JP2005032790A - Polishing ending point detecting device for wafer polishing device - Google Patents

Polishing ending point detecting device for wafer polishing device Download PDF

Info

Publication number
JP2005032790A
JP2005032790A JP2003193377A JP2003193377A JP2005032790A JP 2005032790 A JP2005032790 A JP 2005032790A JP 2003193377 A JP2003193377 A JP 2003193377A JP 2003193377 A JP2003193377 A JP 2003193377A JP 2005032790 A JP2005032790 A JP 2005032790A
Authority
JP
Japan
Prior art keywords
light
polishing
wafer
wavelength range
end point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003193377A
Other languages
Japanese (ja)
Inventor
Osamu Matsushita
治 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2003193377A priority Critical patent/JP2005032790A/en
Publication of JP2005032790A publication Critical patent/JP2005032790A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing ending point detecting device for wafer polishing device that is simple in facility and can be improved in detection accuracy. <P>SOLUTION: The polishing ending point detecting device 12 discriminates a polishing ending point when the device 12 detects a Cu film. A filter 44 only transmits light in an a-wavelength region and another filter 46 only transmits light in a b-wavelength region. Since the intensity of reflected light changes to X and Y when a wafer W is polished and the Cu film is exposed, a computer 36 discriminates the polishing ending point based on the X and Y. Since the two information quantities of X and Y are used for discriminating the polishing ending point, the computer 36 discriminates that polishing operation does not reach the ending point and makes the polishing operation to be continued when the computer 36 detects the X, but does not detect the Y. Upon detecting both the X and Y, the computer 36 discriminates that the polishing operation reaches the ending point and causes the control section 22 of a wafer polishing device 10 to end the polishing operation by outputting a polishing ending point signal. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、化学的機械研磨法(CMP:Chemical Mechanical Polishing )によって半導体ウェーハを研磨する、ウェーハ研磨装置の研磨終点検出装置に関する。
【0002】
【従来の技術】
CMPによるウェーハの研磨は、回転する研磨パッドにウェーハを回転させながら所定の圧力で押し付け、その研磨パッドとウェーハとの間にメカノケミカル研磨剤(スラリー)を供給することによって行われる。このCMPの主な目的は、ウェーハ上のIC回路の表面に形成される段差を除去し、IC回路の高密度化の達成を容易にすること、及び不要な膜厚の層を除去することにある。
【0003】
この際、IC回路を形成する各層の膜厚は非常に小さく、前記段差が除去された後にも、僅かの膜厚を残していたりすることもある。したがって、不要な膜を除去した時点でCMPを停止させるCMPの終点検出は非常に重要である。特に、装置稼働率の向上、生産性の向上等の観点より、CMP処理中での終点検出がなされることが多く、そのための各種手段が提案されている。
【0004】
従来の終点検出手段としては、投光装置からウェーハの研磨面に光を照射し、その反射光の分光強度分布を測定することにより研磨終点を検出するものが知られている(特許文献2)。すなわち、ウェーハの膜種に応じて分光強度が異なるため、分光強度の変化を検出することにより終点検出を行う。この場合、投光装置としては、レーザ光等の単波長の光、又は白色光等の広域の波長域を有する光が使用されている。
【0005】
【特許文献1】
特開2001−291686号公報
【0006】
【特許文献2】
特開2000−186918号公報
【0007】
【発明が解決しようとする課題】
しかしながら、投光装置としてレーザ光等の単波長の光を使用したものは、終点検出を簡易な設備で実施できるものの、分光強度を得るための情報量が不足しているため、高い検出精度を得ることができないという欠点があった。
【0008】
また、投光装置として白色光分光器を使用すると、情報量は多くなることから検出精度は上がるが、設備として複雑になるという欠点があった。
【0009】
本発明は、このような事情に鑑みてなされたもので、設備が簡単で検出精度を向上させることができるウェーハ研磨装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、前記目的を達成するために、ウェーハの研磨面に光を照射する投光手段と、該投光手段から前記ウェーハの研磨面に照射された光の反射光を受光する受光手段と、該受光手段によって受光された前記反射光を複数の光路に光を分ける手段と、該光を分ける手段によって分けられた複数の光路毎に設けられ、ウェーハの膜種に対応した波長域の光のみを取り出す、複数の特定波長域光取出手段と、前記複数の特定波長域光取出手段によって取り出された光を、各波長域毎に光強度に応じた電気信号に変換し、各波長域毎の光強度信号として出力する複数の光電変換手段と、該複数の光電変換手段から出力された各波長域毎の光強度信号に基づいて研磨終点を判定する終点判別手段と、を有することを特徴とする。
【0011】
本発明によれば、ウェーハの研磨面に投光手段から光を照射し、その反射光を受光手段によって受光する。この場合、投光手段としては、広域の波長域を有する白色光が好ましい。次に、受光した光を、光を分ける段によって複数の光路に分け、そして、これらの光路毎に設けられた特定波長域光取出手段によって、ウェーハの膜種に対応した波長域の光のみを取り出す。特定波長域光取出手段は、ウェーハの膜種に対応した波長域の光のみを透過させる、透過波長域の異なるフィルタ、又はプリズム、若しくは回折格子(グレーティング)である。複数の特定波長域光取出手段によって取り出された光を、光毎に複数の光電変換手段によって各波長域毎に光強度に応じた電気信号に変換し、各波長域毎の光強度信号として終点判別手段に出力する。終点判別手段は、複数の光電変換手段から出力された各波長域毎の光強度信号に基づいて研磨終点を判定する。すなわち、本発明は、分けた光路の数に対応した複数の情報量に基づいて研磨終点を判定する装置なので、簡単な設備で済み、且つ検出精度が向上する。
【0012】
【発明の実施の形態】
以下、添付図面に従って本発明に係るウェーハ研磨装置の研磨終点検出装置の好ましい実施の形態について詳説する。
【0013】
図1は、実施の形態のウェーハ研磨装置10及び研磨終点検出装置12の構成を示したブロック図である。
【0014】
ウェーハ研磨装置10は、図示しないモータに駆動されて水平に回転するプラテン14と、このプラテン14の表面に貼着された研磨パッド16と、ウェーハWを保持して研磨パッド16に所定の圧力で押し付けるウェーハ保持ヘッド18と、研磨パッド16の表面にスラリを供給するスラリ供給ノズル20と、装置全体の駆動を統括制御する制御部22とによって構成されている。
【0015】
プラテン14は、円盤状に形成されるとともに所定の位置に観測孔24が開口されている。観測孔24は、プラテン14を貫通して形成され、その上端開口部に対応する研磨パッド16には透明な観測窓26が取り付けられている。
【0016】
ウェーハ保持ヘッド18は、プラテン14の回転中心から偏心した位置でウェーハWを研磨パッド16に押圧するとともに、図示しないモータに駆動されて水平に回転する。また、このウェーハ保持ヘッド18は、図示しない昇降手段に駆動されることにより、研磨パッド16に対して垂直に昇降する。
【0017】
