JP2005031236A - Optical component device - Google Patents

Optical component device Download PDF

Info

Publication number
JP2005031236A
JP2005031236A JP2003194286A JP2003194286A JP2005031236A JP 2005031236 A JP2005031236 A JP 2005031236A JP 2003194286 A JP2003194286 A JP 2003194286A JP 2003194286 A JP2003194286 A JP 2003194286A JP 2005031236 A JP2005031236 A JP 2005031236A
Authority
JP
Japan
Prior art keywords
optical
component
optical component
fiber
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003194286A
Other languages
Japanese (ja)
Other versions
JP4134833B2 (en
Inventor
Toshihiko Honma
敏彦 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003194286A priority Critical patent/JP4134833B2/en
Publication of JP2005031236A publication Critical patent/JP2005031236A/en
Application granted granted Critical
Publication of JP4134833B2 publication Critical patent/JP4134833B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an optical component device in which splicing structure for splicing optical fibers mutually via an optical component can be easily obtained by dispensing with troublesome aligning work, etc. <P>SOLUTION: A substrate 23 for positioning an optical fiber 25 is configured so that a component placing area 23a having a specified dimension is arranged at the predetermined position of its upper face and a fiber placing part 23c for positioning optical fibers 25, 26 is arranged next to the component placing area 23a. The optical fiber 25 which is placed on the fiber placing part 23c is spliced to the optical fiber 26 by placing an optical component 29 which brings the optical fibers 25, 26 in contact with each other and splices them on the component placing area 23a. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光信号伝送用に規格化された光部品(例えば、導波路デバイス等の光機能素子)と光ファイバとを接続するための接続構造が簡単に得られる光部品装置に関するものである。
【0002】
【従来の技術】
通信分野においては、高速・大容量伝送が可能な光ファイバが伝送線路の主流となり、既に中・長距離幹線のほとんどが従来のメタルケーブルから光ファイバケーブルに代わっている。さらに、数年後には各家庭までの線路も光ファイバ化しようとする光加入者系伝送システムの実現に向けた取組みが急ピッチで進められている。
【0003】
光ファイバ同士の突き合わせ接続には、従来から融着接続やコネクタによる接続が行われてきた。
しかし、融着接続は光ファイバの突き合わせ面を溶かし込んで接続するため信頼性が高い反面、接続後の補強などに時間が掛かること、融着用の装置が高価であること、融着装置を作動させるための電源が必要であること等が問題となっていた。
また、コネクタを使用した接続は、各光ファイバ端部へのコネクタ装着に手間がかかること、コネクタ自体にかなりのコストがかかること、コネクタによって接続部の嵩が増大し、接続部の収納に大きな収納スペースの確保が必要になること等が問題となっていた。
【0004】
そこで、光ファイバ相互の突き合わせ接続を安価に、且つ容易に実現する装置として、図5に示すメカニカルスプライス51が提案されている。
このメカニカルスプライス51は、光ファイバ52の心線53の位置合わせを行うためのV溝54が形成された基板55と、その上部から心線53を押えて固定する押え板56と、これら基板55と押え板56とを上下から挟持して固定するクランプばね57とを有している。
上記のV溝54に光ファイバ52を接続する際には、図5(b)に示すように基板55と押え板56との間のくさび挿入溝58にくさび59を挿入して押し広げ、その隙間に両端から光ファイバ52を挿入して心線53を互いに突き合わせた後、図5(c)に示すように、くさび59を抜くことで、クランプばね57の復元力によって、V溝54に挿入した光ファイバ52が押え板56によって押圧固定され、V溝54上で突き合わされた光ファイバ相互が接続された状態になる(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開平9−318836号公報
【0006】
