願2003−62584号「太陽熱推進システム、及びそれを用いた使用済み人工衛星の自主廃棄の方法」、特願2002−239694号「超軽量電磁波集束装置及びその製造方法」と2本の直交する線焦点反射鏡による集束に関する特許文献1を先に出願しているところであるが、その延長線上の技術として多数反射鏡の高空間密度集積法についての研究に至ったものである。
【0004】
【特許文献1】特開2003−124741号公報 平成15年4月25日公開 「可変焦点距離電磁波集束装置」
【非特許文献1】P. E. Frye, J. A. McClanahan, ”Solar Thermal Propulsion Transfer Stage for the First Pluto Mission,” AIAA−93−2601, 29th Joint Propulsion Conference & Exhibit, 1993.
【非特許文献2】David Lichodziejewski, Costas Cassapakis, ”Inflatable Power Antenna Technology,” AIAA−99−1074, 1999.
【非特許文献3】坂下保治,佐原宏典,清水盛生,中村嘉宏、”太陽熱推進系における超軽量集光鏡の試作,”第43回宇宙科学技術連合講演会,2000.
【非特許文献4】松井康浩,佐原宏典,清水盛生,中村嘉宏,”超小型衛星用太陽熱推進系〜超軽量太陽集光鏡,”平成13年度宇宙輸送シンポジウム,2002.
【0005】
【発明が解決しようとする課題】
大面積電磁波集束装置の高効率化のため、本発明者は上記した焦点を共有させる方式のものを除外し、焦点を一致させずに複数の反射鏡を同一方向に指向させて、高空間密度に集積・実装する大面積電磁波集束装置を開発することに想到した。高空間密度に集積・実装する大面積電磁波集束装置として太陽集光鏡を考えた場合、太陽光はエネルギー密度が低いために、特にこの高効率化の要求に応えることは重要となる。さらに、本方式を採用した場合、構成部材として複数の反射鏡数と同じ数の送受信装置を分散設置することが必要となるが、それが従来の一個の特別な大型送受信装置を採用するよりも安価・高信頼性であることが当然の要求となる。また、本装置が宇宙用の場合には、高空間密度、超軽量に集積・実装されることが打ち上げコストの低減等のために特に強く要求される。
【0006】
本方式では反射鏡を特定の方向(例えば、太陽方向)に指向させるように駆動制御する機構を備えることが必要であるが、その場合にどのような姿勢をとったときにも重力に抗しうる剛性を有する構造物であることが地上等重力加速度が働く場において用いるものには求められる。そのために反射鏡およびその支持構造が重量の増大となることはそれを搭載する構造物全体の重量増大となり、駆動制御機構の大型化・重量増大もそれに伴い、さらには高価格化の問題を引き起こすこととなる。従って、地上用においても宇宙用ほどではないが、高空間密度の集積・実装、軽量化は解決すべき課題となる。
【0007】
本発明の課題は、これらの要求、すなわち、大面積要求に対応する一体の大型構造のものにおいて、求められる性能と信頼性を満たすことを前提とした上で、高空間密度、超軽量に集積・実装することを可能とし、一個の特別な大型送受信装置を採用する従来の焦点共有型のものよりも低コストとなる要求に応え得る電磁波集束装置を提示することにある。
【0008】
【課題を解決するための手段】
上記課題を解決する為、本発明の電磁波集束装置においては、回転放物面又はこれを模する曲面の一部である複数の反射鏡を特定方向に指向させながら高空間密度に集積・実装する方法を採用する。そのために個々の反射鏡を個別に支持する要素支持構造を基本単位とし、全ての反射鏡を一括支持して全体支持構造とする形態の他、ある個数(必ずしも一定数に限られない)の反射鏡をまとめて支持する群支持構造とし、それに他の群構造もしくは要素支持構造を連結して全体支持構造とする形態とする。また、各焦点位置に設置する送受波装置等の部材を保持する保持部にヒートパイプのような流体ループ部材を採用して装置の熱交換率を高める。
【0009】
このための反射鏡の支持方法として、反射鏡の外周部を保持する方法を採用する。これには、反射鏡の中心部裏面を保持する方法に較べて、支持構造の反射鏡軸方向の必要空間が大幅に少ないこと、隣接する支持構造との連結部が保持部と距離的にはるかに短いこと、反射鏡の保持により生じうる反射鏡の形状の歪みが、最も重要な部分である反射鏡中心部周辺で少ないことなどの利点がある。
このような要素支持構造に適合する反射鏡外周部の形状としては、反射鏡を平面にて切断した円(楕円またはそれに準じる)形を外形とすることで、要素支持構造が平板からの打ち抜きと同様の平面形状となり、個別、群あるいは全反射鏡用の支持構造の製作が容易となる。特に、要素支持構造および群支持構造では、他の支持構造との連結が必要であるが、これも容易である。
【0010】
上記の要素支持構造および群支持構造において円形形状をなす外周同士を連結すると、互いの円形形状間に幾何学的隙間を不可避的に生じることとなり、高空間密度実装としては最高の空間密度とはならないことは容易に理解されよう。このことは隣接する要素支持構造間で生じる事柄であるから、全ての反射鏡を支持する全体支持構造においても如何なる形態を採用した場合にも同様である。この問題を解決するために、本発明では反射鏡の外周の形状として、相互に隙間なく連結できる形状を採ることに想到した。つまり、軸方向からの投影形状として、すなわち、二次元平面において同一のパターン要素によって隙間無く埋め尽くされるパターンを採用する。例えば投影形状が正三角形、矩形、正六角形またはそれに準じる形状を選択して、その形状に対応する支持構造を採用する。この場合、支持構造の幅(外周と内周との間隔)を最小化でき、また各要素支持構造間に隙間はできないので、最高の空間密度実装が実現される。また、この場合は隣接する支持構造との連結は、すべての外周位置で行え、堅固な支持構造となる。ただし、この場合支持構造は上記の平板からの打ち抜きと同様の構造とはならず、指示構造の各頂点位置だけは軸方向位置が一致するが、その他の各点は軸方向へ湾曲した曲線となるため、支持構造はそれに対応した三次元形状をとることとなり、製作上若干複雑となる。しかし、採用する形状が決まればすべての要素支持構造も同一部品でまかなえるのでさしたる負担にはならない。
【0011】
次に本発明における軽量化技術について説明する。まず、反射鏡を形成する素材として金属薄膜またはアルミニウムや銀を蒸着した高分子の薄膜を採用することによって、反射鏡の超軽量化を図った。反射鏡の超軽量化に関する技術としては非特許文献3、非特許文献4には、フィルム状の高分子材料に回転放物面形状に加工して後、アルミニウムの薄膜を蒸着して反射鏡とする技術が示されている。ただし、本発明の目指す最高の空間密度集積のためには、これまでの円形外周形状では十分ではなく、前述したようなその軸方向の投影形状が正六角形などの特殊形状を採用する必要がある。
【0012】