ウェーハWの研磨は、ウェーハ保持ヘッド18で保持したウェーハWを研磨パッド16に所定の圧力で押し付け、その研磨パッド16とウェーハWとを回転させながら、スラリ供給ノズル20から研磨パッド16にスラリを供給することにより行われる。
【0018】
研磨終点検出装置12は、主として照射・受光光学系28、2分岐ライトガイド30、光源ユニット32、光分器34及びコンピュータ36によって構成されている。
【0019】
照射・受光光学系28は、図示しないブラケットに支持されて観測孔24の下方位置に設置される。この照射・受光光学系28は、図2の如くレンズ鏡筒38と、そのレンズ鏡筒38内に設置された集光レンズ40とで構成されている。
【0020】
図1の2分岐ライトガイド30は、多数本の光ファイバーを結束して構成されたもので、途中部分において2本に分岐されている。分岐された1本目のライトガイド30Aは照射側ライトガイドとして光源ユニット32に接続され、2本目のライトガイド30Bは受光側ライトガイドとして光分器34に接続される。また、2分岐ライトガイド30の結束端部31は、図2の如く照射・受光光学系28に接続される。
【0021】
図1に示した光源ユニット32は、ハロゲンランプを内蔵しており、このハロゲンランプからの白色光が照射側ライトガイド30Aを介して照射・受光光学系28に導かれる。そして、その2分岐ライトガイド30から出射された白色光が照射・受光光学系28の集光レンズ40で集光されたのち、プラテン14に形成された観測孔24から観察窓26を介して研磨パッド16上のウェーハWの研磨面(下面)に照射される。そして、その反射光が照射・受光光学系28の集光レンズ40で集光されて2分岐ライトガイド30へと導かれ、受光側ライトガイド30Bを介して光分器34へと導かれる。
【0022】
光分器34は、受光側ライトガイド30Bによって導かれた反射光を複数の光路に光を分けるとともに、その分けた光を所定のフィルタに通過させることにより、2つの波長域の光を取得し、そして、取得した2つの波長域の光を、各波長域毎に光強度に応じた電気信号に変換し、各波長域毎の光強度信号としてコンピュータ36に出力する。
【0023】
光分器34は図3の如く、ビームスプリッタ(光を分ける手段)42、フィルタ(特定波長域光取出手段)44、46、アレイ受光素子48、50等によって構成されている。受光側ライトガイド30Bによって光分器34に導かれた反射光は、ビームスプリッタ42によって2つの光路A、Bに光が分けられ、光路Aの光はフィルタ44に、光路Bの光はフィルタ46にそれぞれ導かれる。
【0024】
実施の形態の研磨終点検出装置12は、Cu膜を検出した際に研磨終点を判断する装置である。この場合、Cu膜は図4において、反射光の波長がa波長域の光であると、X値の強度を有することが知られており、また、反射光の波長がb波長域の光であると、Y値の強度を有することが知られている。
【0025】
そこで、フィルタ44としてはa波長域の光のみを透過させるフィルタが使用され、フィルタ46としてはb波長域の光のみを透過させるフィルタが使用されている。これらのフィルタ44、46を透過した、そのa、b波長域の光は、アレイ受光素子48、50に結像される。アレイ受光素子48、50に結像された光は、アレイ受光素子48、50によって各波長域毎に光強度に応じた電気信号に変換され、各波長域毎の光強度信号としてコンピュータ36に出力される。
【0026】
コンピュータ36は、光分器34から出力された反射光の各波長域毎の光強度信号に基づいて研磨の終点判定を行う。すなわち、ウェーハWが研磨されてCu膜が露出すると、反射光の光強度がX、Yに変化するので、コンピュータ36は、これに基づき研磨の終点判定を行う。この時、終点判定を行うための情報量としては、X、Yの2つの情報量を有しているので、例えば、Xは検出したがYを検出できない場合には、終点に到達していないと判断し、研磨を継続させる。そして、X、Y双方を検出した時に、終点に到達したと判断し、ウェーハ研磨装置10の制御部22に研磨終点信号を出力し、研磨工程を終了させる。
【0027】
このように、実施の形態の研磨終点検出装置12は、分けた光の光路A、Bの数に対応した2つの情報量に基づいて研磨終点を判定するので、簡単な設備で済み、且つ検出精度が向上する。
【0028】
なお、分ける光路の数は2つに限定されるものではなく、また、投光手段もハロゲンランプに限定されるものではない。複数波長域の光を照射するレーザ光照射装置、複数波長域の光を照射するLED装置でも適用できる。
【0029】
また、実施の形態では、特定波長域光取出手段として、ウェーハの膜種に対応した波長域の光のみを透過させる、透過波長域の異なるフィルタ44、46について説明したが、これに限られるものではなく、フイルタ44、46に代えてプリズム、若しくは回折格子(グレーティング)を適用することができる。
【0030】
プリズムを適用した場合には、プリズムによって波長域毎に分散された光のうち、ウェーハの膜種に対応した波長域の光のみをLED等の光電変換素子に受光させれば同様の効果を得ることができる。
【0031】
また、回折格子を適用した場合には、回折格子も白色光を波長域毎の光に分散させる光学素子なので、プリズムの場合と同様に、波長域毎に分散された光のうち、ウェーハの膜種に対応した波長域の光のみをLED等の光電変換素子に受光させればよい。
【0032】
【発明の効果】
以上説明したように本発明に係るウェーハ研磨装置の研磨終点検出装置によれば、分けた光路の数に対応した複数の情報量に基づいて研磨終点を判定するので、簡単な設備で済み、且つ検出精度が向上する。
【図面の簡単な説明】
【図1】実施の形態のウェーハ研磨装置及び研磨終点検出装置の全体構成図
【図2】図1に示したウェーハ研磨装置の研磨パッド及び照射・受光光学系の断面図
【図3】図1に示した光分器の構成を示したブロック図
【図4】Cu膜における反射光の波長と強度との関係を示したグラフ
【符号の説明】
10…ウェーハ研磨装置、12…研磨終点検出装置、14…プラテン、16…研磨パッド、18…ウェーハ保持ヘッド、20…スラリ供給ノズル、22…制御部、24…観測孔、26…観測窓、28…照射・受光光学系、30…2分岐ライトガイド、32…光源ユニット、34…光分器、36…コンピュータ、38…レンズ鏡筒、42…ビームスプリッタ、44、46…フィルタ、48、50…アレイ受光素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polishing end point detection apparatus for a wafer polishing apparatus, which polishes a semiconductor wafer by a chemical mechanical polishing (CMP) method.
[0002]
[Prior art]
Polishing of a wafer by CMP is performed by pressing the wafer against a rotating polishing pad with a predetermined pressure while rotating the wafer, and supplying a mechanochemical abrasive (slurry) between the polishing pad and the wafer. The main purpose of this CMP is to remove steps formed on the surface of the IC circuit on the wafer, to easily achieve higher density of the IC circuit, and to remove an unnecessary layer thickness. is there.
[0003]
At this time, the film thickness of each layer forming the IC circuit is very small, and a slight film thickness may be left after the step is removed. Therefore, it is very important to detect the end point of CMP in which CMP is stopped when an unnecessary film is removed. In particular, the end point is often detected during the CMP process from the viewpoint of improving the apparatus operation rate and productivity, and various means have been proposed.
[0004]
As conventional end point detection means, there is known one that detects the polishing end point by irradiating the polishing surface of the wafer with light from a light projecting device and measuring the spectral intensity distribution of the reflected light (Patent Document 2). . That is, since the spectral intensity varies depending on the film type of the wafer, the end point is detected by detecting the change in the spectral intensity. In this case, as the light projecting device, light having a single wavelength such as laser light or light having a wide wavelength range such as white light is used.
