JP2003074988A - Solar beam concentrator - Google Patents

Solar beam concentrator

Info

Publication number
JP2003074988A
JP2003074988A JP2001269588A JP2001269588A JP2003074988A JP 2003074988 A JP2003074988 A JP 2003074988A JP 2001269588 A JP2001269588 A JP 2001269588A JP 2001269588 A JP2001269588 A JP 2001269588A JP 2003074988 A JP2003074988 A JP 2003074988A
Authority
JP
Japan
Prior art keywords
light
film
radio wave
gas
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001269588A
Other languages
Japanese (ja)
Inventor
Seishiro Munehira
聖士郎 宗平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001269588A priority Critical patent/JP2003074988A/en
Publication of JP2003074988A publication Critical patent/JP2003074988A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/71Arrangements for concentrating solar-rays for solar heat collectors with reflectors with parabolic reflective surfaces
    • F24S23/715Arrangements for concentrating solar-rays for solar heat collectors with reflectors with parabolic reflective surfaces flexible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a light concentrator for concentrating beams of solar light or receiving radio waves at a low cost, to reduce the weight of the concentrator and materialize easy transportation and installation, in relation to utilization of solar energy and reception of radio waves. SOLUTION: The light concentrator has an airtight gas-film structure made by combining a permeable film having a high transmission of light or radio wave and a reflective film having a high reflectivity of light or radio wave. The reflective film 2 having a high reflectivity when being filled with a gas is formed in a parabolic face or a similar shape capable of replacing the parabolic shape. A light concentrating system comprises a plurality of the light concentrators arranged with wires 13 and simultaneously controlled so as to pursue a direction. Thus, a light-weighted, high precision parabola reflection mirror and a parabola antenna are produced at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、太陽エネルギーを
集光してエネルギー密度を高めて 電気エネルギーに変
換、又は直接熱源として 有効利用を促進するものであ
り、また同様に微弱電波受信のパラボラアンテナの要に
供するものに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to concentrating solar energy to increase energy density and converting it into electric energy, or to promote effective utilization as a direct heat source. It is related to what is offered to the point.

【0002】[0002]

【従来の技術】従来,太陽光を集光する方法は、 1 多数の平面鏡を姿勢制御して、集光する。 2 剛性の有る枠に凹面鏡を整形して集光する。 3 凸レンズ又はフレネルレンズにより集光する。 以上のように 出力を高めるためには集光するための設
備が高価で、大きな集光面積を得るためには堅牢な構造
物も必要となり高コストとなる、また設置及び保守にか
かる手間も有った。また 簡易な方法として薄い平面反
射板を角度を付けて配置集光する方法もあるが 集光率
が悪く 実用性に欠けていた。
2. Description of the Related Art Conventionally, the method of collecting sunlight is as follows. 2 A concave mirror is shaped on a rigid frame to collect light. 3 Condensing with a convex lens or Fresnel lens. As described above, the equipment for condensing light is expensive in order to increase the output, and a robust structure is required to obtain a large light condensing area, resulting in high cost, and there is also a labor for installation and maintenance. It was. As a simple method, there is also a method of arranging and condensing a thin flat reflector at an angle, but the condensing rate is poor and it is not practical.

【0003】[0003]

【発明が解決しようとする課題】解決しようとする問題
点は、光あるいは電波を反射する面形状を精度を保ち軽
量にして製作コストを下げることであり、 1 構造の単純化、軽量化で製作コストを低減する 2 搬送、設置時にかさばらないよう 折りたたみ可能
な構造とし、搬送設置時に掛かるエネルギー、コスト、
時間、地理的制約を低減する。 3 集光器の軽量化により、支持構造を簡略化して、姿
勢制御装置の小型化、搬送設置時に掛かるコスト、時
間、地理的制約を低減すると共に製造コストも低減す
る。 以上の課題を解決することである。
The problem to be solved is to reduce the manufacturing cost by keeping the shape of the surface that reflects light or radio waves accurate and lightweight, and 1 to simplify the structure and reduce the weight. Cost reduction 2 Conveyor, foldable structure so as not to be bulky at the time of installation, energy and cost required for transportation and installation,
Reduce time and geographical constraints. 3 By reducing the weight of the concentrator, the support structure is simplified, the attitude control device is downsized, the cost, time, and geographical restrictions required for transportation and installation are reduced, and the manufacturing cost is also reduced. It is to solve the above problems.