なお、図5に示すメカニカルスプライス51は、単心用のものであるが、図6に示すような、4心用のメカニカルスプライス61もある。このメカニカルスプライス61は、V溝62が4列に形成されており、各心線63がV溝62にそれぞれ挿入されるようになっている。
【0007】
ところで、近年では、更に高い伝送品質の維持等を目的として、光信号伝送用の光部品(例えば、導波路デバイスや、伝送信号を規制する薄膜フィルタ等を上げることができ、これらの部品は光機能素子とも呼ばれる)を介して光ファイバ相互を接続する接続形態も増えていて、このような接続形態においても、簡易な接続を実現するメカニカルスプライスの開発が望まれている。
【0008】
しかし、従来のメカニカルスプライスは、光ファイバ相互を突き合わせ接続することを前提としており、光部品を介して光ファイバ相互を接続することはできなかった。
そこで、光ファイバを位置決めするV溝を有した基板の先端上面に、基板上の光ファイバと突き合わせ接続する光部品を位置決めさせた接続構造が提案された(例えば、特許文献2参照)。
【0009】
【特許文献2】
特開平9−230167号公報
【0010】
【発明が解決しようとする課題】
ところが、上記特許文献2に開示の接続構造は、光ファイバの一端に光部品を突き合わせ接続させるだけの構造で、光ファイバ相互を光部品を介して接続する場合には、例えば、光部品を位置決めする手段を有した複数個の基板相互を更に高精度に調心して連結しなければならず、基板相互の位置合わせのために治具が必要になったり、あるいは基板相互を結合する部品が新たに必要となり、組み立て工程が煩雑化すると共に、高精度な接続が困難になるという問題があった。
【0011】
本発明は、前述した問題点に鑑みてなされたものであり、その目的は、光信号伝送用の光部品を介して光ファイバを接続させる接続構造を、面倒な調心作業等を不要にして、簡単に得ることのできる光部品装置を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る光部品装置は、請求項1に記載したように、上面に部品載置領域が設けられると共に、前記部品載置領域に隣接して光ファイバを位置合わせするファイバ載置部が設けられた基板と、前記ファイバ載置部に重ねられて光ファイバを押える押え板と、光信号伝送回路を内蔵し前記部品載置領域に載置される光部品と、前記基板と押え板とを上下から弾性挟持するクランプばねと、前記部品載置領域に載置された前記光部品を着脱可能に前記基板に固定する部品固定手段とを備えていることを特徴とする。
【0013】
このように構成した光部品装置においては、光信号伝送回路を内蔵した光部品と、この光部品を介して接続する光ファイバ相互のそれぞれが、単一の基板上で位置合わせされるため、従来技術での複数の基板相互を専用の治具を用いて位置合わせするような面倒な作業が不用になり、光信号伝送用の光部品を介して光ファイバ相互を接続するための接続構造を、簡単に得ることができる。
【0014】
また、請求項2に記載の光部品装置は、上記目的を達成するために、請求項1に記載の光部品装置において、更に、前記部品固定手段は、前記基板と前記光部品とを上下から挟持する前記クランプばねとしたことを特徴とするものである。
【0015】
このように構成された光部品装置においては、光部品の基板への固定構造が、押え板を基板に固定する構造と同一になり、クランプばねの共用等によって、固定用部品の多様化や部品点数の増加を抑えることができる。
【0016】
また、請求項3に記載の光部品装置は、上記目的を達成するために、請求項1又は2に記載の光部品装置において、更に、前記押え板の前記部品載置領域に相応する位置には、前記光部品を嵌入させる開口窓を貫通形成したことを特徴とするものである。
【0017】
このように構成された光部品装置においては、押え板に貫通形成した開口窓と光部品との嵌め合い公差を適宜に選定しておけば、光部品は開口窓への嵌合だけで位置決めや、固定等が図れる。
【0018】
なお、好ましくは、前記光部品装置における光部品は、請求項4に記載のように、前記光部品として、導波路デバイス、光フィルタ、ファイバグレーティング、MEMS、アンプ等の各種の部品を規定寸法に規格化しておき、規格化したこれらの部品は択一的に選択されて前記部品載置領域に搭載可能にした構成とすると良い。
このようにすると、光ファイバ同士の接合部に付与する機能を、光部品の交換等によって簡単に変更することができる。
【0019】
【発明の実施の形態】
以下、添付図面に基づいて本発明の好適な実施の形態に係る光部品装置を詳細に説明する。
図1及び図2は、発明に係る光部品装置の第1の実施の形態を示したもので、図1は組み立て状態の斜視図、図2は要部の横断面図である。
【0020】
この第1の実施の形態の光部品装置21は、上面の所定位置に規定寸法の部品載置領域23aが設けられると共に、部品載置領域23aに隣接する前後2つの領域にV溝23bによって光ファイバ25,26を位置合わせするファイバ載置部23cがそれぞれ設けられた基板23と、各ファイバ載置部23cの上に重ねられてV溝23bに設置された光ファイバ25,26を押える押え板27と、V溝23bに設置された光ファイバ25,26端が突き合わせ接続される光信号伝送回路を内蔵して部品載置領域23aに載置される光部品29と、基板23と押え板27とを上下から弾性挟持して固定するクランプばね31と、部品載置領域23aに載置された光部品29を着脱可能に基板23に固定する部品固定手段33とを備えている。
【0021】
本実施の形態の場合、基板23は、接続する光ファイバ25,26の軸線方向に細長い直方体状で、その上面の中央部に部品載置領域23aが設定されている。
また、基板23の上面上で、部品載置領域23aを挟む長手方向の両端の領域が、それぞれV溝23bを有したファイバ載置部23cとなっている。
各ファイバ載置部23cは、V溝23bを4列に形成したもので、4心の光ファイバケーブルの各芯線を、所定の高さ位置及び間隔に位置決めして、部品載置領域23aに載置された光部品29に整合させる。
【0022】
クランプばね31は、ばね鋼等の板材を基板23及び押え板27を上下から挟む断面コ字状に折曲成形したものである。
本実施の形態の場合、部品固定手段33は、クランプばね31と同様に断面コ字状に折曲成形したクランプばねで、基板23と光部品29とを上下から挟持して固定する。
【0023】
