JP3681953B2 - Film thickness measuring method and film thickness measuring apparatus - Google Patents

Film thickness measuring method and film thickness measuring apparatus Download PDF

Info

Publication number
JP3681953B2
JP3681953B2 JP2000129432A JP2000129432A JP3681953B2 JP 3681953 B2 JP3681953 B2 JP 3681953B2 JP 2000129432 A JP2000129432 A JP 2000129432A JP 2000129432 A JP2000129432 A JP 2000129432A JP 3681953 B2 JP3681953 B2 JP 3681953B2
Authority
JP
Japan
Prior art keywords
film
substrate
thin film
reflection spectrum
spectral reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000129432A
Other languages
Japanese (ja)
Other versions
JP2001311609A (en
Inventor
成章 藤原
厚 玉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Dainippon Screen Manufacturing Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2000129432A priority Critical patent/JP3681953B2/en
Publication of JP2001311609A publication Critical patent/JP2001311609A/en
Application granted granted Critical
Publication of JP3681953B2 publication Critical patent/JP3681953B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、半導体ウエハなどの基板上に形成された酸化膜などの第1の薄膜を覆うとともに第1の薄膜とは異なる銅膜などの金属膜を、CMP(chemical mechanical polishing)処理による研磨処理などによって所定量だけ除去して第1の薄膜を含む層を露出させる過程において、金属膜の膜厚を測定する膜厚測定方法および膜厚測定装置に関する。
【0002】
【従来の技術】
近年、半導体ウエハ(以下、基板という)上に所定の回路パターンを形成する方法として、基板上に所定のパターンで形成された酸化膜を覆うとともに、酸化膜間の凹部に銅膜を埋め込むように銅膜を形成した後、CMP処理によって銅膜をその表面から所定量だけ研磨除去して、酸化膜と酸化膜間の凹部に埋め込まれた銅膜とを含む層を露出させるというダマシンプロセスが利用されている。
【0003】
上記CMP処理は、銅膜が形成された基板の表面を下方に向けるようにトップリングによって基板を保持しつつ、基板の表面をターンテーブルに張設された研磨布に押圧した状態で実行される。この状態で研磨布上にスラリー(研磨砥液)が供給されるとともに、ターンテーブルとトップリングとがモータによりそれぞれ独立して回転駆動される。
【0004】
上述のCMP処理により銅膜が除去されて酸化膜などを含む層が露出したときに研磨処理(除去処理)を終了させるが、この研磨処理の終了点は例えば次のようにして求められる。回転駆動されるトップリングに保持された基板の表面と、回転駆動されるターンテーブル上の研磨布との間の摩擦力は、基板の表面が銅膜であるときと銅膜が除去されて酸化膜等を含む層が露出したときとで変化する。この摩擦力の変化に応じてトップリングおよびターンテーブルをそれぞれ独立して回転駆動するモータにかかる負荷(トルク)が変化する。このようにモータにかかる負荷が変化した時点を研磨処理の終了点とする。
【0005】
【発明が解決しようとする課題】
しかしながら、上述のようにモータにかかる負荷の変化により研磨処理の終了点を求めると、終了点を求めた時点から研磨処理を停止するまでの間に、酸化膜等を含む層が必要以上に研磨されて除去されるという問題が発生する。
本発明の目的は、上述のような点に鑑み、第1の薄膜を含む層を必要以上に除去することを防止するために、研磨処理などの除去処理の過程において金属膜の膜厚を測定することができる膜厚測定方法および膜厚測定装置を提供することにある。
【0006】
【課題を解決するための手段】
かかる課題を解決するために請求項1に係る発明は、基板上に形成された第1の薄膜を覆う第2の薄膜を所定量だけ除去して前記第1の薄膜を含む層を露出させる過程で前記第2の薄膜の膜厚を測定する膜厚測定方法において、前記第1の薄膜が計測光に対して透明膜であり、前記第2の薄膜は所定値より厚い膜厚において前記計測光を透過しない所定の金属の膜であり、前記基板は前記第1の薄膜を所定のパターンで形成した後、そのパターン間に、前記所定の金属を埋め込んで前記第2の薄膜を形成した基板であって、前記所定値より厚い膜厚での前記計測光に対する前記所定の金属の膜の分光反射スペクトルを記憶する記憶工程と、前記第2の薄膜を前記所定量未満だけ除去した前記基板に対して前記計測光を照射し、前記計測光が照射された前記基板から反射した反射光に基づいて前記基板の分光反射スペクトルを求める測光工程と、前記測光工程で求めた前記基板の分光反射スペクトルと前記記憶工程で記憶された前記所定の金属の膜の分光反射スペクトルとを比較する比較工程と、前記比較工程において、前記基板の分光反射スペクトルと前記所定の金属の膜の分光反射スペクトルとが不一致となったときに前記第2の薄膜の膜厚が前記所定値以下になったと判断して、前記基板の分光反射スペクトルに基づいて前記第2の薄膜の膜厚を算出する膜厚算出工程とを含むことを特徴とする。
【0008】
請求項2に係る発明は、基板上に形成された第1の薄膜を覆う第2の薄膜を所定量だけ除去して前記第1の薄膜を含む層を露出させる過程で前記第2の薄膜の膜厚を測定する膜厚測定装置において、前記第1の薄膜が計測光に対して透明膜であり、前記第2の薄膜は所定値より厚い膜厚において前記計測光を透過しない所定の金属の膜であり、前記基板は前記第1の薄膜を所定のパターンで形成した後、そのパターン間に、前記所定の金属の膜を埋め込んで前記第2の薄膜を形成した基板であって、前記所定値より厚い膜厚での前記計測光に対する前記所定の金属の膜の分光反射スペクトルを記憶する記憶手段と、前記第2の薄膜を前記所定量未満だけ除去した前記基板に対して前記計測光を照射し、前記計測光が照射された前記基板から反射した反射光に基づいて前記基板の分光反射スペクトルを求める測光手段と、前記測光手段によって求めた前記基板の分光反射スペクトルと前記記憶工程で記憶された前記所定の金属の膜の分光反射スペクトルとを比較する比較手段と、前記比較工程によって、前記基板の分光反射スペクトルと前記所定の金属の膜の分光反射スペクトルとが不一致となったときに前記第2の薄膜の膜厚が前記所定値以下になったと判断して、前記基板の分光反射スペクトルに基づいて前記第2の薄膜の膜厚を算出する膜厚算出手段とを有することを特徴とする。
【0010】
【発明の実施の形態】
以下、この発明の好適な実施形態について図面を参照しながら説明する。
【0011】
<膜厚測定装置の構成>
図1は、この発明の実施形態の一つである膜厚測定装置を示す模式図である。ステージ1は、図示しないCMP処理装置から搬入された基板を水平に保持するもので、水平面内で移動可能に構成されている。光源部3は、ハロゲンランプまたは重水素ランプを備えたランプ3aと、複数個のレンズ3bとを備え、可視光または紫外光の計測光を出射する。
【0012】
ビームスプリッタ5は、光源部3から横方向に出射された計測光を下方向に反射するとともに、基板Wから反射し対物レンズ7を透過した反射光を透過させるものである。対物レンズ7は、ビームスプリッタ5で反射した計測光を、基板W上の測定領域Rを含む所定領域に照射する。測定領域Rの大きさは対物レンズ7の倍率と後述のプレート11aに形成されたピンホールの大きさにより設定され、概ね数μmから数十μm径である。
【0013】
チューブレンズ9は、基板Wの測定領域Rから反射して対物レンズ7およびビームスプリッタ5を透過した反射光を分光ユニット11に向けて集光する。分光ユニット11は、チューブレンズ9によって集光された反射光の入射位置にピンホールが形成されたプレート11aと、このプレート11aの上方に配備され、ピンホールを通過して分光ユニット11内に入射した反射光を分光する凹面回折格子11bと、この凹面回折格子11bによって分光された回折光の分光光強度を検出する光検出器11cとを備える。光検出器11cは、例えば、フォトダイオードアレイやCCDなどにより構成され、プレート11aのピンホールと共役な関係に配置されている。また、光検出器11cで検出された分光光強度は、データ処理部19に出力される。
【0014】
データ処理部19は、操作部27を介する操作者の指示に基いてCPUやメモリを内蔵する制御部23が出力する制御信号に応じて処理を行う。具体的には、光検出器11cで検出された銅膜などの金属膜の分光光強度に基づく分光反射スペクトルN(λ)および光検出器11cで検出された基板Wの測定領域Rからの反射光の分光光強度に基づく分光反射スペクトルM(λ)を求めて、これらの分光反射スペクトルN(λ),M(λ)を記憶する。また、記憶した金属膜の分光反射スペクトルN(λ)と、基板Wの分光反射スペクトルM(λ)とを比較し、この比較結果に応じて後述する所定処理を実行する。
【0015】
チューブレンズ9と分光ユニット11との間に配置されたプリズム13は、基板Wからの反射光の一部を取り出す。取り出された反射光の一部は、撮像ユニット15に導かれる。撮像ユニット15は、反射光の一部を撮像素子15bに向けて集光するレンズ15aと、このレンズ15aで集光された光を撮像するとともに、測定領域に対応した画像信号を画像処理部17に出力する撮像素子15bとを備える。
【0016】
画像処理部17は、撮像素子15bから入力された画像信号に所定の処理を施してI/O21に出力する。出力された画像信号は、制御部23の制御下でディスプレイ装置25に出力されて画像が表示される。この画像を操作者は見ながら、操作部27を操作してステージ1を移動させ、基板W表面の所望位置に測定領域を設定する。
【0017】
なお、上述のデータ処理部19などは本発明の記憶手段、比較手段および膜厚算出手段に相当し、分光ユニット11などは本発明の測光手段に相当する。
【0018】
<基板W上の薄膜状態>
ここで、CMP処理過程における基板W上に形成された薄膜状態の一例を説明する。図2は、基板W上の測定領域R付近の薄膜状態を示す平面図である。また、図3はCMP処理前における基板Wの測定領域R付近の薄膜状態を示す縦断面図である。
【0019】
図2および図3に示すように、基板Wの母体であるシリコン基板Waの上に所定パターンの酸化膜F1が形成され、その上にタンタルナイトライド(TaN)などのバリアメタル膜F2が被着され、さらにその上を覆うとともに酸化膜F1の凹部を埋めるように銅配線用の銅膜F3が被着されている。なお、上述の酸化膜F1は計測光に対して透明膜であり本発明の第1の薄膜に相当する。
【0020】
図3に示す基板Wの計測光に対する分光反射スペクトルは、例えば図6に示すような右肩上がりの分光反射スペクトルN(λ)となる。この分光反射スペクトルN(λ)は、銅膜F3の膜厚が厚いために測定領域R内において計測光が銅膜F3を透過しないので、銅膜F3の表面からの反射光による成分だけで構成されている。なお、分光反射スペクトルN(λ)は、計測光の各波長におけるシリコン基板Waに対する相対反射比率で構成されている。
【0021】
図4は、図3に示す基板W上の銅膜F3をその表面から図示しないCMP処理装置により、所定量だけ研磨除去した状態を示している。図4において銅膜F3の表面から酸化膜F1上に形成されたバリアメタル膜F2上面までの厚さ寸法d4は、例えば50nmである。
【0022】
図5は、図4に示す基板Wをさらに研磨処理して、研磨処理が終了した状態を示す。この研磨処理の終了点において基板W上の酸化膜F1上面は露出している。
【0023】
研磨処理後の基板W(図5)の計測光に対する分光反射スペクトルは、例えば図7に示すような分光反射スペクトルM(λ)となる。この分光反射スペクトルM(λ)は、酸化膜F1、バリアメタル膜F2が露出した部分からの分光反射スペクトルの成分と、酸化膜F1の凹部に埋め込まれたは銅膜F3からの分光反射スペクトルの成分とを合わせ持っていて複数の山谷が存在する。すなわち、酸化膜F1、バリアメタル膜F2が露出した部分では計測光が酸化膜F1、バリアメタル膜F2を透過するので、この部分の分光反射スペクトルは、酸化膜F1またはバリアメタル膜F2の表面から反射した反射光とシリコン基板Waから反射した反射光とが互いに干渉した成分で構成されて、分光反射スペクトルに複数の山谷が存在する。酸化膜F1の凹部に埋め込まれた銅膜F3は、厚さ寸法が大きいために計測光を透過しないから、この部分からの分光反射スペクトルは銅膜F3からの反射光のみで構成されて、図6に示すような分光反射スペクトルN(λ)となる。したがって、図5に示す測定領域R内における基板Wの計測光に対する分光反射スペクトルM(λ)は、酸化膜F1、バリアメタル膜F2が露出した部分による分光反射スペクト成分と、銅膜F3の表面からの分光反射スペクトル成分とを合わせ持つ分光反射スペクトルM(λ)となり、複数の山谷を有することとなる。
【0024】
<膜厚測定装置の動作>