【0004】[0004]

【課題を解決するための手段】本発明は、太陽エネルギ
ー又はその他電磁波を収束させるために、図2に示され
るように、光あるいは電波の透過率の高い透過膜1と
光あるいは電波の反射率の高い反射膜2を組み合わせた
気密性の気膜構造とし、気体を充填した時反射率の高い
反射膜2の形状が放物面またはそれに近似代替する形状
になる様に構成することにより、 1 膜構造のみにより、精度の良い反射面を容易に形成
することが出来る。 2 構成材料が膜なので原料コスト、加工コストを低減
する事ができ、非常に軽量にする事ができる。 3 充填気体を抜けば 折りたたみ可能となり、設置の
移動、携帯も楽に出来る。 4 外気に触れる部分は凸形状なので、埃等の堆積が少
なくメンテナンスが楽になり、内部充填圧力を変化させ
る事で外形を変形又は震動させ埃等の堆積をより少なく
する事も可能である。 5 反射膜2の部分に光硬化樹脂をコーティングしてお
くことにより、光を受けた後は反射膜2の部分に剛性が
生じ充填圧力が低くなっても形状を保持する事も可能で
ある。 6 宇宙空間で利用する場合、無重力、無気圧なので
少量のガスで形状をなすことが出来、風、重力等の荷重
を受けないために大きな物でも安定した設置が可能とな
り、反射膜2の部分に光硬化樹脂をコーティング固体化
し成形後に透過膜1をはずしてしまうことも可能であ
る。また透過膜1の材質は電磁波の高透過率と充填気体
の不透過率を備えていれば良く、透明樹脂膜、繊維強化
膜などが利用でき、選択吸収あるいは反射性のある膜を
利用すれば特定の波長のみ選択集光も可能となる。反射
膜2の材質は電磁波の高反射率と充填気体の不透過率を
備えていれば良く、金属蒸着樹脂膜、アルミ箔、金属樹
脂積層膜などが利用でき、選択吸収あるいは反射性のあ
る膜を利用すれば特定の波長のみ選択集光も可能とな
る。
In order to converge solar energy or other electromagnetic waves, the present invention provides a transparent film 1 having a high light or radio wave transmittance as shown in FIG.
An airtight gas film structure in which a reflective film 2 having a high reflectance of light or radio waves is combined so that the shape of the reflective film 2 having a high reflectance when filled with gas becomes a parabolic surface or a shape that is an alternative thereto. With this structure, it is possible to easily form a highly accurate reflecting surface with only one film structure. 2. Since the constituent material is a film, the raw material cost and processing cost can be reduced, and the weight can be made extremely lightweight. 3 It can be folded once the filling gas is removed, making it easy to move and carry around. 4 Since the portion exposed to the outside air has a convex shape, less dust or the like is accumulated, maintenance is facilitated, and it is possible to deform or shake the outer shape by changing the internal filling pressure to further reduce the accumulation of dust or the like. 5. By coating the portion of the reflective film 2 with a photo-curing resin, it is possible to maintain the shape after receiving light even if the portion of the reflective film 2 becomes rigid and the filling pressure becomes low. 6 When used in outer space, it is weightless and pressureless.
It can be shaped with a small amount of gas, and it can be installed stably even with a large object because it is not subjected to loads such as wind and gravity. It is also possible to remove. Further, the material of the permeable membrane 1 is only required to have a high transmittance of electromagnetic waves and an impermeability of filled gas, and a transparent resin film, a fiber reinforced film or the like can be used, and a film having selective absorption or reflection can be used. It is also possible to selectively collect light of a specific wavelength. The material of the reflective film 2 is only required to have high reflectance of electromagnetic waves and impermeability of filled gas, and metal vapor deposition resin film, aluminum foil, metal resin laminated film, etc. can be used, and a film having selective absorption or reflectivity. By using, it is possible to selectively focus light only at a specific wavelength.

【0005】図3にて示されるように、リング状の気膜
構造体である気膜リング9に 光あるいは電波の透過率
の高い透過膜1と、 反対面に光あるいは電波の反射率
の高い反射膜2を組み合わせた気密性の気膜構造とし、
リング状の気膜構造体にて円周部の形状を固定し、リン
グ状中央部の気体を充填した時反射率の高い反射膜2の
形状が放物面またはそれに近似代替する形状になる様に
構成することにより、 1 気膜リング9部にて外周形状を保持できるので、よ
り自由度の高い反射面形状及び外形を容易に作成するこ
とが出来る。 2 透過膜1と反射膜2よりなる気室の容積を少なくす
る事ができ、気膜リング9部の充填圧力を高める事でよ
り剛性を高めることができる。 3 気膜リング9自体には所要の透過率、反射率が不要
なので材質の自由度が高く、強度を高くする事も容易で
ある。 4 気膜リング9の外周形状は円形に限らず、楕円、多
角形など必要な形状を作る事が可能である。
As shown in FIG. 3, a gas membrane ring 9 which is a ring-shaped gas membrane structure has a transparent film 1 having a high light or radio wave transmittance and an opposite surface having a high light or radio wave reflectance. An airtight gas film structure combining the reflective film 2
When the shape of the circumference is fixed with a ring-shaped gas film structure and the gas in the center of the ring is filled with gas, the shape of the reflective film 2 having a high reflectance becomes a parabolic surface or a shape that substitutes for it. With the above configuration, the outer peripheral shape can be held by the gas membrane ring 9 portion, so that the reflecting surface shape and outer shape having a higher degree of freedom can be easily created. 2 It is possible to reduce the volume of the air chamber composed of the permeable film 1 and the reflective film 2, and it is possible to increase the rigidity by increasing the filling pressure of the gas film ring 9. (3) Since the air gap ring 9 itself does not require the required transmittance and reflectance, the degree of freedom of the material is high and the strength can be easily increased. 4. The outer peripheral shape of the air-tight ring 9 is not limited to a circular shape, and it is possible to make an elliptical shape, a polygonal shape, or the like.