[0005]
[Patent Document 1]
JP-A-2001-291686 [0006]
[Patent Document 2]
Japanese Patent Laid-Open No. 2000-186918
[Problems to be solved by the invention]
However, a projector that uses light of a single wavelength such as a laser beam can perform end point detection with simple equipment, but there is not enough information to obtain the spectral intensity, so high detection accuracy is achieved. There was a drawback that it could not be obtained.
[0008]
In addition, when a white light spectroscope is used as a light projecting device, the amount of information increases, so that the detection accuracy increases, but there is a disadvantage that the equipment becomes complicated.
[0009]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a wafer polishing apparatus with simple equipment and improved detection accuracy.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides light projecting means for irradiating light onto a polished surface of a wafer, and light receiving means for receiving reflected light of light emitted from the light projecting means onto the polished surface of the wafer; A light having a wavelength range corresponding to the film type of the wafer, provided for each of the plurality of optical paths divided by the means for dividing the reflected light received by the light receiving means into a plurality of optical paths and the means for separating the light A plurality of specific wavelength range light extraction means, and the light extracted by the plurality of specific wavelength range light extraction means is converted into an electrical signal corresponding to the light intensity for each wavelength range, A plurality of photoelectric conversion means for outputting as a light intensity signal, and an end point determination means for determining a polishing end point based on the light intensity signal for each wavelength region output from the plurality of photoelectric conversion means. And
[0011]
According to the present invention, the polishing surface of the wafer is irradiated with light from the light projecting means, and the reflected light is received by the light receiving means. In this case, white light having a wide wavelength range is preferable as the light projecting means. Next, the received light is divided into a plurality of optical paths according to the stage for dividing the light, and only light in a wavelength region corresponding to the film type of the wafer is obtained by a specific wavelength region light extraction means provided for each of these optical paths. Take out. The specific wavelength range light extraction means is a filter, a prism, or a diffraction grating (grating) having a different transmission wavelength range that transmits only light in a wavelength range corresponding to the film type of the wafer. The light extracted by a plurality of specific wavelength range light extraction means is converted into an electrical signal corresponding to the light intensity for each wavelength range by a plurality of photoelectric conversion means for each light, and the end point is obtained as a light intensity signal for each wavelength range Output to discrimination means. The end point determination unit determines the polishing end point based on the light intensity signal for each wavelength region output from the plurality of photoelectric conversion units. That is, since the present invention is an apparatus for determining the polishing end point based on a plurality of information amounts corresponding to the number of divided optical paths, simple equipment is required and detection accuracy is improved.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of a polishing end point detection apparatus of a wafer polishing apparatus according to the present invention will be described in detail with reference to the accompanying drawings.
[0013]
FIG. 1 is a block diagram illustrating a configuration of a wafer polishing apparatus 10 and a polishing end point detection apparatus 12 according to an embodiment.
[0014]
The wafer polishing apparatus 10 is driven by a motor (not shown) and rotates horizontally, a polishing pad 16 adhered to the surface of the platen 14, a wafer W held by the polishing pad 16 at a predetermined pressure. A wafer holding head 18 to be pressed, a slurry supply nozzle 20 for supplying slurry to the surface of the polishing pad 16, and a control unit 22 for controlling overall driving of the apparatus.