また、本実施の形態の場合、押え板27は前後2カ所のファイバ載置部23cを一括して覆うように基板23の上面に相応する外形寸法の一部品としており、この押え板27の部品載置領域23aに相応する位置には、光部品29を嵌入させる開口窓27aを貫通形成した構成になっている。
【0024】
本実施の形態では、光部品29として、導波路デバイス、光フィルタ、ファイバグレーティング、MEMS、アンプ等の各種の部品を規定寸法に規格化しておき、規格化したこれらの部品を択一的に選択して部品載置領域23aに搭載し、各ファイバ載置部23cに光ファイバ25,26を装着することで、2箇所のファイバ載置部23cに設置された光ファイバ25,26同士が光部品29を介して接続された接続構造を得る。
【0025】
基板23と押え板27との突き合わせ面の端部には、図示のように、くさびを挿入するためのくさび挿入溝36が装備されている。このくさび挿入溝36にくさびを挿入することで、基板23と押え板27間をクランプばね31の付勢力に抗して開いて、各ファイバ載置部23cに光ファイバ25,26の挿抜を行う点は、従来のメカニカルスプライスと同様である。
【0026】
以上の光部品装置21においては、光信号伝送回路を内蔵した光部品29と、この光部品29を介して接続する光ファイバ25,26相互のそれぞれとが、単一の基板23上で位置合わせされるため、複数の基板相互を専用の治具を用いて位置合わせするような面倒な作業を省略できる。
従って、光信号伝送用の光部品29を介して光ファイバ25,26相互を接続するための接続構造は、面倒な調心作業等が不要で、簡単に得ることができ、光ファイバ25,26相互の接続部に光部品29によって所望の信号処理機能を付加することで、優れた伝送品質の維持等を図ることができる。
【0027】
また、本実施の形態の光部品装置21では、部品固定手段33として、基板23と光部品29とを上下から挟持して固定するクランプばねを採用したため、光部品29の基板23への固定構造が、押え板27を基板23に固定する構造と同一となり、クランプばねの共用等によって、固定用部品の多様化や部品点数の増加を抑えて、光部品装置21の構成を簡略化することができる。
【0028】
また、本実施の形態では、2カ所のファイバ載置部23cの上に重ねて配置する押え板27が単一部品に統合されているため、ファイバ載置部23cが増えても押え板27は一つで済み、光部品装置21の構成部品点数の増加を抑えて、コストの低減を図ることができる。
更に、本実施の形態では、基板23上に重ねられる押え板27には、基板23上の部品載置領域23aに対応して、光部品29を嵌入させる開口窓27aを貫通形成した構成のため、開口窓27aと光部品29との嵌め合い公差を適宜に選定しておけば、光部品29は開口窓27aへの嵌合だけでも位置決め、固定等が図れ、クランプばね33の簡略化又は省略を図って、コストの増大を抑えることができる。
【0029】
また、本実施の形態では、基板23の部品載置領域23aに設置する光部品29は、導波路デバイス、光フィルタ、ファイバグレーティング、MEMS、アンプ等の各種の部品から択一的に選択することができ、光ファイバ25、26同士の接合部に付与する機能を、光部品29の交換等によって簡単に変更することができて、多様な接続需要に、簡単、且つ柔軟に対応可能になる。
【0030】
図3及び図4は本発明に係る光部品装置の第2の実施の形態を示したもので、図3は第2の実施の形態の光部品装置の全体斜視図、図4は図3に示した光部品装置の基板に光部品を組み付けた状態での斜視図である。
この第2の実施の形態に示した光部品装置37は、基板23の前後2カ所にファイバ載置部23c,23cを装備し、これらの2つのファイバ載置部23c,23c間に部品載置領域23aが設定され、その部品載置領域23aに光部品29が載置されて、各ファイバ載置部23c,23cに装着された光ファイバ25,26を光部品29を介して接続する点では、上記の第1の実施の形態と共通である。
【0031】
ただし、本実施の形態の場合は、各ファイバ載置部23cに設置された光ファイバ25,26を押える押え板27が、ファイバ載置部23c毎に独立した形態となっていて、それぞれ個別に断面コ字状のクランプばね31によって基板23に固定されるようになっている。
また、光部品29は、基板23上の部品載置領域23aに載置された状態で、部品固定手段33によって基板23に固定される。部品固定手段33は、クランプばね31と同様の断面コ字状のクランプばねである点は、第1の実施の形態の場合と同様であり、また、各押え板27が、くさび挿入溝36へのくさびの挿入によって開かれる点も、第1の実施の形態の場合と同様である。
【0032】
なお、この第2の実施の形態で基板23上に搭載した光部品29は、図4に示すように、伝送路29aの分岐又は合流を行う導波路デバイス(PLC)であるが、第1の実施の形態で説明したように、光フィルタ、ファイバグレーティング、MEMS、アンプ等のいずれかに交換することが可能である。
【0033】
以上の第2の実施の形態のように、押え板27をファイバ載置部23c毎に独立させた構成とすると、押え板27の数量は増えるが、押え板27には光部品29を嵌入させる開口窓等の加工が必要なくなり、押え板27の構造を単純化することができる。
【0034】
なお、上記の各実施の形態では、基板23上に設置する光部品29が対向配置される光ファイバ25,26相互を接合するものであるため、基板23上には、部品載置領域23aを挟んで対向する前後2領域に、それぞれファイバ載置部23cを装備する構成とした。
しかし、基板23上に設置する光部品29が、例えば、MEMS等の光スイッチで、3方向又は4方向に光ファイバが接続される構造の場合は、それに応じて、基板23上に装備するファイバ載置部23cの数量が変更されることは言うまでもない。あるいは、光部品29を設置した基板23を多層に重ねた積層構造とすることもできる。
即ち、本発明に係る光部品装置において、基板23上に装備するファイバ載置部23cの数量,位置等は、上記の実施の形態に限定されない。必要に応じて、任意数に増減することが考えられる。
【0035】
また、基板23上に設置する光部品29は、内蔵する機能回路を、導波路デバイス、光フィルタ、ファイバグレーティング、MEMS、アンプ等のいずれか一つに限定する必要はない。例えば、導波路デバイスに光フィルタ機能を付加した複合デバイスを内蔵した構成とすることも考えられる。