【0006】図4にて示されるように、光あるいは電波
の透過率の高い透過膜1の形状の一部を、光あるいは電
波の反射焦点位置となる様整形して、焦点7部に受光又
は受電機器を直接具備できる構造とすることにより、1
太陽電池、ペルチェ素子等を一体として構成できるの
で、内部に気体を充填するだけで集光器とエネルギー変
換部の位置合わせが不要となり、構造も簡単になる。
As shown in FIG. 4, a part of the shape of the transmissive film 1 having a high light or radio wave transmissivity is shaped so as to be the reflection focal point of the light or radio wave, and the light is received by the focal point 7 part. With the structure that can directly include the power receiving device, 1
Since the solar cell, the Peltier element and the like can be integrally formed, it is not necessary to align the condenser and the energy conversion section by only filling the inside of the gas, and the structure is simplified.

【0007】図6にて示されるように、気膜構造の集光
器11を複数並べワイヤー13にて支持し、支持すると
共に各ワイヤー13の行き違い長さ及び回転角度各を片
側あるいは両側の回転アーム12の角度を調節して、複
数の集光器11を同時角度追尾を行なうことにより、 1 容易に複数の集光器11を太陽光あるいは電波の方
向に同時に追従させる事が出来る。 2 集光器11自身が軽量なので、ワイヤー13の負荷
も少なく駆動動力も少なくて済み、設置も簡単なので設
備コストが低減できる。 3 ワイヤー13を張る事が可能であれば、集光器11
は空間に浮いた状態なので設置場所の自由度が非常に大
きい。 4 地面に対して垂直でも水平にでもワイヤー13を張
る事ができるので、設置面積効率が良くなる。 5 宇宙空間で利用する場合はワイヤー13を剛性の有
るロッドを利用することにより、回転アーム12を片側
のみにすることも可能である。
As shown in FIG. 6, a plurality of gas-film-structured concentrators 11 are arranged and supported by wires 13, and the misalignment length and rotation angle of each wire 13 are rotated on one side or both sides. By adjusting the angle of the arm 12 and performing simultaneous angle tracking of the plurality of condensers 11, it is possible to easily make the plurality of condensers 11 follow the direction of sunlight or radio waves simultaneously. 2 Since the light collector 11 itself is lightweight, the load on the wire 13 is small, the driving power is small, and the installation is simple, so the equipment cost can be reduced. 3 If the wire 13 can be stretched, the condenser 11
Since it is floating in space, it has a great deal of freedom in its installation location. 4 Since the wire 13 can be stretched vertically or horizontally with respect to the ground, the installation area efficiency is improved. 5. When it is used in outer space, it is possible to make the rotating arm 12 only on one side by using a rigid rod for the wire 13.

【0008】以上のような手段を単独又は組み合わせて
講じる。
The above means may be used alone or in combination.

【0009】[0009]

【発明の実施の形態】実施形態の違いにより、その構造
特徴を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The structural features of different embodiments will be described.

【0010】1 図2に単膜集光器断面図を示し、これ
を説明する。透明度の高い平面円形の透過膜1と反射率
の高いシート又は反射率の高い物質をコーティング、貼
り付けしてなる反射膜2を外周を気密となる様接着ある
いは溶着して、その一部にバルブ5を取り付け内部に空
気を充填できる構造として、内部に空気を充填して膨ら
ませる事により近似楕円断面形状となり、反射膜2は近
似パラボラ曲面となる。近似パラボラ曲面の軸方向を太
陽光方向に向ける事で、直接光3は透過膜1を透過して
反射膜2に至り、所要の角度を持って反射された反射光
4は透過膜1を透過して焦点7に収束する。この方法に
より、非常に簡単にパラボラミラーを作成する事ができ
る。またパラボラ面の精度を必要とする場合は気膜造形
の手段にて、反射膜2を所要の形状にて展開、張り合わ
せる事で容易に可能であり、大型の造形も簡単に低コス
トで可能である。また、透過膜1は伸縮性を持たせ、反
射膜2は伸縮性の小さい膜素材を使用する事で内部気体
の充填圧力が温度等の要因で変化しても反射面の形状は
一定に保てるようにすることも可能である。
1 FIG. 2 shows a sectional view of a single film concentrator, which will be described. A highly transparent flat circular transmission film 1 and a reflection film 2 formed by coating and adhering a sheet having a high reflectance or a sheet having a high reflectance to the outer periphery are adhered or welded so as to be airtight, and a valve is formed on a part thereof. As a structure in which 5 is attached and the inside can be filled with air, by filling the inside with air and expanding it, an approximate elliptical cross-sectional shape is obtained, and the reflective film 2 becomes an approximate parabolic curved surface. By directing the axial direction of the approximate parabola curved surface to the direction of sunlight, the direct light 3 passes through the transmissive film 1 to reach the reflective film 2, and the reflected light 4 reflected at a required angle passes through the transmissive film 1. And then converges on the focal point 7. This method makes it possible to create a parabolic mirror very easily. Also, when precision of the parabolic surface is required, it can be easily done by developing and sticking the reflecting film 2 in the required shape by means of gas film molding, and large-scale molding can also be easily done at low cost. Is. Further, since the permeable film 1 has elasticity and the reflection film 2 uses a film material having low elasticity, the shape of the reflection surface can be kept constant even if the filling pressure of the internal gas changes due to temperature or the like. It is also possible to do so.