[0015]
The platen 14 is formed in a disk shape, and an observation hole 24 is opened at a predetermined position. The observation hole 24 is formed through the platen 14, and a transparent observation window 26 is attached to the polishing pad 16 corresponding to the upper end opening.
[0016]
The wafer holding head 18 presses the wafer W against the polishing pad 16 at a position eccentric from the rotation center of the platen 14 and is driven horizontally by a motor (not shown) to rotate. Further, the wafer holding head 18 moves up and down vertically with respect to the polishing pad 16 by being driven by a lifting means (not shown).
[0017]
The polishing of the wafer W is performed by pressing the wafer W held by the wafer holding head 18 against the polishing pad 16 with a predetermined pressure, and rotating the polishing pad 16 and the wafer W while slurry is applied to the polishing pad 16 from the slurry supply nozzle 20. This is done by supplying.
[0018]
The polishing end point detection device 12 is mainly composed of an irradiation / light reception optical system 28, a two-branch light guide 30, a light source unit 32, an optical splitter 34, and a computer 36.
[0019]
The irradiation / light reception optical system 28 is supported by a bracket (not shown) and is installed at a position below the observation hole 24. The irradiation / light-receiving optical system 28 includes a lens barrel 38 and a condenser lens 40 installed in the lens barrel 38 as shown in FIG.
[0020]
The two-branch light guide 30 in FIG. 1 is configured by bundling a large number of optical fibers, and is branched into two in the middle. The first branched light guide 30A is connected to the light source unit 32 as an irradiation side light guide, and the second light guide 30B is connected to the optical splitter 34 as a light receiving side light guide. The bundling end 31 of the two-branch light guide 30 is connected to the irradiation / light reception optical system 28 as shown in FIG.
[0021]
The light source unit 32 shown in FIG. 1 incorporates a halogen lamp, and white light from the halogen lamp is guided to the irradiation / light reception optical system 28 through the irradiation side light guide 30A. Then, the white light emitted from the two-branch light guide 30 is condensed by the condenser lens 40 of the irradiation / light-receiving optical system 28 and then polished through the observation window 26 from the observation hole 24 formed in the platen 14. The polishing surface (lower surface) of the wafer W on the pad 16 is irradiated. Then, the reflected light is condensed by the condenser lens 40 of the irradiation / light-receiving optical system 28 and guided to the two-branch light guide 30 and then guided to the optical splitter 34 via the light-receiving side light guide 30B.
[0022]
The optical splitter 34 divides the reflected light guided by the light-receiving side light guide 30B into a plurality of optical paths, and acquires the light in two wavelength ranges by passing the divided light through a predetermined filter. Then, the acquired light in the two wavelength ranges is converted into an electrical signal corresponding to the light intensity for each wavelength range, and output to the computer 36 as a light intensity signal for each wavelength range.
[0023]
As shown in FIG. 3, the optical splitter 34 includes a beam splitter (means for separating light) 42, filters (specific wavelength region light extraction means) 44 and 46, array light receiving elements 48 and 50, and the like. The reflected light guided to the optical splitter 34 by the light receiving side light guide 30B is divided into two optical paths A and B by the beam splitter 42. The light in the optical path A is filtered to the filter 44, and the light in the optical path B is filtered 46. Each led to
[0024]
The polishing end point detection device 12 of the embodiment is a device that determines the polishing end point when a Cu film is detected. In this case, the Cu film in FIG. 4 is known to have X value intensity when the wavelength of the reflected light is in the a wavelength range, and the wavelength of the reflected light is in the b wavelength range. It is known to have a Y value intensity.
[0025]