【0036】
【発明の効果】
本発明の光部品装置によれば、光信号伝送回路を内蔵した光部品と、この光部品を介して接続する光ファイバ相互のそれぞれが、単一の基板上で位置合わせされるため、従来技術として用いられていた複数の基板相互を専用の治具を用いて位置合わせするような面倒な作業が不用となる。
従って、光信号伝送用の光部品を介して光ファイバ相互を接続するための接続構造は、面倒な調心作業等を不要して、簡単に得ることができ、光ファイバ相互の接続部に光部品によって所望の信号処理機能を付加することで、多様な接続需要に対し、簡単、且つ、柔軟に対応可能になる。
【図面の簡単な説明】
【図1】本発明に係る光部品装置の第1の実施の形態の斜視図である。
【図2】図1に示した光部品装置の光部品を搭載した横断面図である。
【図3】本発明に係る光部品装置の第2の実施の形態の全体斜視図である。
【図4】図3に示した光部品装置の基板に光部品を組み付けた状態での斜視図である。
【図5】従来のメカニカルスプライスの構成の説明図で、(a)は光ファイバを挿入前の斜視図と横断面図、(b)はメカニカルスプライスの基板と押え板との間をくさびの挿入によって開いて光ファイバを挿入する時の斜視図と横断面図、(c)は基板上に挿入した光ファイバの固定状態の斜視図と横断面図である。
【図6】従来の更に別のメカニカルスプライスの構成を示す横断面図である。
【符号の説明】
21 光部品装置
23 基板
23a 部品載置領域
23b V溝
23c ファイバ載置部
25,26 光ファイバ
27 押え板
27a 開口窓
29 光部品
31 クランプばね
33 部品固定手段
36 くさび挿入溝
37 光部品装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical component device that can easily obtain a connection structure for connecting an optical component (for example, an optical functional element such as a waveguide device) standardized for optical signal transmission and an optical fiber. .
[0002]
[Prior art]
In the communication field, optical fibers capable of high-speed and large-capacity transmission have become the mainstream of transmission lines, and most medium- and long-distance trunk lines have already been replaced with optical fiber cables instead of conventional metal cables. Furthermore, efforts are being made at a rapid pace toward the realization of an optical subscriber transmission system in which the transmission line to each home is to be made into an optical fiber in several years.
[0003]
Conventionally, fusion connection or connection by a connector has been performed for butt connection between optical fibers.
However, fusion splicing is highly reliable because it melts the abutment surface of the optical fiber, but it takes time to reinforce after connection, the fusion device is expensive, and the fusion device is activated. The problem is that a power source is required for the operation.
In addition, the connection using the connector requires time and effort for mounting the connector on the end of each optical fiber, the connector itself costs considerably, the connector increases the bulk of the connection, and the storage of the connection is large. The need to secure storage space has become a problem.
[0004]
Therefore, a mechanical splice 51 shown in FIG. 5 has been proposed as an apparatus that can easily and inexpensively realize a butt connection between optical fibers.
The mechanical splice 51 includes a substrate 55 on which a V-groove 54 for aligning the core wire 53 of the optical fiber 52 is formed, a presser plate 56 that presses and fixes the core wire 53 from above, and these substrates 55. And a clamp spring 57 that clamps and holds the presser plate 56 from above and below.