【0011】2 図3にリング補強集光器の断面図を示
し、これを説明する。リング状の気膜構造をもつ気膜リ
ング9に透過膜1と反射膜2を外周にて接合し、透過膜
1と反射膜2よりなる気室を形成する事で全体形状を薄
く整形することが出来、精度良く、焦点距離の長いパラ
ボラ面を得る事が可能となる。また気膜リング9の充填
圧力を上げ外周部の剛性を上げて、透過膜1と反射膜2
よりなる気室の圧力を調整してその変形量を任意に変化
させ焦点をコントロールする事も可能である。
2 FIG. 3 shows a sectional view of the ring-reinforced concentrator, which will be described. The entire shape is thinly formed by joining the transparent film 1 and the reflective film 2 to the outer circumference of the porous film ring 9 having a ring-shaped porous film structure to form an air chamber composed of the transparent film 1 and the reflective film 2. It is possible to obtain a parabolic surface with high accuracy and a long focal length. In addition, the filling pressure of the gas film ring 9 is increased to increase the rigidity of the outer peripheral portion, and the transmission film 1 and the reflection film 2 are
It is also possible to control the focal point by adjusting the pressure of the air chamber, and changing the amount of deformation arbitrarily.

【0012】3 図5にリング偏心焦点集光器の断面図
を示し、これを説明する。構造は図3に示したものと同
じであるが、反射膜2の形状をパラボラ軸を傾斜させた
面となる様にした物で、所要の面形状を反射膜2に成形
して、直接光3と反射光4を任意の方向へ反射させ、任
意の位置に焦点7を収束させる事が可能と成る。
3 FIG. 5 shows a cross-sectional view of a ring eccentric focus concentrator, which will be described. The structure is the same as that shown in FIG. 3, but the shape of the reflection film 2 is such that the parabola axis is inclined, and a desired surface shape is formed on the reflection film 2 to allow direct light It is possible to reflect the light 3 and the reflected light 4 in an arbitrary direction and to focus the focal point 7 at an arbitrary position.

【0013】4 図4に表面焦点集光器の断面図を示
し、これを説明する。反射膜2によって収束される焦点
7の位置が透過膜1の面あるいは近傍になるように透過
膜1を成形し、透過膜1に直接あるいは空間を持って取
り付けた太陽電池10に焦点7となる様に構成する。こ
れにより 気体を充填するだけで太陽電池10の面に収
束した光を当てることになり、簡単に集光型太陽電池を
形づくる事が可能である。また 反射膜2の集光部の反
対側は集光部と別の気室となっていて充填圧力を別個に
する事ができ、充填圧力を低くする事で つぶれたビー
チボールのように任意の角度にて座らせることが出来
る。
4 FIG. 4 shows a sectional view of the surface focus collector, which will be described. The transparent film 1 is formed so that the position of the focal point 7 converged by the reflective film 2 is on or near the surface of the transparent film 1, and the focal point 7 is formed on the solar cell 10 attached to the transparent film 1 directly or with a space. To configure. As a result, focused light is applied to the surface of the solar cell 10 only by filling it with gas, and it is possible to easily form a concentrating solar cell. The opposite side of the condensing part of the reflective film 2 is an air chamber separate from the condensing part so that the filling pressure can be made different. You can sit at an angle.

【0014】5 図1に簡易集光器設置例を示し、これ
を説明する。図2に示された構造の物に簡単な架台6を
取り付けた物で、屋外キャンプ等にてソーラークキング
用熱源として簡便に利用できるようにしたものである。
利用時にのみ 空気を入れて膨らませば 利用できるの
で荷物にもならないし、利用時直径1m程度で通常のキ
ャンプ用熱源以上の能力を引き出す事が可能である。
5 FIG. 1 shows an example of installing a simple condenser, which will be described. The structure shown in FIG. 2 has a simple pedestal 6 attached to it, which can be easily used as a heat source for solar cooking at an outdoor camp or the like.
Since it can be used by inflating it with air only when using it, it does not become a baggage, and when it is used, it is possible to bring out more than the usual heat source for camping with a diameter of about 1 m.