図8のフローチャートを参照しながら上述の膜厚測定装置の動作を説明する。
【0025】
ステップS1(準備工程)
まず、操作者は図3に示す研磨処理前の基板Wをステージ1上に載置するとともに、操作部27を操作しつつディスプレイ装置25に表示された画像を確認して、基板W上の所望位置に測定領域Rを設定する。次に、光源部3からの計測光をビームスプリッタ5および対物レンズ7を介して基板Wの測定領域Rに照射する。測定領域Rに照射された計測光は、銅膜F3の厚さ寸法が大きいので、銅膜F3を透過せずに銅膜F3の表面で反射する。測定領域Rから反射した反射光は対物レンズ7、ビームスプリッタ5およびチューブレンズ9などを介して分光ユニット11に入射する。分光ユニット11に入射した反射光は、分光されてその光強度がデータ処理部19に出力される。データ処理部19では入力された分光光強度に基づいて、例えば図6に示す銅膜F3の分光反射スペクトルN(λ)を作成して記憶する。
【0026】
ステップS2(研磨処理工程)
準備工程(ステップ1)を終えた基板W(図3)を図示しないCMP処理装置にセットする。そして、CMP処理装置によって基板Wの銅膜F3の表面を研磨処理の終了点の直前である中間時点まで研磨除去して、一旦、研磨処理を中断する。
【0027】
ステップS3(測光工程)
操作者は上記中間時点の基板Wをステージ1上に載置するとともに、操作部27を操作しつつディスプレイ装置25に表示された画像を確認して、基板W上の所望位置に測定領域Rを設定する。次に、光源部3からの計測光をビームスプリッタ5および対物レンズ7を介して基板Wの測定領域Rに照射する。測定領域Rから反射した反射光は対物レンズ7、ビームスプリッタ5およびチューブレンズ9などを介して分光ユニット11に入射する。分光ユニット11に入射した反射光は、分光されてその分光光強度がデータ処理部19に出力される。データ処理部19では入力された分光光強度に基づいて、基板Wの分光反射スペクトルM(λ)を作成して記憶する。
【0028】
ステップS4、ステップS5(比較工程)
次にステップS4で、データ処理部19においてステップS1の準備工程で作成した銅膜F3の分光反射スペクトルN(λ)とステップS3の測光工程で作成した基板Wの分光反射スペクトルM(λ)とを比較する。この比較結果に基づいてステップS5から処理が分岐する。すなわち、ステップS5において銅膜F3の分光反射スペクトルN(λ)と基板Wの分光反射スペクトルM(λ)とが互いに不一致であると判断したときは、次のステップS6に処理が移行する。
【0029】
銅膜F3の分光反射スペクトルN(λ)と基板Wの分光反射スペクトルM(λ)とが互いに不一致となるのは、銅膜F3の厚さ寸法が所定値以下となって計測光の一部が銅膜F3を透過することによって、図6に示す研磨処理前の基板Wの分光反射スペクトルN(λ)に、図7に示す研磨処理後における基板Wの分光反射スペクトルM(λ)の成分が付加されるためである。具体的には、図4に示すように銅膜F3の表面から酸化膜F1上に形成されたバリアメタル膜F2上面までの厚さ寸法d4が例えば50nm以下となると、この部分において計測光が銅膜F3を透過して、バリアメタルF2、酸化膜F2およびシリコン基板Waに達する。その結果、図4に示す中間時点の基板Wの分光反射スペクトルM(λ)は、図6に示す銅膜F3の分光反射スペクトルN(λ)から、図7に示す分光反射スペクトルM(λ)へ移行する間の分光反射スペクトルとなり、複数の山谷を有することとなる。
【0030】
また、ステップS5において銅膜F3の分光反射スペクトルN(λ)と基板Wの分光反射スペクトルM(λ)とが互いに不一致ではない、すなわち、銅膜F3の分光反射スペクトルN(λ)と基板Wの分光反射スペクトルM(λ)とが互いに一致していると判断したときは、上述のステップS2に処理が戻る。この場合において、図4に示す厚さ寸法d4が例えば50nmを越えており、測定領域R全体にわたって計測光が銅膜F3を透過する部分がない。したがって、この場合の基板Wからの分光反射スペクトルM(λ)は、図6に示す銅膜F3の分光反射スペクトルN(λ)と等しくなる。この場合は、最初に設定した研磨処理条件では研磨処理が不十分であったと判断して、ステップS2の研磨処理に戻り、厚さ寸法d4が例えば50nm以下で、酸化膜F1が露出する直前となるように研磨処理条件を設定し直して再度、研磨処理を実行する。
【0031】
ステップS6(膜厚算出工程)
ステップS6では、図4に示す厚さ寸法d4を算出する。図4に示す酸化膜F1が形成された部分においては、計測光に対して透明膜である銅膜F3、バリアメタル膜F2、酸化膜F1がシリコン基板Wa上に形成されている。換言すれば、シリコン基板Wa上に酸化膜F1、バリアメタル膜F2および銅膜F3という3つの多層膜が形成されている。このような多層膜中の各薄膜の膜厚を算出する方法として例えば特許第2866559号に記載された方法が知られている。
【0032】
この方法を上述の膜厚測定装置で実行すると、まず、操作者は多層膜中の薄膜数(本実施形態では酸化膜F1、バリアメタル膜F2および銅膜F3の「3」)および各薄膜の光学定数を、操作部27を介して入力してデータ処理部19に記憶させる。次に図4に示す上記中間時点における基板Wの分光反射スペクトルM(λ)の山谷(ピーク・ヴァレイ)総数と、計測光の波長域における最も短波長側に現われる山谷に対応する第1波長および最も長波長側に現われる山谷に対応する第2波長に基づいて各薄膜の膜厚範囲を特定する。この膜厚範囲内で、各薄膜の膜厚設定値を一定の膜厚ピッチで変化させながら、各薄膜の膜厚が前記膜厚設定値であると仮定したときの分光反射スペクトルとステップS3で測光した分光反射スペクトルM(λ)との偏差量を演算し、その偏差量が最小となる膜厚の組み合わせを求めて、銅膜F3の膜厚d4を求める。
【0033】
上述のように銅膜d4の膜厚が例えば50nmと算出されれば、この膜厚に基づいて、続いて実行される酸化膜F1を露出するための研磨処理の処理条件を設定することができるので、シリコン基板Wa上の酸化膜F1を含む層を必要以上に研磨除去することを防止することができる。
【0034】
<他の実施形態>
(1)上述の実施形態では、準備工程(ステップS1)において図3に示す研磨処理前の基板Wを用いて銅膜の分光反射スペクトルN(λ)を作成したが、計測光が透過しない厚さを有する銅膜のサンプルを用いて銅膜の分光反射スペクトルN(λ)を作成しても良い。また、計測光に対する銅膜の理論的な分光反射スペクトルN(λ)を予め操作部27を介してデータ処理部19に記憶させておいても良い。これらの変形例の場合、予め準備工程を実行しておけば、測定対象の基板毎に準備工程を実行する必要はない。
【0035】
(2)上述の実施形態は、CMP処理装置による銅膜F3の研磨除去処理過程で適用されたが、銅膜F3の除去処理は研磨処理に限定されず、例えばエッチングによる除去処理過程において本発明を適用しても良い。
【0036】
(3)研磨処理などの除去処理を行いながらインラインで膜厚測定が可能なように、上述した膜厚測定装置を研磨処理装置などの除去装置に組み込んだ構成としても良い。
【0037】
(4)ステージ1を水平移動させて複数の測定領域Rを設定して、それぞれの測定領域Rにおいて銅膜の膜厚を求めても良い。このように複数の測定領域Rにおける銅膜の膜厚を求めることによって基板W表面における銅膜の膜厚の面内分布を求めることができる。この面内分布に基づいてCMP処理装置などの除去装置を調整することによって、均一に銅膜を除去することが可能となる。
【0038】
【発明の効果】
以上詳細に説明した如く、請求項1または請求項2に係る発明によれば、第2の薄膜の除去過程において、所定の金属の膜の分光反射スペクトルと基板の分光反射スペクトルとが不一致であるときの基板の分光反射スペクトルから第2の薄膜の膜厚を求めることができるので、基板上に形成された第1の薄膜を含む層を必要以上に除去することを防止することができる。
【図面の簡単な説明】
【図1】この発明の実施形態である膜厚測定装置の構成を示す模式図である。
【図2】基板Wの測定領域R付近の平面図である。
【図3】研磨処理前における基板Wの薄膜状態を示す縦断面図である。
【図4】研磨処理過程における基板Wの薄膜状態を示す縦断面図である。
【図5】研磨処理終了後における基板Wの薄膜状態を示す縦断面図である。
【図6】銅膜の分光反射スペクトルを示す図である。
【図7】研磨処理終了後における基板Wの分光反射スペクトルを示す図である。
【図8】実施形態の膜厚測定装置の動作を示すフローチャートである。
【符号の説明】
1 ステージ
3 光源部
5 ビームスプリッタ
7 対物レンズ
11 分光ユニット
19 データ処理部
W 基板
Wa シリコン基板
F1 酸化膜(第1の薄膜)
F2 バリアメタル膜
F3 銅膜(金属膜)
[0001]
BACKGROUND OF THE INVENTION
The present invention covers a first thin film such as an oxide film formed on a substrate such as a semiconductor wafer and polishes a metal film such as a copper film different from the first thin film by a CMP (chemical mechanical polishing) process. The present invention relates to a film thickness measuring method and a film thickness measuring apparatus for measuring a film thickness of a metal film in a process of removing a predetermined amount by the method and exposing a layer including a first thin film.
[0002]
[Prior art]
In recent years, as a method of forming a predetermined circuit pattern on a semiconductor wafer (hereinafter referred to as a substrate), an oxide film formed in a predetermined pattern on a substrate is covered and a copper film is embedded in a recess between the oxide films. After the copper film is formed, a damascene process is used in which the copper film is polished and removed from the surface by a predetermined amount by CMP to expose the layer including the oxide film and the copper film embedded in the recess between the oxide films. Has been.
[0003]
The CMP process is performed in a state where the substrate surface is pressed against the polishing cloth stretched on the turntable while the substrate is held by the top ring so that the surface of the substrate on which the copper film is formed is directed downward. . In this state, slurry (polishing abrasive liquid) is supplied onto the polishing cloth, and the turntable and the top ring are independently rotated by a motor.
[0004]
The polishing process (removal process) is terminated when the copper film is removed by the CMP process and a layer including an oxide film is exposed. The end point of the polishing process is obtained, for example, as follows. The frictional force between the surface of the substrate held by the rotationally driven top ring and the polishing cloth on the rotationally driven turntable is oxidized when the surface of the substrate is a copper film and when the copper film is removed. It varies depending on when a layer including a film or the like is exposed. The load (torque) applied to the motor that rotationally drives the top ring and the turntable independently varies according to the change in the frictional force. The point at which the load on the motor changes in this way is defined as the end point of the polishing process.