When connecting the optical fiber 52 to the V-groove 54, as shown in FIG. 5 (b), the wedge 59 is inserted into the wedge insertion groove 58 between the substrate 55 and the presser plate 56 and spread. After the optical fibers 52 are inserted into the gap from both ends and the core wires 53 are abutted with each other, the wedge 59 is removed as shown in FIG. The optical fiber 52 is pressed and fixed by the holding plate 56, and the optical fibers abutted on the V-groove 54 are connected to each other (see, for example, Patent Document 1).
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 9-318836 [0006]
The mechanical splice 51 shown in FIG. 5 is for a single core, but there is also a four-fiber mechanical splice 61 as shown in FIG. In this mechanical splice 61, V grooves 62 are formed in four rows, and each core wire 63 is inserted into the V groove 62, respectively.
[0007]
By the way, in recent years, for the purpose of maintaining higher transmission quality, optical components for optical signal transmission (for example, waveguide devices, thin film filters for regulating transmission signals, etc. can be raised. There is an increasing number of connection forms for connecting optical fibers to each other via a functional element), and it is desired to develop a mechanical splice that realizes simple connection even in such a connection form.
[0008]
However, the conventional mechanical splice is based on the premise that the optical fibers are connected to each other, and the optical fibers cannot be connected to each other through optical components.
In view of this, a connection structure has been proposed in which an optical component to be butt-connected to the optical fiber on the substrate is positioned on the top surface of the front end of the substrate having a V-groove for positioning the optical fiber (see, for example, Patent Document 2).
[0009]
[Patent Document 2]
Japanese Patent Laid-Open No. 9-230167
[Problems to be solved by the invention]
However, the connection structure disclosed in Patent Document 2 is a structure in which an optical component is merely connected to one end of an optical fiber. When optical fibers are connected to each other via an optical component, for example, the optical component is positioned. It is necessary to align and connect a plurality of substrates having means for performing alignment with higher accuracy, and a jig is necessary for the alignment between the substrates, or a new part for connecting the substrates is newly added. As a result, the assembly process becomes complicated, and high-precision connection becomes difficult.
[0011]
The present invention has been made in view of the above-described problems, and an object thereof is to eliminate the need for troublesome alignment work and the like for a connection structure for connecting an optical fiber via an optical component for optical signal transmission. An object of the present invention is to provide an optical component device that can be easily obtained.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, an optical component device according to the present invention has a component placement area on an upper surface and positions an optical fiber adjacent to the component placement area. A substrate provided with a fiber placement portion to be aligned, a pressing plate that is superimposed on the fiber placement portion and presses an optical fiber, and an optical component that contains an optical signal transmission circuit and is placed in the component placement region. A clamp spring for elastically holding the substrate and the pressing plate from above and below, and a component fixing means for detachably fixing the optical component mounted on the component mounting region to the substrate. And
[0013]
In the optical component device configured as described above, the optical component incorporating the optical signal transmission circuit and the optical fibers connected via the optical component are aligned on a single substrate. A connection structure for connecting optical fibers to each other through optical components for optical signal transmission, which eliminates the troublesome work of aligning multiple substrates with technology using a dedicated jig, Can be easily obtained.
[0014]
Further, in order to achieve the above object, the optical component device according to claim 2 is the optical component device according to claim 1, wherein the component fixing means further connects the substrate and the optical component from above and below. The clamp spring is sandwiched between the clamp springs.
[0015]
In the optical component device configured as described above, the structure for fixing the optical component to the substrate is the same as the structure for fixing the presser plate to the substrate. The increase in points can be suppressed.
[0016]
According to a third aspect of the present invention, in order to achieve the above object, the optical component device according to the first or second aspect further comprises a position corresponding to the component placement region of the pressing plate. Is characterized in that an opening window through which the optical component is inserted is formed.
[0017]
In the optical component device configured as described above, if the fitting tolerance between the aperture window penetrating the presser plate and the optical component is appropriately selected, the optical component can be positioned and only fitted into the aperture window. Can be fixed.
[0018]
Preferably, the optical component in the optical component device has various dimensions such as a waveguide device, an optical filter, a fiber grating, a MEMS, and an amplifier as the optical component as defined in claim 4. It is preferable to have a configuration in which these standardized parts are selectively selected and can be mounted in the part placement area.
If it does in this way, the function provided to the junction part of optical fibers can be easily changed by replacement | exchange etc. of optical components.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an optical component device according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
1 and 2 show a first embodiment of an optical component device according to the invention. FIG. 1 is a perspective view of an assembled state, and FIG. 2 is a cross-sectional view of a main part.