【0015】6 図6に多重連動太陽光追尾機構図を示
し、これを説明する。集光器11の外周部4箇所にワイ
ヤー13と回転自在となる取り付け具14にて、複数の
集光器11を4本のワイヤー13に結合し、そのワイヤ
ー13の両端部を それぞれの回転アーム12に取り付
ける。一端の回転アーム12は任意あるいは自動的に制
御されるY軸15とX軸16を持ち、回転アーム12が
X軸16の回転制御されると4本のワイヤー13に点接
合されている集光器11も同方向へXの方向に揺動す
る。回転アーム12がY軸15の回転制御されると4本
のワイヤー13は回転方向に行違いになり、点接合され
ている集光器11それぞれが並行にYの方向に動揺す
る。この機構により、軽量な複数の集光器11はワイヤ
ー13に吊られた状態で同時に方向制御され、太陽ある
いは電波の方向へ追尾させる事が簡単な設備で可能とな
る。また このワイヤー13の引張り方向は地面に対し
て並行、垂直、斜めどのような方向でも設置可能で、屋
根の傾斜面、山の傾斜面、建造物の合間など あらゆる
所に設置可能である。台風など 構造物あるいは集光器
11に被害が起きそうな時には、集光器11の充填圧力
を抜き、集光器11を収納する事も可能であり、もし事
故がおきて集光器11が風に飛ばされるような事が起こ
っても集光器11は非常に軽く2次災害を起こすことも
ない。このシステムを複数同時制御する事により、複
数、復列の集光器11の焦点を一点に集中する事も容易
に可能であり、集中部にスーターリングエンジン等の熱
機関で発電すれば低コスト高効率の太陽発電システムを
場所を選ばず建造する事ができる。
6 FIG. 6 shows a diagram of a multiple interlocking solar tracking mechanism, which will be described. The plural concentrators 11 are connected to the four wires 13 by the attachments 14 that are rotatable with the wires 13 at the four outer peripheral portions of the concentrator 11, and both ends of the wires 13 are respectively rotated arms. Attach to 12. The rotary arm 12 at one end has a Y-axis 15 and an X-axis 16 which are arbitrarily or automatically controlled, and when the rotary arm 12 is rotationally controlled by the X-axis 16, it is point-bonded to four wires 13. The device 11 also swings in the X direction in the same direction. When the rotation arm 12 controls the rotation of the Y-axis 15, the four wires 13 are misaligned in the rotation direction, and each of the point-bonded concentrators 11 swings in the Y direction in parallel. With this mechanism, the plurality of light-weight condensers 11 are simultaneously directionally controlled in a state of being hung on the wire 13, and it is possible to follow the direction of the sun or radio waves with a simple facility. Also parallel to the pulling direction the ground of the wire 13, the vertical, it may be placed in an oblique what direction, the inclined surface of the roof, the inclined surface of the mountain can be installed everywhere such interval of buildings. When a structure such as a typhoon or the concentrator 11 is likely to be damaged, it is possible to release the filling pressure of the concentrator 11 and store the concentrator 11 in the event of an accident. Even if something is blown by the wind, the condenser 11 is very light and does not cause a secondary disaster. By controlling a plurality of this system at the same time, it is possible to easily concentrate the focal points of a plurality of condensers 11 in a row and at a single point. A highly efficient solar power generation system can be built anywhere.

【0016】以上のようにそれぞれの構造と特徴をも
ち、各構造、機能の組合せ、構成材質により、さまざま
な環境に合わせることが可能である。
As described above, each structure and characteristic are provided, and it is possible to adapt to various environments by each structure, combination of functions, and constituent materials.

【0017】[0017]

【実施例】図2の単膜集光器断面図に示すもので 簡単
な試作を行ない効果の検証を行なった。透過膜1に家庭
用樹脂ラップ、反射膜2に家庭用アルミホイル、バルブ
5の代用に注射器の針を使用して、直径100mm円形に
透過膜1と反射膜2を切断し、円周部に注射器の針を挿
みをゴム系接着剤にて接着して試作。注射器より空気を
充填する事により、透過膜1と反射膜2は風船状に膨れ
上がり簡単に近似凹面鏡を試作する事ができた。
EXAMPLE A simple trial production was carried out by using the cross-sectional view of the single film condenser shown in FIG. 2 to verify the effect. Using a resin wrap for household use as the permeable membrane 1, aluminum foil for household use as the reflective membrane 2, and a needle of a syringe as a substitute for the valve 5, cut the permeable membrane 1 and the reflective membrane 2 into a circle with a diameter of 100 mm, Prototype by inserting the needle of the syringe and adhering the needle with a rubber adhesive. By filling air with a syringe, the permeable film 1 and the reflective film 2 bulged like balloons, and an approximate concave mirror could be easily prototyped.