[0005]
[Problems to be solved by the invention]
However, as described above, when the end point of the polishing process is determined by the change in the load on the motor, the layer including the oxide film or the like is polished more than necessary between the time when the end point is calculated and the polishing process is stopped. The problem of being removed.
An object of the present invention is to measure the film thickness of a metal film in the course of a removal process such as a polishing process in order to prevent the layer including the first thin film from being removed more than necessary in view of the above points. It is in providing the film thickness measuring method and film thickness measuring apparatus which can do.
[0006]
[Means for Solving the Problems]
Process invention to the second thin film covering the first thin film formed on the substrate is removed by a predetermined amount to expose the layer containing the first thin film according to claim 1 to solve the above-described problems In the film thickness measuring method for measuring the film thickness of the second thin film, the first thin film is a transparent film with respect to the measurement light, and the second thin film has a thickness greater than a predetermined value. The substrate is a substrate in which the first thin film is formed in a predetermined pattern and then the predetermined metal is embedded between the patterns to form the second thin film. A storage step of storing a spectral reflection spectrum of the predetermined metal film with respect to the measurement light having a film thickness thicker than the predetermined value; and the substrate from which the second thin film is removed by less than the predetermined amount. the irradiated with measurement light Te, the measuring light irradiation A metering step of determining the spectral reflection spectrum of the substrate based on the light reflected from the substrate that is, the predetermined metal film stored in the photometry process at the storage step and the spectral reflectance of the substrate obtained In the comparison step for comparing the spectral reflection spectra of the second thin film and the spectral reflection spectrum of the predetermined metal film in the comparison step, the film thickness of the second thin film is not matched. And a film thickness calculating step of calculating a film thickness of the second thin film based on a spectral reflection spectrum of the substrate.
[0008]
Invention, the first second covering the thin film of the second thin film in the process of exposing a layer containing a predetermined amount of the first thin film is removed which is formed on a substrate according to claim 2 In the film thickness measuring apparatus for measuring a film thickness, the first thin film is a transparent film with respect to measurement light, and the second thin film is made of a predetermined metal that does not transmit the measurement light at a film thickness larger than a predetermined value. The substrate is a substrate in which the first thin film is formed in a predetermined pattern and the second thin film is formed by embedding the predetermined metal film between the patterns. Storage means for storing a spectral reflection spectrum of the predetermined metal film with respect to the measurement light having a film thickness thicker than a value; and the measurement light for the substrate from which the second thin film is removed by less than the predetermined amount. irradiated, anti from the substrate on which the measuring light is irradiated Was a photometric means for determining the spectral reflection spectrum of the substrate based on the reflected light, and a spectral reflection spectrum of the predetermined metal film stored in the spectral reflection spectrum of the substrate and the storage step was determined by the photometric means The film thickness of the second thin film is less than or equal to the predetermined value when the spectral reflection spectrum of the substrate and the spectral reflection spectrum of the predetermined metal film are inconsistent by the comparing means for comparing and the comparing step . And a film thickness calculating means for calculating the film thickness of the second thin film based on the spectral reflection spectrum of the substrate.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0011]
<Configuration of film thickness measuring device>
FIG. 1 is a schematic view showing a film thickness measuring apparatus which is one embodiment of the present invention. The stage 1 holds a substrate carried in from a CMP processing apparatus (not shown) horizontally and is configured to be movable in a horizontal plane. The light source unit 3 includes a lamp 3a including a halogen lamp or a deuterium lamp, and a plurality of lenses 3b, and emits visible light or ultraviolet measurement light.
[0012]
The beam splitter 5 reflects the measurement light emitted in the lateral direction from the light source unit 3 in the downward direction and transmits the reflected light reflected from the substrate W and transmitted through the objective lens 7. The objective lens 7 irradiates the measurement light reflected by the beam splitter 5 to a predetermined region including the measurement region R on the substrate W. The size of the measurement region R is set by the magnification of the objective lens 7 and the size of a pinhole formed in the plate 11a described later, and is approximately several μm to several tens of μm in diameter.
[0013]