Therefore, a filter that transmits only light in the a wavelength region is used as the filter 44, and a filter that transmits only light in the b wavelength region is used as the filter 46. The light in the a and b wavelength ranges that has passed through the filters 44 and 46 is imaged on the array light receiving elements 48 and 50. The light imaged on the array light receiving elements 48 and 50 is converted into an electrical signal corresponding to the light intensity for each wavelength range by the array light receiving elements 48 and 50 and output to the computer 36 as a light intensity signal for each wavelength range. Is done.
[0026]
The computer 36 determines the polishing end point based on the light intensity signal for each wavelength range of the reflected light output from the optical splitter 34. That is, when the wafer W is polished and the Cu film is exposed, the light intensity of the reflected light changes to X and Y, so the computer 36 determines the polishing end point based on this. At this time, since the information amount for determining the end point has two information amounts of X and Y, for example, when X is detected but Y cannot be detected, the end point is not reached. Judged to continue polishing. When both X and Y are detected, it is determined that the end point has been reached, a polishing end point signal is output to the control unit 22 of the wafer polishing apparatus 10, and the polishing process is terminated.
[0027]
As described above, the polishing end point detection device 12 according to the embodiment determines the polishing end point based on the two information amounts corresponding to the number of the optical paths A and B of the divided light. Accuracy is improved.
[0028]
The number of divided optical paths is not limited to two, and the light projecting means is not limited to a halogen lamp. The present invention can also be applied to a laser light irradiation device that irradiates light in a plurality of wavelength regions and an LED device that irradiates light in a plurality of wavelength regions.
[0029]
In the embodiments, the filters 44 and 46 having different transmission wavelength ranges that transmit only light in the wavelength range corresponding to the film type of the wafer have been described as the specific wavelength range light extraction means. However, the present invention is not limited to this. Instead, a prism or a diffraction grating (grating) can be applied instead of the filters 44 and 46.
[0030]
When a prism is applied, the same effect can be obtained if a photoelectric conversion element such as an LED or the like receives only light in a wavelength region corresponding to the film type of the wafer out of the light dispersed for each wavelength region by the prism. be able to.
[0031]
In addition, when a diffraction grating is applied, the diffraction grating is also an optical element that disperses white light into light in each wavelength range, so that, as in the case of the prism, out of the light dispersed in each wavelength range, the film on the wafer Only light in the wavelength region corresponding to the seeds may be received by a photoelectric conversion element such as an LED.
[0032]
【The invention's effect】
As described above, according to the polishing end point detection device of the wafer polishing apparatus according to the present invention, since the polishing end point is determined based on a plurality of information amounts corresponding to the number of divided optical paths, simple equipment is sufficient, and Detection accuracy is improved.
[Brief description of the drawings]
1 is an overall configuration diagram of a wafer polishing apparatus and a polishing end point detection apparatus according to an embodiment. FIG. 2 is a cross-sectional view of a polishing pad and an irradiation / light-receiving optical system of the wafer polishing apparatus shown in FIG. Fig. 4 is a block diagram showing the configuration of the optical splitter shown in Fig. 4. Fig. 4 is a graph showing the relationship between the wavelength and intensity of the reflected light in the Cu film.
DESCRIPTION OF SYMBOLS 10 ... Wafer polisher, 12 ... Polishing end point detector, 14 ... Platen, 16 ... Polishing pad, 18 ... Wafer holding head, 20 ... Slurry supply nozzle, 22 ... Control part, 24 ... Observation hole, 26 ... Observation window, 28 Irradiating / receiving optical system, 30 ... two-branch light guide, 32 ... light source unit, 34 ... optical splitter, 36 ... computer, 38 ... lens barrel, 42 ... beam splitter, 44, 46 ... filter, 48, 50 ... Array photo detector