【0018】[0018]

【発明の効果】 以上説明したように、本発明の効果を
以下に列記する。
EFFECTS OF THE INVENTION As described above, the effects of the present invention are listed below.

【0019】装置及び設備の製造コストの低減により 1 集光器の製造コストが激減するするため高価な太陽
電池の使用量を少なくして低コストで太陽光発電が可能
となる。 2 太陽炉など良質な高温エネルギーを簡単に低コスト
にて利用できるようになる。 3 高効率な太陽熱発電にても、コスト要因の集光部の
コストが下がる事によりシステム全体のコストが低減す
る。
By reducing the manufacturing cost of the device and equipment, the manufacturing cost of the condenser 1 is drastically reduced, so that it is possible to reduce the amount of expensive solar cells used and to perform solar power generation at low cost. 2. It becomes possible to easily use high-quality high-temperature energy from a solar furnace at low cost. 3 Even in the case of high-efficiency solar thermal power generation, the cost of the light condensing part, which is a cost factor, is reduced, and the cost of the entire system is reduced.

【0020】装置、設備の設置及び復元の容易性により 1 移動を伴う設置でキャンプなど、電源、熱源のない
場所で電源、熱源の確保が容易に出来る。 2 緊急災害時など電力、動力が利用不可能になったと
き、容易に設置して緊急電源、緊急動力とする事ができ
る。 3 搬送が困難なために設置する事ができなかった場所
でも設置が可能となる。 4 台風等の非常時には、即座に撤去でき、設備の安全
性を確保する事が容易である。 5 宇宙空間で利用する場合も、積載重量が軽く 少量
のガスで整形でき大型太陽光集光器または大型パラボラ
アンテナを低コストで作成することが出来る。
Due to the ease of installation and restoration of equipment and facilities, it is possible to easily secure a power source and a heat source in a place where there is no power source or a heat source, such as a camp, by installing it with one movement. 2 When power or power cannot be used due to an emergency disaster, it can be easily installed and used as an emergency power source or power source. 3 It can be installed even in places where it could not be installed due to difficult transportation. 4 In case of emergency such as typhoon, it can be removed immediately and it is easy to secure the safety of the equipment. 5 Even when used in outer space, it has a light loading weight and can be shaped with a small amount of gas to create a large solar concentrator or large parabolic antenna at low cost.

【0021】設備の軽量化により 1 設備が何らかの異常で破壊されても、硬く重い部品
がなく、破壊 故障による二次災害が防止できる。 これにより、人が集まる場所でも安全に設置が可能とな
る。 2 設備の移動及び携帯が容易である。 3 設備の製造にかかる原料が少なく、設備廃止時に排
出される廃棄物も減少する。 4 充填気体をヘリュウム等の軽量ガスとして、集光器
自身を気球のように浮遊させ、推進器又は地上からのワ
イヤーなどで姿勢制御すれば、雲の上まで浮遊させれば
天候に寄らず安定した集光型太陽発電システム、パラボ
ラアンテナを構築する事も可能である。
Even if one piece of equipment is destroyed due to some abnormality due to the reduction in weight of equipment, there are no hard and heavy parts, and a secondary disaster due to breakdown failure can be prevented. This enables safe installation even in a place where people gather. 2 It is easy to move and carry equipment. 3 The amount of raw materials used for manufacturing the equipment is small, and the amount of waste emitted when the equipment is abolished is also reduced. 4 If the filling gas is a light gas such as helium, the concentrator itself is suspended like a balloon, and if the attitude is controlled with a propellant or a wire from the ground, if it floats above the clouds, it will be a stable collection regardless of the weather. It is also possible to build an optical solar power generation system and parabolic antenna.

【0022】未利用時コンパクトな状態とすることで 1 移動を伴う設置でキャンプなど、電源、熱源のない
所での電源、熱源の確保が容易に出来る。 2 災害時に復旧に時間がかかる場合など、電源、熱源
の確保が容易に出来る。 3 宇宙空間に打ち上げる場合、ロケットの積載重量、
積載空間が大幅に軽減される。 以上のように本発明の効果はさまざまな環境に対応で
き、装置、設備のコストが削減出来る。
By making the apparatus compact when not in use, it is possible to easily secure a power source and a heat source in a place where there is no heat source, such as a camp, etc., by installing it with movement. 2 It is possible to easily secure the power source and heat source when recovery takes time in the event of a disaster. 3 When launching into outer space, the payload of the rocket,
The loading space is greatly reduced. As described above, the effects of the present invention can be applied to various environments, and the cost of equipment and facilities can be reduced.