The tube lens 9 condenses the reflected light reflected from the measurement region R of the substrate W and transmitted through the objective lens 7 and the beam splitter 5 toward the spectroscopic unit 11. The spectroscopic unit 11 is disposed above the plate 11a having a pinhole formed at the incident position of the reflected light collected by the tube lens 9, and passes through the pinhole and enters the spectroscopic unit 11. A concave diffraction grating 11b that splits the reflected light and a photodetector 11c that detects the spectral light intensity of the diffracted light split by the concave diffraction grating 11b. The photodetector 11c is configured by, for example, a photodiode array or a CCD, and is arranged in a conjugate relationship with the pinhole of the plate 11a. Further, the spectral light intensity detected by the light detector 11 c is output to the data processing unit 19.
[0014]
The data processing unit 19 performs processing according to a control signal output from the control unit 23 having a built-in CPU and memory based on an instruction from the operator via the operation unit 27. Specifically, the spectral reflection spectrum N (λ) based on the spectral light intensity of a metal film such as a copper film detected by the photodetector 11c and the reflection from the measurement region R of the substrate W detected by the photodetector 11c. A spectral reflection spectrum M (λ) based on the spectral light intensity of light is obtained, and these spectral reflection spectra N (λ) and M (λ) are stored. Further, the stored spectral reflection spectrum N (λ) of the metal film is compared with the spectral reflection spectrum M (λ) of the substrate W, and a predetermined process described later is executed according to the comparison result.
[0015]
The prism 13 disposed between the tube lens 9 and the spectroscopic unit 11 extracts part of the reflected light from the substrate W. A part of the extracted reflected light is guided to the imaging unit 15. The imaging unit 15 captures a lens 15a that condenses a part of the reflected light toward the image sensor 15b, images the light collected by the lens 15a, and outputs an image signal corresponding to the measurement region to the image processing unit 17. And an image sensor 15b that outputs to the image sensor.
[0016]
The image processing unit 17 performs predetermined processing on the image signal input from the image sensor 15 b and outputs the processed image signal to the I / O 21. The output image signal is output to the display device 25 under the control of the control unit 23 to display an image. While viewing the image, the operator operates the operation unit 27 to move the stage 1 to set a measurement region at a desired position on the surface of the substrate W.
[0017]
The data processing unit 19 and the like described above correspond to the storage unit, the comparison unit, and the film thickness calculation unit of the present invention, and the spectroscopic unit 11 and the like correspond to the photometry unit of the present invention.
[0018]
<Thin film state on substrate W>
Here, an example of a thin film state formed on the substrate W in the CMP process will be described. FIG. 2 is a plan view showing a thin film state in the vicinity of the measurement region R on the substrate W. FIG. FIG. 3 is a longitudinal sectional view showing a thin film state in the vicinity of the measurement region R of the substrate W before the CMP process.
[0019]
As shown in FIGS. 2 and 3, an oxide film F1 having a predetermined pattern is formed on a silicon substrate Wa which is a base of the substrate W, and a barrier metal film F2 such as tantalum nitride (TaN) is deposited thereon. Further, a copper film F3 for copper wiring is deposited so as to cover the upper portion and fill the concave portion of the oxide film F1. The oxide film F1 described above is a transparent film for the measurement light and corresponds to the first thin film of the present invention.
[0020]
The spectral reflection spectrum for the measurement light of the substrate W shown in FIG. 3 is, for example, a spectral reflection spectrum N (λ) that rises to the right as shown in FIG. The spectral reflection spectrum N (λ) is composed of only the component due to the reflected light from the surface of the copper film F3 because the measurement light does not pass through the copper film F3 in the measurement region R because the copper film F3 is thick. Has been. The spectral reflection spectrum N (λ) is composed of a relative reflection ratio with respect to the silicon substrate Wa at each wavelength of the measurement light.
[0021]
FIG. 4 shows a state in which the copper film F3 on the substrate W shown in FIG. 3 is polished and removed from the surface by a predetermined amount by a CMP processing apparatus (not shown). In FIG. 4, a thickness dimension d4 from the surface of the copper film F3 to the upper surface of the barrier metal film F2 formed on the oxide film F1 is, for example, 50 nm.
[0022]
FIG. 5 shows a state where the substrate W shown in FIG. 4 is further polished and the polishing process is completed. At the end of this polishing process, the upper surface of the oxide film F1 on the substrate W is exposed.
[0023]
The spectral reflection spectrum with respect to the measurement light of the substrate W (FIG. 5) after the polishing process is, for example, a spectral reflection spectrum M (λ) as shown in FIG. This spectral reflection spectrum M (λ) is a component of the spectral reflection spectrum from the exposed portions of the oxide film F1 and the barrier metal film F2, and the spectral reflection spectrum from the copper film F3 embedded in the recess of the oxide film F1. There are multiple valleys that combine ingredients. That is, since the measurement light is transmitted through the oxide film F1 and the barrier metal film F2 in the portion where the oxide film F1 and the barrier metal film F2 are exposed, the spectral reflection spectrum of this portion is from the surface of the oxide film F1 or the barrier metal film F2. The reflected reflected light and the reflected light reflected from the silicon substrate Wa are composed of components that interfere with each other, and there are a plurality of peaks and valleys in the spectral reflection spectrum. Since the copper film F3 embedded in the recess of the oxide film F1 has a large thickness dimension and does not transmit the measurement light, the spectral reflection spectrum from this part is composed only of the reflected light from the copper film F3. The spectral reflection spectrum N (λ) as shown in FIG. Therefore, the spectral reflection spectrum M (λ) for the measurement light of the substrate W in the measurement region R shown in FIG. 5 is the spectral reflection spectroscopic component due to the exposed portions of the oxide film F1 and the barrier metal film F2, and the surface of the copper film F3. The spectral reflection spectrum M (λ) is combined with the spectral reflection spectrum component from the above, and has a plurality of peaks and valleys.