また、大面積電磁波集束装置としてトータルの超軽量化を実現するためには反射鏡の素材の軽量化だけではなく、要素支持構造、群支持構造、全体支持構造の素材反射鏡を所望方向に駆動制御する機構、焦点位置に配置する部材とその保持機構といった構成部材すべてが軽量化の対象となる。本発明の場合大面積をカバーするため多数の反射鏡が用いられるが、その反射鏡の素材として上記構成を採ることによりその荷重負荷が極めて小さくなるので、それを支持する支持構造もそれを駆動制御する機構も軽量な素材で実現することができこととなり、トータルとして大幅な軽量化が可能である。その支持構造同士の連結にも、重量を伴うボルト・ナットなどを必要とせず、プラモデルなどで採用される簡便な「突起」とそれに対応する「穴」による弾性嵌合などの軽量・簡易な結合手段が適用できる。この全体の超軽量化は宇宙用では勿論、地上用においても省エネ、省資源そして低コスト化の面で大きなメリットとなる。
【0013】
反射鏡のそれぞれの焦点位置に設置する部材(部品・装置)に関しては、特に太陽集光用のものでは、高性能の排熱が必要となる。そこで本発明ではこれらの部材を保持する保持構造の特に支柱にヒートパイプなどの流体ループ部材を支柱に用いて、高空間密度、軽量の構造にて高い排熱性能を持たせることができる。保持方法としては回転対称軸に一致させた一本の支柱による場合には、支柱は保持する部品・装置の影に隠れるので、それ自身が太陽入射鏡の有効面積を減少させることはない。一方、反射鏡周辺の支持構造から回転対称軸に斜めに支柱を設置する方法の場合には特に薄板形状の支柱を用いることで、それが作る太陽光の影の面積を最小限にすることができる。
【0014】
【発明の実施の形態】
本発明の電磁波集束装置を、図面を参照して説明する。本発明における反射鏡の形状を図1Aに示す。回転放物面を軸2に直角な平面にて切断すると、軸対称回転放物面反射鏡1となり、そこに円形の切断線が現れ、これが反射鏡1の外周縁3となる。この反射鏡1を個別に支持する要素支持構造としては、図1Bに示すような外周縁3をリング状に保持する円形の要素支持構造4が採用できる。この円形の要素支持構造4の内周5は図1Aに示した反射鏡1の外周縁3に一致して、ここで接着などにより反射鏡1を固定する。複数の反射鏡1を集積・実装する際には、この円形の要素支持構造4をその外周6にて互いに接する箇所にて連結する。この方法にて多数の反射鏡を平面円形要素支持構造にて集積・実装できる。これが本発明の大面積要求に対応する一体の大型支持構造の1形態である。
【0015】
この円形の要素支持構造4はその外周が円形であるので、相互に連結した場合には、各要素支持構造間に必然的に隙間7が生じて、最高の空間密度での集積とはならない。そこで、隙間を作らない形状として図1Cに示すように要素支持構造4の外側形状6を正六角形にする形態を想起した。この形態では要素支持構造4同士の連結で隙間7のない高空間密度化は達成されるが、反射鏡1の外周縁3を保持する要素支持構造4の内側形状5が円形であるため、正六角形である外側形状6と円形の内側形状5との間に反射鏡として利用されない空間がかなり残される。そのため、本発明では最高の高空間密度化のために、反射鏡1の外周縁8をも正六角形にカットすることにより要素支持構造4の内側形状5も正六角形にすることに想到した。つまり図1Dに示すように要素支持構造4は外側形状6、内側形状5をともに正六角形とすることで、その幅は剛性確保、反射鏡固定および要素支持構造同士に連結に必要な寸法だけとし、反射鏡以外の部材である要素支持構造のしめる面積比を最小限に押さえることができる。すなわち、極限まで高空間密度集積が可能となる。図1Eでは正六角形支持構造4の内側形状5と外側形状6の差を無視して1本の太線にて表示して、この支持構造のハニカム形態の集積状況を示す。
【0016】
ただし、要素支持構造4を正六角形とした場合、要素支持構造4は平面構造とはならない。なぜならば、要素支持構造4の内側形状は反射鏡1のカット周縁8を保持する関係にあるためその形状5はカット周縁8と同一となる。その反射鏡1のカット周縁8はその軸方向からの投影形状が正六角形となる形状であるから、そのカット周縁8の形状は図1Fに示すように6個の頂点は軸方向の同一位置をとるものの隣接する頂点間は弓状の曲線にて切り取った形状となる。したがってこれを保持する要素支持構造4の形状は平面上にはなく軸方向の変位成分を持つ三次元形状をとることになる。しかし、隣接する要素支持構造同士の位置関係は、各頂点、各辺共に一致するので、隣接する要素支持構造とすべての外側位置で接触状態となるため連結にまったく問題がないだけでなく、堅固な連結が可能である。
【0017】
上記では反射鏡外周および支持構造内周の形状として、正六角形を採用したが、上記の利点は正六角形だけに限られるものではない。反射鏡1のカット周縁8の形状として軸方向からの投影形状が正六角形の他、図2(A)に示す正三角形、図2(B)に示す矩形、または十字形といった平面的に密の連続形状となる同一パターン形状を選択することができる。これら平面的に密の連続形状となる同一パターン形状の例を図3に示す。Aのユニットパターンは正三角形、Bのユニットパターンは正方形、Cのユニットパターンは正六角形、そしてDのユニットパターンは正十字形である。そのカット周縁8を要素支持構造4が支持する形態を採ることで、反射鏡有効面積を極限まで高めると共に隣接する支持部材と連続した接触を実現できる。ただし正多角形であればよいというわけではなく、例えば図2(C)に示す正五角形の場合は、平面上で密に連結できないので、この方法は適用できない。
【0018】
以上では、本発明の大面積電磁波集束装置の基本単位である1個の反射鏡用の要素支持構造と隣接する要素支持構造同士の連結について述べてきたが、次に本発明の大面積電磁波集束装置を構成する多数の反射鏡の要素支持構造の連結について説明する。基本的な形態としては全必要数の反射鏡を一体的に支持する全体支持構造がある。この形態においては従来の一個の大型の鏡を数多くの部分に分割して構成する分割鏡に比べ、軸方向位置に広く鏡を配置する必要が無く、ほぼ二次元的に配置して結合する構造となるため、移送や設置の作業が極めて容易となり作業負担が激減する。そして、全体構造として製作されるため現場での組み立て作業は必要が無く、その分コスト的に有利である反面、大面積の構造体となるため移送や保管取り扱いがそれなりに厄介であるし、後に分割の必要が生じた場合などには対応がとりにくい。
【0019】
本発明の異なる形態として、複数の反射鏡の一群を一括して支持するために群構造をとる形態を提示する。この場合、とりあえず取り扱いや移送・保管において支障のない適当な大きさの群構造としておき、設置場所に移送してから複数の群構造を結合したり要素支持構造を付加したりして全体構造を構築するステップをとることができる。この形態はほぼ二次元形状にできる群構造を積層配置して取り扱うことができスペースをとらないため移送・保管に大変有利である。とくに宇宙への移送にあたっては折り畳み/展開構造とすることが容易にでき効果的である。
【0020】