【0023】[0023]

【図面の簡単な説明】[Brief description of drawings]

【図1】簡易集光器設置例[Fig. 1] Example of simple light collector installation

【図2】単膜集光器断面図[Fig. 2] Cross-sectional view of a single film concentrator

【図3】リング補強集光器の断面図FIG. 3 is a sectional view of a ring-reinforced concentrator.

【図4】表面焦点集光器の断面図FIG. 4 is a sectional view of a surface focus collector.

【図5】偏心焦点集光器の断面図FIG. 5 is a sectional view of an eccentric focus collector.

【図6】多重連動太陽光追尾機構図[Figure 6] Multi-link solar tracking mechanism diagram

【符号の説明】[Explanation of symbols]

1 透過膜 2 反射膜 3 直接光 4 反射光 5 バルブ 6 架台 7 焦点 8 収熱部 9 気膜リング 10 太陽電池 11 集光器 12 回転アーム 13 ワイヤー 14 取り付け具 15 Y軸 16 X軸 1 permeable membrane 2 reflective film 3 direct light 4 reflected light 5 valves 6 mounts 7 focus 8 Heat collecting part 9 Air ring 10 solar cells 11 Concentrator 12 rotating arms 13 wires 14 Attachment 15 Y axis 16 X axis

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】光、電波の強度を高めるために用いられる
反射鏡の構造において、光あるいは電波の透過率の高い
透過膜1と 光あるいは電波の反射率の高い反射膜2を
組み合わせた気密性の気膜構造とし、気体を充填した時
反射率の高い反射膜2の形状が放物面またはそれに近似
代替する形状になる様に構成された集光器。
1. A structure of a reflecting mirror used for increasing the intensity of light or radio wave, wherein airtightness is obtained by combining a transmissive film 1 having high transmissivity of light or radio wave and a reflective film 2 having high transmissivity of light or radio wave. The concentrator having the gas film structure described above and having a high reflectivity when filled with gas has a parabolic shape or a shape that is an alternative thereto.
【請求項2】リング状の気膜構造体である気膜リング9
に 光あるいは電波の透過率の高い透過膜1と、 反対
面に光あるいは電波の反射率の高い反射膜2を組み合わ
せた気密性の気膜構造とし、リング状の気膜構造体にて
円周部の形状を固定し、リング状中央部の気体を充填し
た時に反射率の高い反射膜2の形状が放物面またはそれ
に近似代替する形状になる様に構成された請求項1の集
光器。
2. A gas membrane ring 9 which is a ring-shaped gas membrane structure.
The air-tight gas film structure has a transparent film 1 with high light or radio wave transmittance and a reflective film 2 with high light or radio wave reflectance on the opposite surface. The condenser according to claim 1, wherein the shape of the reflection film 2 having a high reflectance when the ring shape is fixed and the ring-shaped central portion is filled with a gas has a parabolic surface or a shape that is an alternative thereto. .
【請求項3】光あるいは電波の透過率の高い透過膜1の
形状の一部を、光あるいは電波の反射膜2より得られる
反射焦点位置となる様整形して、焦点7に受光又は受電
機器を直接透過膜1に具備できる構造とした請求項1の
集光器。
3. A part of the shape of the transparent film 1 having a high light or radio wave transmittance is shaped so as to be a reflection focus position obtained from the light or radio wave reflective film 2, and a light receiving or power receiving device is formed at a focus 7. The concentrator according to claim 1, having a structure in which the transparent film 1 can be directly provided.
【請求項4】請求項1より請求項3にて、構成される複
数の集光器11をワイヤー13にて支持し、支持すると
共に各ワイヤー13の行き違い長さ及び回転角度各を回
転アーム12の角度を調節して、複数の集光器11を同
時角度追尾を行なう集光システム。
4. A plurality of concentrators 11 constructed according to any one of claims 1 to 3 are supported by wires 13, and the misalignment length and rotation angle of each wire 13 are set to a rotary arm 12. The light condensing system which adjusts the angle of and conversely tracks a plurality of light collectors 11 at the same time.
JP2001269588A 2001-09-05 2001-09-05 Solar beam concentrator Pending JP2003074988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001269588A JP2003074988A (en) 2001-09-05 2001-09-05 Solar beam concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001269588A JP2003074988A (en) 2001-09-05 2001-09-05 Solar beam concentrator

Publications (1)

Publication Number Publication Date
JP2003074988A true JP2003074988A (en) 2003-03-12

Family

ID=19095381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001269588A Pending JP2003074988A (en) 2001-09-05 2001-09-05 Solar beam concentrator

Country Status (1)