[0024]
<Operation of film thickness measuring device>
The operation of the film thickness measuring apparatus will be described with reference to the flowchart of FIG.
[0025]
Step S1 (preparation process)
First, the operator places the substrate W before the polishing process shown in FIG. 3 on the stage 1 and confirms an image displayed on the display device 25 while operating the operation unit 27, so that a desired one on the substrate W is obtained. The measurement area R is set at the position. Next, the measurement light from the light source unit 3 is irradiated onto the measurement region R of the substrate W through the beam splitter 5 and the objective lens 7. The measurement light irradiated to the measurement region R is reflected on the surface of the copper film F3 without passing through the copper film F3 because the thickness dimension of the copper film F3 is large. The reflected light reflected from the measurement region R enters the spectroscopic unit 11 through the objective lens 7, the beam splitter 5, the tube lens 9, and the like. The reflected light incident on the spectroscopic unit 11 is split and the light intensity is output to the data processing unit 19. The data processing unit 19 creates and stores a spectral reflection spectrum N (λ) of the copper film F3 shown in FIG. 6, for example, based on the input spectral light intensity.
[0026]
Step S2 (polishing process)
The substrate W (FIG. 3) that has completed the preparation process (step 1) is set in a CMP processing apparatus (not shown). Then, the surface of the copper film F3 of the substrate W is polished and removed to a middle point just before the end point of the polishing process by the CMP processing apparatus, and the polishing process is temporarily interrupted.
[0027]
Step S3 (photometric process)
The operator places the substrate W at the intermediate point on the stage 1 and confirms the image displayed on the display device 25 while operating the operation unit 27 to set the measurement region R at a desired position on the substrate W. Set. Next, the measurement light from the light source unit 3 is irradiated onto the measurement region R of the substrate W through the beam splitter 5 and the objective lens 7. The reflected light reflected from the measurement region R enters the spectroscopic unit 11 through the objective lens 7, the beam splitter 5, the tube lens 9, and the like. The reflected light incident on the spectroscopic unit 11 is split and the spectral light intensity is output to the data processing unit 19. The data processing unit 19 creates and stores a spectral reflection spectrum M (λ) of the substrate W based on the input spectral light intensity.
[0028]
Steps S4 and S5 (comparison process)
Next, in step S4, the spectral reflection spectrum N (λ) of the copper film F3 created in the preparation process of step S1 in the data processing unit 19 and the spectral reflection spectrum M (λ) of the substrate W created in the photometry process of step S3. Compare Based on the comparison result, the process branches from step S5. That is, when it is determined in step S5 that the spectral reflection spectrum N (λ) of the copper film F3 and the spectral reflection spectrum M (λ) of the substrate W are inconsistent with each other, the process proceeds to the next step S6.
[0029]
The spectral reflection spectrum N (λ) of the copper film F3 and the spectral reflection spectrum M (λ) of the substrate W do not coincide with each other because the thickness dimension of the copper film F3 is a predetermined value or less and a part of the measurement light. Is transmitted through the copper film F3, the spectral reflection spectrum N (λ) of the substrate W before the polishing process shown in FIG. 6 is added to the spectral reflection spectrum M (λ) of the substrate W after the polishing process shown in FIG. Is added. Specifically, as shown in FIG. 4, when the thickness dimension d4 from the surface of the copper film F3 to the upper surface of the barrier metal film F2 formed on the oxide film F1 is, for example, 50 nm or less, the measurement light is copper in this portion. The light passes through the film F3 and reaches the barrier metal F2, the oxide film F2, and the silicon substrate Wa. As a result, the spectral reflection spectrum M (λ) of the substrate W at the intermediate point shown in FIG. 4 is changed from the spectral reflection spectrum N (λ) of the copper film F3 shown in FIG. 6 to the spectral reflection spectrum M (λ) shown in FIG. It becomes a spectral reflection spectrum during the transition to, and has a plurality of peaks and valleys.
[0030]
In step S5, the spectral reflection spectrum N (λ) of the copper film F3 and the spectral reflection spectrum M (λ) of the substrate W are not inconsistent with each other, that is, the spectral reflection spectrum N (λ) of the copper film F3 and the substrate W. When it is determined that the spectral reflection spectra M (λ) of the two coincide with each other, the process returns to step S2. In this case, the thickness dimension d4 shown in FIG. 4 exceeds 50 nm, for example, and there is no portion where the measurement light passes through the copper film F3 over the entire measurement region R. Therefore, the spectral reflection spectrum M (λ) from the substrate W in this case is equal to the spectral reflection spectrum N (λ) of the copper film F3 shown in FIG. In this case, it is determined that the polishing process is insufficient under the initially set polishing process condition, and the process returns to the polishing process in step S2, and the thickness dimension d4 is, for example, 50 nm or less and immediately before the oxide film F1 is exposed. Then, the polishing process conditions are reset so that the polishing process is performed again.