本発明の電磁波集束装置は軽量化を図るため超軽量の素材からなる反射鏡採用する。具体的には反射鏡として銀、アルミニウムなどの高反射被膜を施した金属または高分子の薄膜を素材として採用するもので、そのことにより、従来のガラス製反射鏡やアクリル製フレネル・レンズ、フレネル反射鏡などに比べ、2桁違いの軽量化が可能である。この反射鏡の超軽量化はそれだけの効果ではなく、それを支える支持構造の低剛性化・超軽量化に直結するので、反射鏡・支持構造の超軽量化が可能となる。支持構造の素材としては厚さ1mm以下の樹脂材の使用も可能で、それらの連結にはプラモデルなどで採用される簡便な「突起」とそれに対応する「穴」による弾性嵌合や、接着剤の薄層による連結手法が採用でき、簡便・軽量化に有利な方式が幅広く設計選択できる。
更に、反射鏡と要素支持構造が超軽量となることは反射鏡を太陽の方向や電波伝搬方向に向けるための駆動制御機構も低負荷駆動用のものでよいこととなり、これもまた軽量化低コスト化をもたらす。本発明ではこれら多くの構成部材の軽量化が可能となるため、超軽量化効果を生じる。風雨の影響を受けない宇宙空間においては機械的強度は自己の構造保持ができればよいので、この超軽量形態でそのまま大面積の電磁波集束装置を実施することができる。また、地上用の装置においてもケーシング内に収容することによりほぼ同様の形態で実施が可能となる。
【0021】
反射鏡1の焦点に設置する部材(部品・装置)11の保持方法としては、図3に示すように支柱にヒートパイプなどの流体ループ部材の支柱を用いて、高空間密度、軽量の構造にて高い排熱性能を持たせることができる。回転対称軸に一致させた一本の軸支柱12による場合には、反射鏡が太陽の方を向いた場合支柱は保持する部材の影に隠れるので、それ自身が太陽入射鏡を減少させることはないし、反射鏡周辺の支持構造4から回転対称軸2に斜め支柱13を設置する方法の場合には特に薄板形状の支柱を用いて、それが作る太陽光の影の面積を必要最小限に減少させることができる。保持機構や支持機構に流体ループ部材を用いることにより本システムの熱交換効率を高めることができる。この構成を採用することにより、過熱或いは過冷却状況においても本システムを設置使用することを可能とする。
【0022】
【発明の効果】
本発明の電磁波集束装置は回転放物面又はこれを模する曲面の一部である形状を有する焦点を共有しない複数の反射鏡と、当該反射鏡の外周部分を支持する支持部材と、各反射鏡毎の送受信装置とからなり、前記複数の反射鏡を近接形態で結合することにより、高空間密度に集積・実装したものであるから、焦点位置に配置する部材が各反射鏡毎に分散配置されることとなり、それらの一部が故障しても、その分だけの性能低下が発生するだけで、システム全体の機能の喪失とはならない。しかも小型の送受信部材を大量生産して使用することになるので、安価、高信頼性が期待できる。また、1つの巨大なレンズを形成する必要がないため、他の反射鏡との位置関係は自由度があり、設置場所の地形、他の構造物に応じて適宜の構造に組み立てることができる。
【0023】
複数の反射鏡を近接結合する形態が、隣接する各反射鏡の支持部材同士が互いに接触連結して全体支持構造を構成するようにした本発明の電磁波集束装置は、結合機構が簡便であると共に空間密度を高くすることができる。
全体支持構造は反射鏡をある個数の群として一括支持する群支持構造を採った上に、当該群支持構造が相互に、または個々の反射鏡支持構造とも連結する機能を有して連結されるものである本発明の電磁波集束装置は、移送や保管の際に群として取り扱いえるので、その際の利便性が高い。また、郡単位で折り畳み/展開構造を採用することができ、移送に便利であって特に宇宙用に適している。
【0024】
反射鏡を平面にて切断した形状を外周として支持部材が支持する形態を採る本発明の電磁波集束装置は、全体支持構造が平板からの打ち抜きと同様の平面形状となるため、空間密度を高くすることができると共に、要素支持構造間や群構造同士の結合が容易である。更に、反射鏡の外形として軸方向からの投影形状が正三角形、矩形、正六角形または十字形といった平面的に密の連続形状となる形状を選択して、その外周を支持部材が支持する形態を採った電磁波集束装置は、反射鏡有効面積を極限まで高めると共に隣接する支持部材と連続した接触を実現した。
【0025】
反射鏡の反射面材料として金属または高分子の薄膜にアルミニウムや銀などの高反射材の被膜を施したものを用いた本発明の電磁波集束装置は、超軽量反射鏡を実現した。更にこの超軽量反射鏡の提供は支持構造の軽量化と駆動制御機構の軽量化を可能とし、システム全体の超軽量化をもたらす。
また、この超軽量化を図った全体支持構造をケーシングを設置して収納する形態を採った本発明の電磁波集束装置は、地上用の設備としての実用性を持たせたことができる。
【0026】
反射鏡の焦点においてエネルギーを採取する装置などを保持する部材は回転対称軸に配置するか薄板形状とした本発明の電磁波集束装置は、反射面に影を作らないので太陽光集光装置として効率が高いものである。
また、反射鏡の焦点において電磁波等を処理する装置などを保持する反射鏡毎の保持部材にヒートパイプなどの流体ループ部材を用いた本発明の電磁波集束装置は、高い熱交換機能を持たせることができるので、太陽光集光用の装置としては高い排熱性能を持たせ高倍率の送受信に適合できるし、他の電磁波集束装置であっても過熱或いは過冷却状況において本システムを設置使用することを可能とする。
【図面の簡単な説明】
【図1】本発明の電磁波集束装置の反射鏡を示し、Aは軸対称回転放物面の斜視図であり、Bは個々の反射鏡を支持する円形の要素支持構造、Cは外形が正六角形の要素支持構造の平面図、Dは外周形状と内周形状を正六角形とした要素支持構造の平面図、EはDの要素支持構造を二次元的に結合配置した平面図、そしてFは投影形状が正六角形となる反射鏡の斜視図である。
【図2】上段は斜視図、下段は平面図であって、Aは軸方向投影図形を正三角形としたもの、Bは正方形のそしてCは正五角形の反射鏡外周部の形状を示す。
【図3】要素支持構造体を二次元的に密に配置する形態を示す図で、Aは正三角形、Bは正方形、Cは正六角形、そしてDは正十字形の例である。
【図4】本発明の電磁波集束装置の反射鏡の焦点に配置する部材を支柱で保持する形態を示す斜視図である。
【符号の説明】
1 回転放物面反射鏡 7 要素支持構造間の隙間
2 回転軸 8 反射鏡の投影カット周縁
3 円形切断線 11 焦点配置の部材
4 要素支持構造 12 軸支柱
5 要素支持構造内周 13 斜め支柱
6 要素支持構造外周
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic wave focusing device used as a condensing device for utilizing solar energy or an electromagnetic wave transmitting / receiving device for communication for transmitting and receiving.