Claims (2)

ウェーハの研磨面に光を照射する投光手段と、
該投光手段から前記ウェーハの研磨面に照射された光の反射光を受光する受光手段と、
該受光手段によって受光された前記反射光を複数の光路に光を分ける手段と、
該光を分ける手段によって分けられた複数の光路毎に設けられ、ウェーハの膜種に対応した波長域の光のみを取り出す、複数の特定波長域光取出手段と、
前記複数の特定波長域光取出手段によって取り出された光を、各波長域毎に光強度に応じた電気信号に変換し、各波長域毎の光強度信号として出力する複数の光電変換手段と、
該複数の光電変換手段から出力された各波長域毎の光強度信号に基づいて研磨終点を判定する終点判別手段と、
を有することを特徴とするウェーハ研磨装置の研磨終点検出装置。
A light projecting means for irradiating light onto the polished surface of the wafer;
A light receiving means for receiving reflected light of light irradiated on the polished surface of the wafer from the light projecting means;
Means for dividing the reflected light received by the light receiving means into a plurality of optical paths;
A plurality of specific wavelength range light extraction means that are provided for each of the plurality of optical paths divided by the means for dividing the light and extract only light in a wavelength range corresponding to the film type of the wafer;
A plurality of photoelectric conversion means for converting the light extracted by the plurality of specific wavelength range light extraction means into an electrical signal corresponding to the light intensity for each wavelength range, and outputting as a light intensity signal for each wavelength range;
End point determination means for determining a polishing end point based on a light intensity signal for each wavelength region output from the plurality of photoelectric conversion means;
A polishing end point detection apparatus for a wafer polishing apparatus, comprising:
前記特定波長域光取出手段は、前記ウェーハの膜種に対応した波長域の光のみを透過させる、透過波長域の異なる複数のフィルタ、又はプリズム、若しくは回折格子であることを特徴とする請求項1に記載のウェーハ研磨装置の研磨終点検出装置。The specific wavelength range light extraction means is a plurality of filters, prisms, or diffraction gratings having different transmission wavelength ranges that transmit only light in a wavelength range corresponding to the film type of the wafer. 2. A polishing end point detection apparatus for a wafer polishing apparatus according to 1.
JP2003193377A 2003-07-08 2003-07-08 Polishing ending point detecting device for wafer polishing device Pending JP2005032790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003193377A JP2005032790A (en) 2003-07-08 2003-07-08 Polishing ending point detecting device for wafer polishing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003193377A JP2005032790A (en) 2003-07-08 2003-07-08 Polishing ending point detecting device for wafer polishing device