[0031]
Step S6 (film thickness calculation step)
In step S6, the thickness dimension d4 shown in FIG. 4 is calculated. In the portion where the oxide film F1 shown in FIG. 4 is formed, a copper film F3, a barrier metal film F2, and an oxide film F1, which are transparent films for the measurement light, are formed on the silicon substrate Wa. In other words, three multilayer films of the oxide film F1, the barrier metal film F2, and the copper film F3 are formed on the silicon substrate Wa. As a method for calculating the film thickness of each thin film in such a multilayer film, for example, a method described in Japanese Patent No. 2866559 is known.
[0032]
When this method is executed by the above-described film thickness measuring apparatus, first, the operator first counts the number of thin films in the multilayer film (in this embodiment, “3” of the oxide film F1, the barrier metal film F2, and the copper film F3) and each thin film. The optical constant is input via the operation unit 27 and stored in the data processing unit 19. Next, the total number of peaks and valleys (peak / valley) of the spectral reflection spectrum M (λ) of the substrate W at the intermediate point shown in FIG. 4, the first wavelength corresponding to the peak and valley appearing on the shortest wavelength side in the wavelength range of the measurement light, and The film thickness range of each thin film is specified based on the second wavelength corresponding to the valley that appears on the longest wavelength side. Within this film thickness range, while changing the film thickness setting value of each thin film at a constant film thickness pitch, the spectral reflection spectrum when assuming that the film thickness of each thin film is the film thickness setting value and step S3 A deviation amount from the measured spectral reflection spectrum M (λ) is calculated, a combination of film thicknesses that minimizes the deviation amount is obtained, and a film thickness d4 of the copper film F3 is obtained.
[0033]
As described above, if the thickness of the copper film d4 is calculated to be, for example, 50 nm, it is possible to set the processing condition of the polishing process for exposing the oxide film F1 to be subsequently performed based on this film thickness. Therefore, it is possible to prevent the layer including the oxide film F1 on the silicon substrate Wa from being polished and removed more than necessary.
[0034]
<Other embodiments>
(1) In the above-described embodiment, the spectral reflection spectrum N (λ) of the copper film is created using the substrate W before the polishing process shown in FIG. 3 in the preparation step (step S1). The spectral reflection spectrum N (λ) of the copper film may be created using a copper film sample having a thickness. Further, the theoretical spectral reflection spectrum N (λ) of the copper film with respect to the measurement light may be stored in the data processing unit 19 via the operation unit 27 in advance. In the case of these modified examples, if the preparation process is executed in advance, it is not necessary to execute the preparation process for each substrate to be measured.
[0035]
(2) Although the above-described embodiment is applied in the polishing removal process of the copper film F3 by the CMP processing apparatus, the removal process of the copper film F3 is not limited to the polishing process. May be applied.
[0036]
(3) The film thickness measuring device described above may be incorporated in a removing device such as a polishing processing apparatus so that the film thickness can be measured in-line while performing a removing process such as a polishing process.
[0037]
(4) The stage 1 may be moved horizontally to set a plurality of measurement regions R, and the thickness of the copper film may be obtained in each measurement region R. Thus, by obtaining the film thickness of the copper film in the plurality of measurement regions R, the in-plane distribution of the film thickness of the copper film on the surface of the substrate W can be obtained. By adjusting a removing device such as a CMP processing device based on this in-plane distribution, the copper film can be removed uniformly.
[0038]
【The invention's effect】
As described above in detail, according to the first or second aspect of the invention, in the process of removing the second thin film , the spectral reflection spectrum of the predetermined metal film and the spectral reflection spectrum of the substrate do not match. Since the film thickness of the second thin film can be obtained from the spectral reflection spectrum of the substrate at that time, it is possible to prevent the layer including the first thin film formed on the substrate from being removed more than necessary.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration of a film thickness measuring apparatus according to an embodiment of the present invention.
FIG. 2 is a plan view of the vicinity of a measurement region R of a substrate W. FIG.
FIG. 3 is a longitudinal sectional view showing a thin film state of a substrate W before a polishing process.
FIG. 4 is a longitudinal sectional view showing a thin film state of a substrate W during a polishing process.
FIG. 5 is a longitudinal sectional view showing a thin film state of the substrate W after the polishing process is completed.
FIG. 6 is a diagram showing a spectral reflection spectrum of a copper film.
FIG. 7 is a diagram showing a spectral reflection spectrum of a substrate W after the end of a polishing process.
FIG. 8 is a flowchart showing the operation of the film thickness measuring apparatus according to the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Stage 3 Light source part 5 Beam splitter 7 Objective lens 11 Spectroscopic unit 19 Data processing part W Substrate Wa Silicon substrate F1 Oxide film (first thin film)
F2 Barrier metal film F3 Copper film (metal film)