[0002]
[Prior art]
As a conventional electromagnetic wave focusing device, an electromagnetic wave reflecting surface obtained by forming a metal thin film or a net in a parabolic shape and applying a light and rigid resin such as CFRP (carbon fiber reinforced plastic) is used. However, it is difficult to achieve high accuracy, light weight, and low price at the same time in the case of an integrated large-scale structure corresponding to a large area requirement. Higher accuracy generally involves an increase in weight. To maintain high accuracy while reducing the weight, it may be necessary to actively control the mirror surface accuracy, which leads to a significant increase in price. In particular, it cannot cope with the revolutionary weight reduction required for the electromagnetic wave focusing device for space.
For space use, the gas expansion type has been studied mainly in the United States in order to reduce the weight, but it is extremely difficult to form a paraboloid with sufficient accuracy. In order to enclose gas, it is necessary to install a transparent film in front of the reflecting surface, and electromagnetic waves pass through the gas layer twice before reaching the focal point. Since the transparency is not sufficient, there is a considerable loss especially when collecting sunlight. Non-Patent Documents 1 and 2 introduce the technology and problems associated with this gas expansion type electromagnetic wave focusing device for space use. In the case of space use, it is assumed that space debris collides with the film. In this case, the gas from the hole generated by the collision flows out, resulting in a pressure drop and a rotating paraboloid shape. With the problem that it becomes difficult to maintain. In addition, the present inventors have developed and prototyped a polymer film collector mirror as an ultralight solar collector mirror and published it in Non-Patent Document 3 and Non-Patent Document 4.
[0003]
In order to meet the demands for high precision, large size, light weight, and high spatial density, the technology of segmented mirrors, in which a single large mirror is divided into many parts, has been widely adopted. This problem is solved by sharing the focus of each split mirror. However, when this method is employed, one special large-sized transmission / reception member (component / device) is required as a constituent member arranged at the focal position. In this case, if that one member fails, all functions of the system are lost. If the system is installed in outer space, it will be the end of a volume if it is broken, such as when debris collides. Moreover, since this member is generally a custom-made product, it is expensive. Further, since the entire configuration of this system constitutes a huge condenser mirror, it becomes a three-dimensional structure that takes place not only in area but also in the axial direction. Therefore, it is very troublesome to transport and store it. This large-area reflector split type system is not suitable for space use because of the high cost and low reliability as well as the large transportation burden.
Under such circumstances, the National Aerospace Laboratory has recently conducted research on an ultralight electromagnetic wave focusing device including a solar condensing mirror made of a film material. Japanese Patent Application No. 2002-302695 “Thin Film Deploying Structure, Thin Film Deploying Method therefor” And a thin film deployment unit and a thin film deployment system ", Japanese Patent Application No. 2003-62584" Solar Thermal Propulsion System, and Method for Voluntary Disposal of Used Artificial Satellites Using the Same ", Japanese Patent Application No. 2002-239694," Ultralight Electromagnetic Focusing Device " And its manufacturing method "and Patent Document 1 relating to focusing by two orthogonal line-focus reflectors have been filed earlier, but as a technique on the extension line, research on a high spatial density integration method of many reflectors Has been reached.
[0004]
[Patent Document 1] Japanese Patent Laid-Open No. 2003-124741 Published on April 25, 2003 "Variable Focal Length Electromagnetic Focusing Device"
[Non-Patent Document 1] E. Frye, J .; A. McClanahan, “Solar Thermal Propulsion Transfer Stage for the First Pluto Mission,” AAAA-93-2601, 29th Joint Propulsion Conference & Ex93.
[Non-Patent Document 2] David Liczodijewski, Costas Cassapakis, "Inflatable Power Antenna Technology," AIAA-99-1074, 1999.
[Non-Patent Document 3] Yasuharu Sakashita, Hironori Sahara, Morio Shimizu, Yoshihiro Nakamura, “Prototype of ultra-light condenser mirror in solar thermal propulsion system,” 43rd Space Science and Technology Union Lecture, 2000.
[Non-patent document 4] Yasuhiro Matsui, Hironori Sahara, Morio Shimizu, Yoshihiro Nakamura, “Solar Thermal Propulsion System for Ultra-Small Satellites-Ultralight Solar Condenser,” 2001 Space Transportation Symposium, 2002.
[0005]
[Problems to be solved by the invention]
In order to increase the efficiency of the large area electromagnetic wave focusing device, the present inventor excludes the above-described method of sharing the focal point, and directs a plurality of reflecting mirrors in the same direction without matching the focal point, thereby achieving a high spatial density. The idea was to develop a large-area electromagnetic wave focusing device that can be integrated and mounted on the surface. When considering a solar collector mirror as a large area electromagnetic wave focusing device that is integrated and mounted at a high spatial density, it is important to meet this demand for higher efficiency because sunlight has a low energy density. Furthermore, when this method is adopted, it is necessary to disperse and install the same number of transmission / reception devices as the number of reflecting mirrors as a constituent member, but this is more than the adoption of a single special large-sized transmission / reception device. It is a natural requirement to be inexpensive and highly reliable. In addition, when this apparatus is used for space, it is particularly strongly required to be integrated and mounted with a high space density and ultralight weight in order to reduce launch costs.