Publications (1)

Publication Number Publication Date
JP2005032790A true JP2005032790A (en) 2005-02-03

Family

ID=34204857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003193377A Pending JP2005032790A (en) 2003-07-08 2003-07-08 Polishing ending point detecting device for wafer polishing device

Country Status (1)

Country Link
JP (1) JP2005032790A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109822427A (en) * 2019-03-08 2019-05-31 黄河水利职业技术学院 A kind of computer information safe equipment processing unit (plant)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109822427A (en) * 2019-03-08 2019-05-31 黄河水利职业技术学院 A kind of computer information safe equipment processing unit (plant)

Similar Documents

Publication Publication Date Title
JP6870129B2 (en) Systems and methods for sample defect detection and photoluminescence measurement
US9842783B2 (en) Polishing method and polishing apparatus
US6336841B1 (en) Method of CMP endpoint detection
JP2002124496A (en) Method and equipment for detecting and measuring end point of polishing process, and method and equipment for manufacturing semiconductor device using the same for detecting and measuring end point of polishing process
JP3327175B2 (en) Detection unit and wafer polishing apparatus provided with the detection unit
KR20000005863A (en) Polishing process monitoring method and apparatus, its endpoint detection method, and polishing machine using same
JP3382011B2 (en) Film thickness measuring device, polishing device and semiconductor manufacturing device
JP2008186873A (en) Apparatus and method of detecting terminal point for eliminating level difference of cmp device
JP2006191101A (en) Device and method for inspecting metal residues
JP2004017229A (en) Substrate polishing device
JP2005032790A (en) Polishing ending point detecting device for wafer polishing device
JP3804064B2 (en) Polishing end point detection method and apparatus for wafer polishing apparatus
JPH11285968A (en) Polishing device and method
JP5376293B2 (en) End point detection device and polishing device
JP2005244047A (en) Film thickness evaluating method and grinding end point detecting method and device-manufacturing apparatus
JP2005322939A (en) Method for polishing wafer
JP2005032849A (en) Wafer polishing device
JP2013252613A (en) End point detection device and polishing apparatus
JP2005294365A (en) Method and device for polishing end detection and semiconductor device
JP2002198342A (en) Polishing endpoint detector for wafer polishing apparatus
JP3681953B2 (en) Film thickness measuring method and film thickness measuring apparatus
JP3460134B2 (en) Detection method, film thickness measurement method, detection device, film thickness measurement device, and polishing device
JP2004363451A (en) Wafer polishing apparatus
JP4487370B2 (en) Polishing state measuring apparatus, measuring method, polishing apparatus, and semiconductor device manufacturing method
KR980005721A (en) End point detection method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091214