[0020]
In the optical component device 21 according to the first embodiment, a component placement area 23a having a specified size is provided at a predetermined position on the upper surface, and light is transmitted by V grooves 23b in two front and rear areas adjacent to the component placement area 23a. A base plate 23 provided with fiber placement portions 23c for aligning the fibers 25 and 26, and a press plate for pressing the optical fibers 25 and 26 placed on the respective fiber placement portions 23c and placed in the V-groove 23b. 27, an optical signal transmission circuit in which the ends of optical fibers 25 and 26 installed in the V-groove 23b are butt-connected, and an optical component 29 mounted on the component mounting region 23a, a substrate 23, and a pressing plate 27 Are clamped elastically from above and below, and component fixing means 33 for detachably fixing the optical component 29 placed on the component placement region 23a to the substrate 23 is provided.
[0021]
In the case of the present embodiment, the substrate 23 has a rectangular parallelepiped shape elongated in the axial direction of the optical fibers 25 and 26 to be connected, and a component placement region 23a is set at the center of the upper surface thereof.
In addition, on the upper surface of the substrate 23, regions at both ends in the longitudinal direction sandwiching the component placement region 23a are fiber placement portions 23c each having a V groove 23b.
Each fiber placement portion 23c is formed of four rows of V-grooves 23b, and each core wire of a four-core optical fiber cable is positioned at a predetermined height position and interval to be placed on the component placement region 23a. Align with the placed optical component 29.
[0022]
The clamp spring 31 is formed by bending a plate material such as spring steel into a U-shaped cross section with the substrate 23 and the holding plate 27 sandwiched from above and below.
In the case of the present embodiment, the component fixing means 33 is a clamp spring bent into a U-shaped cross section like the clamp spring 31 and clamps and fixes the substrate 23 and the optical component 29 from above and below.
[0023]
In the case of the present embodiment, the presser plate 27 is a component having an outer dimension corresponding to the upper surface of the substrate 23 so as to collectively cover the two fiber mounting portions 23c at the front and rear. An opening window 27a into which the optical component 29 is inserted is formed at a position corresponding to the placement region 23a.
[0024]
In this embodiment, as the optical component 29, various components such as a waveguide device, an optical filter, a fiber grating, a MEMS, and an amplifier are standardized to specified dimensions, and these standardized components are selectively selected. Then, the optical fibers 25 and 26 installed in the two fiber mounting portions 23c are optical components by mounting the optical fibers 25 and 26 on the fiber mounting portions 23c. A connection structure connected through 29 is obtained.
[0025]
As shown in the figure, a wedge insertion groove 36 for inserting a wedge is provided at the end of the abutting surface between the substrate 23 and the holding plate 27. By inserting the wedge into the wedge insertion groove 36, the space between the substrate 23 and the holding plate 27 is opened against the urging force of the clamp spring 31, and the optical fibers 25 and 26 are inserted into and removed from the fiber placement portions 23c. The point is the same as the conventional mechanical splice.
[0026]
In the optical component device 21 described above, the optical component 29 incorporating the optical signal transmission circuit and the optical fibers 25 and 26 connected via the optical component 29 are aligned on a single substrate 23. Therefore, the troublesome work of aligning a plurality of substrates using a dedicated jig can be omitted.
Therefore, the connection structure for connecting the optical fibers 25 and 26 via the optical component 29 for optical signal transmission can be easily obtained without the troublesome alignment work and the like. By adding a desired signal processing function to the mutual connection parts by the optical component 29, it is possible to maintain excellent transmission quality.
[0027]
Further, in the optical component device 21 of the present embodiment, a clamp spring that clamps and fixes the substrate 23 and the optical component 29 from above and below is adopted as the component fixing means 33, so that the structure for fixing the optical component 29 to the substrate 23 is adopted. However, the structure of the optical component device 21 can be simplified by suppressing the diversification of the fixing parts and the increase in the number of parts by sharing the clamp springs, etc. it can.
[0028]
Further, in this embodiment, since the presser plate 27 that is placed over the two fiber placement portions 23c is integrated into a single component, the presser plate 27 can be used even if the fiber placement portions 23c increase. One is sufficient, and the increase in the number of components of the optical component device 21 can be suppressed, and the cost can be reduced.
Furthermore, in the present embodiment, the holding plate 27 stacked on the substrate 23 has a configuration in which an opening window 27a for inserting the optical component 29 is formed so as to penetrate the presser plate 27 corresponding to the component placement region 23a on the substrate 23. If the fitting tolerance between the opening window 27a and the optical component 29 is appropriately selected, the optical component 29 can be positioned, fixed, etc. only by fitting to the opening window 27a, and the clamp spring 33 can be simplified or omitted. As a result, an increase in cost can be suppressed.
[0029]
In the present embodiment, the optical component 29 to be installed in the component placement region 23a of the substrate 23 is alternatively selected from various components such as a waveguide device, an optical filter, a fiber grating, a MEMS, and an amplifier. The function imparted to the joint between the optical fibers 25 and 26 can be easily changed by exchanging the optical component 29 or the like, so that various connection demands can be easily and flexibly dealt with.