Country Link
JP (1) JP2003074988A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006058386A1 (en) * 2004-12-03 2006-06-08 Edo Dol A reflector assembly for energy concentrators
WO2009040065A2 (en) * 2007-09-20 2009-04-02 Tobias Kiesewetter Photovoltaic system, and tracking method
AU2005312356B2 (en) * 2004-12-03 2009-12-03 Edo Dol A reflector assembly for energy concentrators
CH699605A1 (en) * 2008-09-30 2010-03-31 Airlight Energy Ip Sa Solar Panel.
KR100978628B1 (en) * 2010-03-30 2010-08-27 홍석태 Solar cell structure using vacuum reflector mirror
WO2012105351A1 (en) * 2011-01-31 2012-08-09 コニカミノルタオプト株式会社 Solar light collecting mirror, and solar thermal power generation system comprising the solar light collecting mirror
WO2012176650A1 (en) * 2011-06-21 2012-12-27 コニカミノルタアドバンストレイヤー株式会社 Solar light collecting mirror and solar thermal power generation system having solar light collecting mirror
US8469023B2 (en) 2006-09-27 2013-06-25 Airlight Energy Ip Sa Radiation collector
US9146043B2 (en) 2009-12-17 2015-09-29 Airlight Energy Ip Sa Parabolic collector
JP2021173510A (en) * 2020-04-30 2021-11-01 東邦瓦斯株式会社 Warming instrument heat storage method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005312356B2 (en) * 2004-12-03 2009-12-03 Edo Dol A reflector assembly for energy concentrators
WO2006058386A1 (en) * 2004-12-03 2006-06-08 Edo Dol A reflector assembly for energy concentrators
US8006689B2 (en) 2004-12-03 2011-08-30 Edo Dol Reflector assembly for energy concentrators
US8469023B2 (en) 2006-09-27 2013-06-25 Airlight Energy Ip Sa Radiation collector
WO2009040065A2 (en) * 2007-09-20 2009-04-02 Tobias Kiesewetter Photovoltaic system, and tracking method
WO2009040065A3 (en) * 2007-09-20 2009-09-11 Tobias Kiesewetter Photovoltaic system, and tracking method
CH699605A1 (en) * 2008-09-30 2010-03-31 Airlight Energy Ip Sa Solar Panel.
WO2010037243A2 (en) * 2008-09-30 2010-04-08 Airlight Energy Ip Sa Solar collector
WO2010037243A3 (en) * 2008-09-30 2011-03-10 Airlight Energy Ip Sa Solar collector
US9146043B2 (en) 2009-12-17 2015-09-29 Airlight Energy Ip Sa Parabolic collector
KR100978628B1 (en) * 2010-03-30 2010-08-27 홍석태 Solar cell structure using vacuum reflector mirror
WO2012105351A1 (en) * 2011-01-31 2012-08-09 コニカミノルタオプト株式会社 Solar light collecting mirror, and solar thermal power generation system comprising the solar light collecting mirror
WO2012176650A1 (en) * 2011-06-21 2012-12-27 コニカミノルタアドバンストレイヤー株式会社 Solar light collecting mirror and solar thermal power generation system having solar light collecting mirror
US9494338B2 (en) 2011-06-21 2016-11-15 Konica Minolta, Inc. Solar light collecting mirror and solar thermal power generation system having solar light collecting mirror
JP2021173510A (en) * 2020-04-30 2021-11-01 東邦瓦斯株式会社 Warming instrument heat storage method

Similar Documents

Publication Publication Date Title
US9851544B2 (en) Concentrating solar power with glasshouses
US4672389A (en) Inflatable reflector apparatus and method of manufacture
US5054466A (en) Offset truss hex solar concentrator
EP2457032B1 (en) Solar concentrator with improved manufacturabillty and efficiency
US20090078249A1 (en) Device for concentrating optical radiation
US20060193066A1 (en) Concentrating solar power
US20100205963A1 (en) Concentrated solar power generation system with distributed generation
US11365903B2 (en) Inflatable non-imaging solar concentrator
US8794229B2 (en) Solar concentrator
JP2003074988A (en) Solar beam concentrator
JPH03500445A (en) Supporting and driving equipment of solar energy receiving equipment
JP2003149586A (en) Condenser
WO2017024038A1 (en) Solar concentrator for a tower-mounted central receiver
US20040012865A1 (en) Spin-stabilized film mirror and its application in space
EP0769121A1 (en) Improved solar collectors
EP0022887B1 (en) Support structure for a large dimension parabolic reflector and large dimension parabolic reflector
Jaffe Dish concentrators for solar thermal energy
US11705858B2 (en) Solar electrical generator
CN109831145B (en) Space solar power station for energy distribution collection and conversion and wave beam centralized control emission
CN109059314A (en) A kind of aerial condenser system
Romero et al. Recent experiences on reflectant module components for innovative heliostats
JP3239447U (en) Absorber system for harvesting solar energy
WO2019012472A1 (en) A solar collector
WO2010137051A2 (en) Two-stage thermal sun concentrator
US20130228210A1 (en) Low Cost High Efficiency Solar Concentrator With Tracking Receivers