Claims (2)

基板上に形成された第1の薄膜を覆う第2の薄膜を所定量だけ除去して前記第1の薄膜を含む層を露出させる過程で前記第2の薄膜の膜厚を測定する膜厚測定方法において、
前記第1の薄膜が計測光に対して透明膜であり、
前記第2の薄膜は所定値より厚い膜厚において前記計測光を透過しない所定の金属の膜であり、
前記基板は前記第1の薄膜を所定のパターンで形成した後、そのパターン間に、前記所定の金属を埋め込んで前記第2の薄膜を形成した基板であって、
前記所定値より厚い膜厚での前記計測光に対する前記所定の金属の膜の分光反射スペクトルを記憶する記憶工程と、
前記第2の薄膜を前記所定量未満だけ除去した前記基板に対して前記計測光を照射し、前記計測光が照射された前記基板から反射した反射光に基づいて前記基板の分光反射スペクトルを求める測光工程と、
前記測光工程で求めた前記基板の分光反射スペクトルと前記記憶工程で記憶された前記所定の金属の膜の分光反射スペクトルとを比較する比較工程と、
前記比較工程において、前記基板の分光反射スペクトルと前記所定の金属の膜の分光反射スペクトルとが不一致となったときに前記第2の薄膜の膜厚が前記所定値以下になったと判断して、前記基板の分光反射スペクトルに基づいて前記第2の薄膜の膜厚を算出する膜厚算出工程と、
を含むことを特徴とする膜厚測定方法。
Film thickness measurement for measuring the second thickness of the thin film and the second film covering the first thin film formed on a substrate in the process of exposing a layer containing a predetermined amount of the first thin film is removed In the method
The first thin film is a transparent film with respect to measurement light;
The second thin film is a film of a predetermined metal that does not transmit the measurement light at a film thickness thicker than a predetermined value,
The substrate is a substrate in which the first thin film is formed in a predetermined pattern and the second thin film is formed by embedding the predetermined metal between the patterns,
A storage step of storing a spectral reflection spectrum of the predetermined metal film with respect to the measurement light having a film thickness thicker than the predetermined value;
The measuring light is irradiated to the substrate obtained by removing the second thin film by less than the predetermined amount, the measurement light is determined spectral reflection spectrum of the substrate based on the light reflected from the substrate that has been irradiated Photometric process,
A comparison step for comparing the spectral reflection spectrum of the predetermined metal film stored in the storing step and the spectral reflectance of the substrate which has been determined by the photometric process,
In the comparison step, when the spectral reflectance spectrum of the substrate and the spectral reflectance spectrum of the predetermined metal film are inconsistent, it is determined that the thickness of the second thin film is equal to or less than the predetermined value, A film thickness calculating step of calculating a film thickness of the second thin film based on a spectral reflection spectrum of the substrate;
The film thickness measuring method characterized by including.
基板上に形成された第1の薄膜を覆う第2の薄膜を所定量だけ除去して前記第1の薄膜を含む層を露出させる過程で前記第2の薄膜の膜厚を測定する膜厚測定装置において、A film thickness measurement for measuring the film thickness of the second thin film in the process of removing a predetermined amount of the second thin film covering the first thin film formed on the substrate and exposing the layer containing the first thin film. In the device
前記第1の薄膜が計測光に対して透明膜であり、The first thin film is a transparent film with respect to measurement light;
前記第2の薄膜は所定値より厚い膜厚において前記計測光を透過しない所定の金属の膜であり、The second thin film is a film of a predetermined metal that does not transmit the measurement light at a film thickness thicker than a predetermined value,
前記基板は前記第1の薄膜を所定のパターンで形成した後、そのパターン間に、前記所定の金属を埋め込んで前記第2の薄膜を形成した基板であって、The substrate is a substrate in which the first thin film is formed in a predetermined pattern and the second thin film is formed by embedding the predetermined metal between the patterns,
前記所定値より厚い膜厚での前記計測光に対する前記所定の金属の膜の分光反射スペクトルを記憶する記憶手段と、Storage means for storing a spectral reflection spectrum of the predetermined metal film with respect to the measurement light having a thickness greater than the predetermined value;
前記第2の薄膜を前記所定量未満だけ除去した前記基板に対して前記計測光を照射し、前記計測光が照射された前記基板から反射した反射光に基づいて前記基板の分光反射スペクトルを求める測光手段と、The measurement light is applied to the substrate from which the second thin film has been removed by less than the predetermined amount, and the spectral reflection spectrum of the substrate is obtained based on the reflected light reflected from the substrate irradiated with the measurement light. Photometric means;
前記測光手段によって求めた前記基板の分光反射スペクトルと前記記憶工程で記憶された前記所定の金属の膜の分光反射スペクトルとを比較する比較手段と、Comparing means for comparing the spectral reflectance spectrum of the substrate obtained by the photometric means with the spectral reflectance spectrum of the predetermined metal film stored in the storing step;
前記比較工程によって、前記基板の分光反射スペクトルと前記所定の金属の膜の分光反射スペクトルとが不一致となったときに前記第2の薄膜の膜厚が前記所定値以下になったと判断して、前記基板の分光反射スペクトルに基づいて前記第2の薄膜の膜厚を算出する膜厚算出手段と、According to the comparison step, when the spectral reflection spectrum of the substrate and the spectral reflection spectrum of the predetermined metal film are inconsistent, it is determined that the film thickness of the second thin film is equal to or less than the predetermined value, A film thickness calculating means for calculating a film thickness of the second thin film based on a spectral reflection spectrum of the substrate;
を有することを特徴とする膜厚測定装置。A film thickness measuring apparatus comprising:
JP2000129432A 2000-04-28 2000-04-28 Film thickness measuring method and film thickness measuring apparatus Expired - Lifetime JP3681953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000129432A JP3681953B2 (en) 2000-04-28 2000-04-28 Film thickness measuring method and film thickness measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000129432A JP3681953B2 (en) 2000-04-28 2000-04-28 Film thickness measuring method and film thickness measuring apparatus