[0006]
In this method, it is necessary to provide a mechanism that controls the reflector so that it is directed in a specific direction (for example, the sun). A structure having sufficient rigidity is required to be used in a place where gravitational acceleration is applied on the ground. For this reason, an increase in the weight of the reflecting mirror and its support structure results in an increase in the weight of the entire structure on which the reflector is mounted, and an increase in the size and weight of the drive control mechanism also causes a problem of higher costs. It will be. Therefore, although it is not as for space use as for space use, high space density integration / mounting and weight reduction are problems to be solved.
[0007]
The object of the present invention is to integrate in a high space density and ultra-light weight on the premise that the required performance and reliability are satisfied in an integrated large-scale structure corresponding to these requirements, that is, a large area requirement. An object of the present invention is to provide an electromagnetic wave focusing device that can be implemented and can meet the demand of lower cost than the conventional focus sharing type employing one special large-sized transmission / reception device.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, in the electromagnetic wave focusing apparatus of the present invention, a plurality of reflecting mirrors that are part of a rotating paraboloid or a curved surface that imitates the rotating paraboloid are integrated and mounted at a high spatial density. Adopt the method. For this purpose, an element support structure that supports each reflector individually is used as a basic unit, and all reflectors are collectively supported to form an overall support structure, and a certain number (not necessarily a fixed number) of reflections. A group support structure that supports the mirrors collectively is combined with another group structure or element support structure to form an overall support structure. In addition, a fluid loop member such as a heat pipe is employed in a holding portion for holding a member such as a wave transmitting / receiving device installed at each focal position to increase the heat exchange rate of the device.
[0009]
As a method for supporting the reflecting mirror for this purpose, a method of holding the outer periphery of the reflecting mirror is employed. Compared to the method of holding the back surface of the central part of the reflector, the space required for the support structure in the reflector axis direction is significantly smaller, and the connecting part with the adjacent support structure is far away from the holding part. There are advantages such as being short, and that the distortion of the shape of the reflecting mirror that can be caused by holding the reflecting mirror is small around the center of the reflecting mirror, which is the most important part.
As the shape of the outer peripheral part of the reflecting mirror suitable for such an element supporting structure, the outer shape of the reflecting mirror cut by a plane (ellipse or similar) is used as an outer shape so that the element supporting structure can be punched from a flat plate. It becomes the same plane shape, and manufacture of the support structure for individual, a group, or a total reflection mirror becomes easy. In particular, the element support structure and the group support structure require connection with other support structures, but this is also easy.
[0010]
In the above element support structure and group support structure, when the outer peripheries forming a circular shape are connected, a geometric gap is inevitably generated between the circular shapes of each other. What is the highest spatial density for high spatial density mounting? It will be easily understood that this is not possible. Since this is a matter that occurs between adjacent element support structures, the same is true when any form is adopted in the overall support structure that supports all the reflecting mirrors. In order to solve this problem, the present invention has conceived that the shape of the outer periphery of the reflector is a shape that can be connected to each other without a gap. That is, as the projected shape from the axial direction, that is, a pattern that is completely filled with the same pattern elements in the two-dimensional plane is adopted. For example, a projection shape is selected from a regular triangle, a rectangle, a regular hexagon, or a similar shape, and a support structure corresponding to the shape is adopted. In this case, the width of the support structure (the distance between the outer periphery and the inner periphery) can be minimized, and there can be no gap between the element support structures, so that the highest spatial density mounting can be realized. Further, in this case, the connection with the adjacent support structure can be performed at all the outer peripheral positions, resulting in a firm support structure. However, in this case, the support structure is not the same structure as punching from the flat plate described above, and only the vertex positions of the pointing structure coincide with each other in the axial direction, but the other points are curved curves in the axial direction. Therefore, the support structure takes a three-dimensional shape corresponding to the support structure, which is slightly complicated in production. However, if the shape to be adopted is decided, all the element support structures can be covered with the same parts, so that it is not a burden.
[0011]
Next, the weight reduction technique in the present invention will be described. First, by using a metal thin film or a polymer thin film deposited with aluminum or silver as a material for forming the reflecting mirror, the super-light weight of the reflecting mirror was achieved. Non-patent document 3 and non-patent document 4 describe techniques for reducing the weight of a reflecting mirror. After processing a film-like polymer material into a paraboloidal shape, an aluminum thin film is deposited to form a reflecting mirror. Technology to do is shown. However, in order to achieve the highest spatial density aiming at the present invention, the conventional circular outer peripheral shape is not sufficient, and the projection shape in the axial direction as described above needs to adopt a special shape such as a regular hexagon. .
[0012]
Also, in order to realize a total ultra-light weight as a large area electromagnetic wave focusing device, not only the weight of the reflector material but also the element support structure, group support structure, overall support structure material reflector is driven in the desired direction All the structural members such as the mechanism to be controlled, the member disposed at the focal position, and the holding mechanism thereof are targeted for weight reduction. In the case of the present invention, a large number of reflecting mirrors are used to cover a large area, but by adopting the above configuration as the material of the reflecting mirrors, the load load becomes extremely small, so the support structure that supports it also drives it. The control mechanism can also be realized with a lightweight material, and the total weight can be significantly reduced. There is no need for heavy bolts and nuts to connect the support structures. Light weight and simple coupling such as simple "protrusions" used in plastic models and the corresponding "holes" for elastic fitting. Means can be applied. This overall ultra light weight is a great advantage not only for space use but also for ground use in terms of energy saving, resource saving and cost reduction.
[0013]
With regard to the members (parts / devices) installed at the respective focal positions of the reflecting mirrors, particularly for solar condensing, high-performance exhaust heat is required. Therefore, in the present invention, a fluid loop member such as a heat pipe can be used for the supporting structure of the holding structure for holding these members, and a high heat exhaust performance can be provided with a high space density and lightweight structure. As a holding method, in the case of using a single column aligned with the rotational symmetry axis, the column is hidden by the shadow of the component / device to be held, so that the effective area of the solar incident mirror itself does not decrease. On the other hand, in the case of a method in which the support is installed obliquely about the axis of rotational symmetry from the support structure around the reflector, the use of a thin plate-like support makes it possible to minimize the area of sunlight shadow that it creates. it can.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The electromagnetic wave focusing apparatus of the present invention will be described with reference to the drawings. The shape of the reflecting mirror in the present invention is shown in FIG. 1A. When the rotary paraboloid is cut along a plane perpendicular to the axis 2, the axisymmetric rotary paraboloid reflector 1 is formed, and a circular cutting line appears there, which becomes the outer peripheral edge 3 of the reflector 1. As an element support structure for individually supporting the reflecting mirror 1, a circular element support structure 4 for holding the outer peripheral edge 3 in a ring shape as shown in FIG. 1B can be adopted. The inner periphery 5 of the circular element support structure 4 coincides with the outer periphery 3 of the reflecting mirror 1 shown in FIG. 1A, and the reflecting mirror 1 is fixed by bonding or the like. When a plurality of reflecting mirrors 1 are integrated and mounted, the circular element support structure 4 is connected at a position where the circular outer periphery support structure 6 contacts each other. By this method, a large number of reflecting mirrors can be integrated and mounted on a planar circular element support structure. This is one form of an integrated large support structure that meets the large area requirements of the present invention.