[0030]
3 and 4 show a second embodiment of the optical component device according to the present invention. FIG. 3 is an overall perspective view of the optical component device according to the second embodiment, and FIG. It is a perspective view in the state where the optical component was assembled | attached to the board | substrate of the shown optical component apparatus.
The optical component device 37 shown in the second embodiment is equipped with fiber mounting portions 23c and 23c at two positions on the front and rear sides of the substrate 23, and the component mounting is between these two fiber mounting portions 23c and 23c. The area 23 a is set, the optical component 29 is placed in the component placement area 23 a, and the optical fibers 25 and 26 attached to the fiber placement portions 23 c and 23 c are connected via the optical component 29. This is common with the first embodiment.
[0031]
However, in the case of the present embodiment, the holding plate 27 for holding the optical fibers 25 and 26 installed in each fiber mounting portion 23c is in an independent form for each fiber mounting portion 23c, and is individually provided. It is fixed to the substrate 23 by a clamp spring 31 having a U-shaped cross section.
The optical component 29 is fixed to the substrate 23 by the component fixing means 33 in a state where the optical component 29 is mounted on the component mounting region 23 a on the substrate 23. The component fixing means 33 is a clamp spring having a U-shaped cross section similar to the clamp spring 31, as in the case of the first embodiment, and each presser plate 27 is connected to the wedge insertion groove 36. The point opened by inserting the wedge is the same as in the first embodiment.
[0032]
The optical component 29 mounted on the substrate 23 in the second embodiment is a waveguide device (PLC) that branches or merges the transmission path 29a as shown in FIG. As described in the embodiment, it can be replaced with any one of an optical filter, a fiber grating, a MEMS, an amplifier, and the like.
[0033]
When the holding plate 27 is made independent for each fiber placement portion 23c as in the second embodiment, the number of the holding plates 27 increases, but the optical component 29 is inserted into the holding plate 27. Processing of the opening window or the like is not necessary, and the structure of the presser plate 27 can be simplified.
[0034]
In each of the above embodiments, since the optical components 29 installed on the substrate 23 are joined to each other, the optical fibers 25 and 26 are joined to each other. It was set as the structure which equips the front and back 2 area | region which opposes on both sides with the fiber mounting part 23c, respectively.
However, in the case where the optical component 29 installed on the substrate 23 is, for example, an optical switch such as a MEMS and has a structure in which optical fibers are connected in three directions or four directions, a fiber to be provided on the substrate 23 accordingly. Needless to say, the quantity of the mounting portions 23c is changed. Or it can also be set as the laminated structure which laminated | stacked the board | substrate 23 which installed the optical component 29 in the multilayer.
That is, in the optical component device according to the present invention, the number, position, and the like of the fiber placement portion 23c provided on the substrate 23 are not limited to the above embodiment. It is conceivable that the number is increased or decreased as required.
[0035]
Further, the optical component 29 installed on the substrate 23 need not limit the built-in functional circuit to any one of a waveguide device, an optical filter, a fiber grating, a MEMS, an amplifier, and the like. For example, a configuration in which a composite device in which an optical filter function is added to a waveguide device is incorporated may be considered.
[0036]
【The invention's effect】
According to the optical component device of the present invention, the optical component incorporating the optical signal transmission circuit and each of the optical fibers connected through the optical component are aligned on a single substrate. The troublesome work of aligning a plurality of substrates used as the above using a dedicated jig becomes unnecessary.
Therefore, a connection structure for connecting optical fibers via optical components for optical signal transmission can be easily obtained without the need for troublesome alignment work. By adding a desired signal processing function depending on parts, it is possible to easily and flexibly respond to various connection demands.
[Brief description of the drawings]
FIG. 1 is a perspective view of a first embodiment of an optical component device according to the present invention.
FIG. 2 is a cross-sectional view in which an optical component of the optical component device shown in FIG. 1 is mounted.
FIG. 3 is an overall perspective view of a second embodiment of an optical component device according to the present invention.
4 is a perspective view of the optical component device shown in FIG. 3 with optical components assembled to the substrate.
FIGS. 5A and 5B are explanatory views of the structure of a conventional mechanical splice, where FIG. 5A is a perspective view and a cross-sectional view before inserting an optical fiber, and FIG. 5B is a wedge insertion between a mechanical splice substrate and a holding plate; (C) is a perspective view and a cross-sectional view of a fixed state of the optical fiber inserted on the substrate.
FIG. 6 is a cross-sectional view showing the configuration of still another conventional mechanical splice.