Publications (2)

Publication Number Publication Date
JP2001311609A JP2001311609A (en) 2001-11-09
JP3681953B2 true JP3681953B2 (en) 2005-08-10

Family

ID=18638710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000129432A Expired - Lifetime JP3681953B2 (en) 2000-04-28 2000-04-28 Film thickness measuring method and film thickness measuring apparatus

Country Status (1)

Country Link
JP (1) JP3681953B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101886919B1 (en) * 2016-06-16 2018-09-11 한국표준과학연구원 Method for measuring three­dimensional thickness profile of multi-layered film structure based on imaging spectrometer

Also Published As

Publication number Publication date
JP2001311609A (en) 2001-11-09

Similar Documents

Publication Publication Date Title
CN110986818B (en) Spectral beam profiling
US6806970B2 (en) Thin film thickness measuring method and apparatus, and method and apparatus for manufacturing a thin film device using the same
US6489624B1 (en) Apparatus and methods for detecting thickness of a patterned layer
US6100985A (en) Method and apparatus for measurements of patterned structures
US6327035B1 (en) Method and apparatus for optically examining miniature patterns
JP4789798B2 (en) Apparatus and method for detecting overlay error using scatterometry
US7019850B2 (en) Method and system for thin film characterization
JP4460659B2 (en) Thin film thickness measuring method and apparatus, thin film device manufacturing method and apparatus using the same
US7929139B2 (en) Spectroscopic ellipsometer, film thickness measuring apparatus, and method of focusing in spectroscopic ellipsometer
US8564793B2 (en) Thin films measurement method and system
CN110062952B (en) Simultaneous multiple angle spectroscopy
TWI564540B (en) Method and system for measuring overlay utilizing pupil phase information
US20050264806A1 (en) Calibration as well as measurement on the same workpiece during fabrication
US10429296B2 (en) Multilayer film metrology using an effective media approximation
JP3723392B2 (en) Film thickness measuring apparatus and film thickness measuring method
JP3327175B2 (en) Detection unit and wafer polishing apparatus provided with the detection unit
JPH05248825A (en) Equipment for measuring thickness of thin film
US7684039B2 (en) Overlay metrology using the near infra-red spectral range
US6885446B2 (en) Method and system for monitoring a process of material removal from the surface of a patterned structure
JP3910032B2 (en) Substrate developing device
JP4427767B2 (en) Measuring method
JP3681953B2 (en) Film thickness measuring method and film thickness measuring apparatus
JP2000077371A (en) Detecting method, detector and polishing device
JP3681319B2 (en) Film thickness measuring method and apparatus
JP3681321B2 (en) Method and apparatus for measuring aperture ratio of thin film

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3681953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term