[0015]
Since the circular element support structure 4 has a circular outer periphery, a gap 7 is inevitably formed between the element support structures when they are connected to each other, and the accumulation at the highest spatial density is not achieved. Then, the form which made the outer side shape 6 of the element support structure 4 into a regular hexagon as shown in FIG. 1C as a shape which does not make a clearance gap was recalled. In this embodiment, high spatial density without gaps 7 is achieved by connecting the element support structures 4 to each other, but the inner shape 5 of the element support structure 4 that holds the outer peripheral edge 3 of the reflecting mirror 1 is circular. A considerable space is left between the outer shape 6 which is a square and the inner shape 5 which is a circle, which is not used as a reflecting mirror. Therefore, in the present invention, in order to achieve the highest spatial density, it has been conceived that the outer peripheral edge 8 of the reflecting mirror 1 is also cut into a regular hexagon so that the inner shape 5 of the element support structure 4 is also a regular hexagon. In other words, as shown in FIG. 1D, the element support structure 4 has a regular hexagonal shape for both the outer shape 6 and the inner shape 5, so that the width is only required for securing rigidity, fixing the reflector, and connecting the element support structures to each other. The area ratio of the element support structure that is a member other than the reflecting mirror can be minimized. That is, high spatial density integration is possible to the limit. In FIG. 1E, the difference between the inner shape 5 and the outer shape 6 of the regular hexagonal support structure 4 is disregarded and indicated by one thick line, and the honeycomb structure of this support structure is shown in an integrated state.
[0016]
However, when the element support structure 4 is a regular hexagon, the element support structure 4 is not a planar structure. This is because the inner shape of the element support structure 4 is in a relationship of holding the cut peripheral edge 8 of the reflecting mirror 1, and its shape 5 is the same as the cut peripheral edge 8. Since the cut peripheral edge 8 of the reflecting mirror 1 is a shape in which the projected shape from the axial direction is a regular hexagon, the shape of the cut peripheral edge 8 is that the six vertices have the same axial position as shown in FIG. 1F. Between the adjacent vertices of the object to be taken is a shape cut by an arcuate curve. Therefore, the shape of the element support structure 4 that holds this is not on a plane but takes a three-dimensional shape having an axial displacement component. However, since the positional relationship between adjacent element support structures is the same at each vertex and each side, the adjacent element support structures are in contact with each other at all outer positions. Connection is possible.
[0017]
In the above description, a regular hexagon is adopted as the shape of the outer periphery of the reflecting mirror and the inner periphery of the support structure. However, the above advantages are not limited to the regular hexagon. As the shape of the cut peripheral edge 8 of the reflecting mirror 1, the projected shape from the axial direction is a regular hexagon, a regular triangle shown in FIG. 2A, a rectangle shown in FIG. The same pattern shape which becomes a continuous shape can be selected. FIG. 3 shows an example of the same pattern shape that is a dense continuous shape in plan view. The A unit pattern is a regular triangle, the B unit pattern is a square, the C unit pattern is a regular hexagon, and the D unit pattern is a regular cross. By adopting a form in which the element support structure 4 supports the cut peripheral edge 8, the effective area of the reflecting mirror can be increased to the limit and continuous contact with the adjacent support member can be realized. However, it does not have to be a regular polygon. For example, in the case of the regular pentagon shown in FIG. 2C, this method cannot be applied because it cannot be closely connected on a plane.
[0018]
In the above, the connection between the element support structure for one reflector and the adjacent element support structures, which is the basic unit of the large area electromagnetic wave focusing apparatus of the present invention, has been described. Next, the large area electromagnetic wave focusing of the present invention will be described. The connection of the element support structures of a number of reflecting mirrors constituting the apparatus will be described. As a basic form, there is an overall support structure that integrally supports all the necessary number of reflectors. In this configuration, it is not necessary to place a mirror widely in the axial position, compared to a conventional split mirror constructed by dividing a single large mirror into a number of parts, and a structure in which the mirror is arranged and coupled almost two-dimensionally. Therefore, the transfer and installation work becomes extremely easy and the work load is drastically reduced. And since it is manufactured as a whole structure, there is no need for on-site assembly work, which is advantageous in terms of cost. On the other hand, since it is a large area structure, it is troublesome to transfer and store it. It is difficult to take action when division is necessary.
[0019]
As a different form of the present invention, a form in which a group structure is adopted in order to collectively support a group of a plurality of reflecting mirrors is presented. In this case, set the group structure to an appropriate size that does not hinder handling, transfer, or storage for the time being, and then transfer it to the installation location and then combine multiple group structures or add an element support structure. You can take steps to build. This form is very advantageous for transportation and storage because it can handle a group structure that can be formed in a nearly two-dimensional shape by stacking and handling it. In particular, when transporting to space, a folding / unfolding structure can be easily made and effective.
[0020]
The electromagnetic wave focusing device of the present invention employs a reflector made of an ultralight material in order to reduce the weight. Specifically, it uses a metal or polymer thin film with a highly reflective coating such as silver or aluminum as the reflector, which makes it possible to use conventional glass reflectors, acrylic Fresnel lenses, and Fresnel. Compared to reflectors, it is possible to reduce the weight by two orders of magnitude. This reduction in the weight of the reflecting mirror is not only that effect, but it is directly connected to the reduction in rigidity and the weight of the supporting structure that supports the reflecting mirror, so that the reflecting mirror and the supporting structure can be reduced in weight. Resin material with a thickness of 1 mm or less can be used as the material for the support structure, and for the connection, elastic fitting with a simple “projection” and a corresponding “hole” employed in plastic models, adhesives, etc. The connection method using thin layers can be adopted, and a wide range of design options that are convenient and lightweight can be selected.
Furthermore, the ultra-light weight of the reflector and the element support structure means that the drive control mechanism for directing the reflector in the direction of the sun and the direction of radio wave propagation may be for low-load driving, which also reduces weight and weight. It brings cost. In the present invention, it is possible to reduce the weight of many of these constituent members, so that an ultra-lightening effect is produced. In outer space that is not affected by wind and rain, it is only necessary that the mechanical strength can maintain its own structure. Therefore, an electromagnetic wave focusing device with a large area can be implemented as it is in this ultralight form. In addition, the ground device can be implemented in substantially the same form by being housed in the casing.
[0021]
As a method of holding the member (part / device) 11 installed at the focal point of the reflecting mirror 1, as shown in FIG. 3, a support of a fluid loop member such as a heat pipe is used as a support to achieve a high space density and lightweight structure. High exhaust heat performance. In the case of a single shaft column 12 aligned with the rotational symmetry axis, the column is hidden by the shadow of the holding member when the reflecting mirror faces the sun, so that itself reduces the sun incident mirror. Or, in the case of the method of installing the oblique column 13 on the rotational symmetry axis 2 from the support structure 4 around the reflecting mirror, particularly using a thin plate-shaped column, the area of the shadow of the sunlight that it creates is reduced to the minimum necessary. Can be made. By using a fluid loop member for the holding mechanism and the support mechanism, the heat exchange efficiency of the present system can be increased. By adopting this configuration, the present system can be installed and used even in an overheated or overcooled situation.
[0022]
【The invention's effect】
The electromagnetic wave focusing apparatus of the present invention includes a plurality of reflecting mirrors having a shape that is a part of a rotating paraboloid or a curved surface simulating the rotating paraboloid, a supporting member that supports an outer peripheral portion of the reflecting mirror, and each reflection It consists of a transmission / reception device for each mirror, and is integrated and mounted at a high spatial density by combining the plurality of reflecting mirrors in close proximity, so that the members placed at the focal position are dispersedly arranged for each reflecting mirror Therefore, even if some of them fail, the performance is reduced by that amount, and the function of the entire system is not lost. Moreover, since small-sized transmission / reception members are mass-produced and used, low cost and high reliability can be expected. Moreover, since it is not necessary to form one huge lens, there is a degree of freedom in the positional relationship with other reflecting mirrors, and it can be assembled into an appropriate structure depending on the topography of the installation location and other structures.
[0023]
The electromagnetic wave focusing device of the present invention in which a plurality of reflecting mirrors are closely coupled to each other so that the supporting members of the adjacent reflecting mirrors are in contact with each other to form an overall support structure has a simple coupling mechanism. Spatial density can be increased.
The entire support structure adopts a group support structure that collectively supports the reflectors as a certain number of groups, and the group support structures are connected to each other or to each individual reflector support structure. The electromagnetic wave focusing device of the present invention, which is a device, can be handled as a group at the time of transportation and storage, and is therefore highly convenient. In addition, a folding / unfolding structure can be adopted for each group, which is convenient for transportation and particularly suitable for space use.
[0024]
The electromagnetic wave focusing apparatus according to the present invention adopts a configuration in which the support member is supported with the shape of the reflecting mirror cut in a plane as the outer periphery, and the overall support structure has the same planar shape as punching from a flat plate, so that the spatial density is increased. In addition, the element support structures and the group structures can be easily combined. Further, a shape in which the projection shape from the axial direction is a shape that is a dense continuous shape such as a regular triangle, a rectangle, a regular hexagon, or a cross shape as the outer shape of the reflecting mirror, and the support member supports the outer periphery of the shape is selected. The adopted electromagnetic wave focusing device increases the effective area of the reflector to the limit and realizes continuous contact with the adjacent support member.
[0025]
The electromagnetic wave focusing device of the present invention using a metal or polymer thin film coated with a highly reflective material such as aluminum or silver as the reflecting surface material of the reflecting mirror realized an ultralight reflecting mirror. Furthermore, the provision of this ultralight reflector enables the support structure and the drive control mechanism to be lightened, resulting in an ultralight weight of the entire system.
In addition, the electromagnetic wave focusing device of the present invention adopting a form in which the entire support structure designed to reduce the weight is installed and accommodated with a casing can be provided with practicality as a facility for ground use.
[0026]
The member that holds the device that collects energy at the focal point of the reflecting mirror is arranged on a rotationally symmetric axis or is made into a thin plate shape. Is expensive.
In addition, the electromagnetic wave focusing device of the present invention using a fluid loop member such as a heat pipe as a holding member for each reflecting mirror that holds a device for processing electromagnetic waves or the like at the focal point of the reflecting mirror should have a high heat exchange function. As a device for concentrating sunlight, it has high exhaust heat performance and can be used for high-magnification transmission / reception. Even with other electromagnetic wave focusing devices, this system can be installed and used in overheated or undercooled conditions. Make it possible.
[Brief description of the drawings]
FIG. 1 is a perspective view of an axisymmetric rotating paraboloid, B is a circular element support structure for supporting individual reflecting mirrors, and C is a regular outer shape. A plan view of a square element support structure, D is a plan view of an element support structure in which the outer peripheral shape and the inner peripheral shape are regular hexagons, E is a plan view in which the element support structures of D are two-dimensionally connected and arranged, and F is It is a perspective view of the reflective mirror from which a projection shape becomes a regular hexagon.
FIGS. 2A and 2B are perspective views, a lower view is a plan view, A is a shape of an axial projection figure formed as a regular triangle, B is a square shape, and C is a regular pentagonal shape of the outer periphery of the reflecting mirror.
FIG. 3 is a diagram showing a form in which element support structures are densely arranged two-dimensionally. A is an example of a regular triangle, B is a square, C is a regular hexagon, and D is a regular cross.
FIG. 4 is a perspective view showing a form in which a member arranged at the focal point of the reflecting mirror of the electromagnetic wave focusing apparatus of the present invention is held by a support column.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotating paraboloid reflector 7 Gap between element support structures 2 Rotating axis 8 Projection cut periphery 3 of reflector Mirror cutting line 11 Focal arrangement member 4 Element support structure 12 Axis column 5 Element support structure inner circumference 13 Diagonal column 6 Element support structure outer periphery

Claims (9)

回転放物面又はこれを模する曲面の一部である形状を有する焦点を共有しない複数の反射鏡と、当該反射鏡の外周部分を支持する支持部材と、各反射鏡毎の送受信装置とからなり、前記複数の反射鏡を近接形態で結合することにより、高空間密度に集積・実装したことを特徴とする電磁波集束装置。A plurality of reflecting mirrors that do not share a focal point having a shape that is a part of a rotating paraboloid or a curved surface that imitates it, a support member that supports the outer peripheral portion of the reflecting mirror, and a transmission / reception device for each reflecting mirror An electromagnetic wave focusing device characterized in that the plurality of reflecting mirrors are combined and mounted in a close form so as to be integrated and mounted at a high spatial density. 複数の反射鏡を近接結合する形態が、隣接する各反射鏡の支持部材同士が互いに接触連結して全体支持構造を構成する請求項1記載の電磁波集束装置。2. The electromagnetic wave focusing device according to claim 1, wherein the plurality of reflecting mirrors are closely coupled to each other so that the supporting members of the adjacent reflecting mirrors are in contact with each other to form an overall support structure. 全体支持構造は反射鏡をある個数の群として一括支持する群支持構造を採った上に、当該群支持構造が相互に、または個々の反射鏡支持構造とも連結する機能を有して連結されるものである請求項2に記載の電磁波集束装置。The entire support structure adopts a group support structure that collectively supports the reflectors as a certain number of groups, and the group support structures are connected to each other or to each individual reflector support structure. The electromagnetic wave focusing device according to claim 2, which is a thing. 反射鏡を平面にて切断した形状を外周として支持部材が支持する形態を採ることで、全体支持構造が平板からの打ち抜きと同様の平面形状となることを特徴とする請求項1乃至3のいずれかに記載の電磁波集束装置。The whole support structure becomes a plane shape similar to punching from a flat plate by adopting a form in which the support member supports the outer periphery of a shape obtained by cutting the reflector in a plane. The electromagnetic wave focusing device according to claim 1. 反射鏡の外形として軸方向からの投影形状が正三角形、矩形、正六角形または十字形といった平面的に密の連続形状となる形状を選択して、その外周を支持部材が支持する形態を採ることで、反射鏡有効面積を極限まで高めると共に隣接する支持部材と連続した接触を実現したことを特徴とする請求項1乃至3のいずれかに記載の電磁波集束装置。As the external shape of the reflecting mirror, select a shape in which the projected shape from the axial direction is a planar continuous dense shape such as a regular triangle, a rectangle, a regular hexagon, or a cross shape, and the support member supports the outer periphery thereof. 4. The electromagnetic wave focusing device according to claim 1, wherein the effective area of the reflector is increased to the limit and continuous contact with the adjacent support member is realized. 反射鏡の反射面材料として金属または高分子の薄膜にアルミニウムや銀などの高反射材の被膜を施したものを用いることにより、超軽量反射鏡を実現したことを特徴とする請求項1乃至5のいずれか記載の電磁波集束装置。6. An ultralight reflector is realized by using a metal or polymer thin film coated with a highly reflective material such as aluminum or silver as a reflecting surface material of the reflecting mirror. The electromagnetic wave focusing apparatus in any one of. 全体支持構造を囲むケーシングを設置することにより、地上用の設備として実用性を持たせたことを特徴とする請求項6に記載の電磁波集束装置。The electromagnetic wave focusing device according to claim 6, wherein the electromagnetic wave focusing device according to claim 6 is provided with practicality as a facility for ground by installing a casing surrounding the entire support structure. 反射鏡の焦点に配置される部材を保持する保持部材は回転対称軸に配置するか薄板形状とすることにより、反射面に影を作らないことを特徴とする請求項1乃至7のいずれかに記載の太陽光集光装置である電磁波集束装置。8. The holding member for holding a member arranged at the focal point of the reflecting mirror is arranged on a rotationally symmetric axis or is formed into a thin plate shape so that no shadow is formed on the reflecting surface. An electromagnetic wave focusing device, which is the solar light collecting device described. 反射鏡の焦点において電磁波等を処理する装置などを保持する反射鏡毎の保持部材に流体ループ部材を用いて、高い熱交換機能を持たせることを特徴とする請求項1乃至8のいずれかに記載の電磁波集束装置。9. A high heat exchanging function is provided by using a fluid loop member as a holding member for each reflecting mirror that holds a device for processing electromagnetic waves or the like at the focal point of the reflecting mirror. The electromagnetic wave focusing apparatus as described.
JP2003192818A 2003-07-07 2003-07-07 Super lightweight electromagnetic wave converging device of high space density reflecting mirror integrated type Pending JP2005033254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003192818A JP2005033254A (en) 2003-07-07 2003-07-07 Super lightweight electromagnetic wave converging device of high space density reflecting mirror integrated type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003192818A JP2005033254A (en) 2003-07-07 2003-07-07 Super lightweight electromagnetic wave converging device of high space density reflecting mirror integrated type

Publications (1)

Publication Number Publication Date
JP2005033254A true JP2005033254A (en) 2005-02-03

Family

ID=34204499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003192818A Pending JP2005033254A (en) 2003-07-07 2003-07-07 Super lightweight electromagnetic wave converging device of high space density reflecting mirror integrated type

Country Status (1)

Country Link
JP (1) JP2005033254A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050074A (en) * 2010-07-27 2012-03-08 Maspro Denkoh Corp Antenna device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050074A (en) * 2010-07-27 2012-03-08 Maspro Denkoh Corp Antenna device

Similar Documents

Publication Publication Date Title
US9006560B2 (en) Solar receiver
EP2457032B1 (en) Solar concentrator with improved manufacturabillty and efficiency
JP6640116B2 (en) Large Space Solar Power Plants: Efficient Power Generation Tiles
US6903261B2 (en) Solar concentrator
US6818818B2 (en) Concentrating solar energy receiver
US5054466A (en) Offset truss hex solar concentrator
FR2651871A1 (en) ASSEMBLY FORMING SOLAR CONCENTRATOR AND RADIATOR.
JP2015506569A (en) Off-axis Cassegrain solar collector
JP2003531544A (en) An antenna based on a compact, stowable, thin, continuous surface with radial and circumferential stiffness that deploys and maintains the antenna surface in a predetermined surface geometry
US20150184895A1 (en) Solar receiver
WO2015095424A1 (en) Solar receiver
CN101789547B (en) Radio telescope capable of realizing solar power generation
JP2005033254A (en) Super lightweight electromagnetic wave converging device of high space density reflecting mirror integrated type
JP2003149586A (en) Condenser
JP2003074988A (en) Solar beam concentrator
CN110325801B (en) Solar energy condenser
JP2013194967A (en) Device for solar light reflection and solar heat power generation system
RU2812093C1 (en) Photovoltaic module with radiation concentrator
US8657454B1 (en) Vacuum formed reflector for solar energy
MX2013000116A (en) A device for collecting solar energy.
RU2209379C2 (en) Solar module with concentrator (modifications)
Flint et al. Self supporting hexagon shaped membrane aperture thin film shells
GB2148525A (en) Compound parabolic reflector
Truscello Status of the Parabolic Dish Concentrator
JPS63263352A (en) Solar heat collection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051017

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051206