[Explanation of symbols]
21 Optical component device 23 Substrate 23a Component placement region 23b V groove 23c Fiber placement portion 25, 26 Optical fiber 27 Holding plate 27a Open window 29 Optical component 31 Clamp spring 33 Component fixing means 36 Wedge insertion groove 37 Optical component device

Claims (4)

上面に部品載置領域が設けられると共に、前記部品載置領域に隣接して光ファイバを位置合わせするファイバ載置部が設けられた基板と、前記ファイバ載置部に重ねられて光ファイバを押える押え板と、光信号伝送回路を内蔵し前記部品載置領域に載置される光部品と、前記基板と押え板とを上下から弾性挟持するクランプばねと、前記部品載置領域に載置された前記光部品を着脱可能に前記基板に固定する部品固定手段とを備えていることを特徴とする光部品装置。A component placement area is provided on the upper surface, and a substrate provided with a fiber placement section for aligning the optical fiber adjacent to the component placement area, and the optical fiber is pressed over the fiber placement section. A holding plate, an optical component that contains an optical signal transmission circuit and is placed in the component placement area, a clamp spring that elastically clamps the substrate and the presser plate from above and below, and is placed in the component placement area. An optical component apparatus comprising: a component fixing means for removably fixing the optical component to the substrate. 前記部品固定手段は、前記基板と前記光部品とを上下から挟持する前記クランプばねとしたことを特徴とする請求項1に記載の光部品装置。The optical component device according to claim 1, wherein the component fixing means is the clamp spring that sandwiches the substrate and the optical component from above and below. 前記押え板の前記部品載置領域に相応する位置には、前記光部品を嵌入させる開口窓を貫通形成したことを特徴とする請求項1又は2に記載の光部品装置。The optical component device according to claim 1, wherein an opening window through which the optical component is inserted is formed at a position corresponding to the component placement region of the pressing plate. 前記光部品として、導波路デバイス、光フィルタ、ファイバグレーティング、MEMS、アンプ等の各種の部品を規定寸法に規格化しておき、規格化したこれらの部品は択一的に選択されて前記部品載置領域に搭載可能であることを特徴とする請求項1乃至3のいずれか1項に記載の光部品装置。As the optical component, various components such as a waveguide device, an optical filter, a fiber grating, a MEMS, and an amplifier are standardized to specified dimensions, and these standardized components are selectively selected and placed on the component. 4. The optical component device according to claim 1, wherein the optical component device can be mounted in a region.
JP2003194286A 2003-07-09 2003-07-09 Optical component device Expired - Fee Related JP4134833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003194286A JP4134833B2 (en) 2003-07-09 2003-07-09 Optical component device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003194286A JP4134833B2 (en) 2003-07-09 2003-07-09 Optical component device

Publications (2)

Publication Number Publication Date
JP2005031236A true JP2005031236A (en) 2005-02-03
JP4134833B2 JP4134833B2 (en) 2008-08-20

Family

ID=34205495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003194286A Expired - Fee Related JP4134833B2 (en) 2003-07-09 2003-07-09 Optical component device

Country Status (1)

Country Link
JP (1) JP4134833B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005208192A (en) * 2004-01-21 2005-08-04 Fujikura Ltd Optical components for optical communication line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005208192A (en) * 2004-01-21 2005-08-04 Fujikura Ltd Optical components for optical communication line

Also Published As

Publication number Publication date
JP4134833B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
US12019277B2 (en) Manufacture and testing of fiber optic cassette
US11592628B2 (en) Fiber optic cassette
WO2017063107A1 (en) Fiber connecting device with mechanical element and integrated fiber sensor, fiber connecting device module, and method of connecting two fibers
TWI297402B (en) Optical fiber plug-in connection
KR20100090699A (en) Optical connection structure
JP2015534122A (en) Flexible optical circuit, cassette and method
CN102187258A (en) Multi-fiber interface to photonic subassembly
JP4134833B2 (en) Optical component device
JP2000338371A (en) Optical fiber connector
JP4155203B2 (en) Optical connector, optical module, and optical module unit
JP3926764B2 (en) Optical junction block and method for manufacturing optical waveguide member
JP5400078B2 (en) Planar lightwave circuit connection device
JP2002122751A (en) Optical module, method for connecting the optical module to optical fiber, optical plug and connecting adaptor to be used therefor, and optical fiber wiring board
JP3088829B2 (en) Connector connection structure for waveguide device
JP3228861B2 (en) Connection method of the pin insertion jig and the tape fiber connector laminate
JP4252435B2 (en) Optical wiring box and optical assembly module provided with the wiring box
JP2005031237A (en) Mechanical splice
EP4109159A1 (en) Wavelength division multiplexing cassette for a fiber optic network and method of making same
JPH0875939A (en) Optical waveguide module
US7077580B2 (en) Fiber-optic connectors and related methods
JPH07318751A (en) Optical waveguide module
JP2011112852A (en) Optical fiber connecting apparatus, optical connector, and method of assembling optical fiber connecting apparatus
JP4222953B2 (en) Optical components for optical communication lines
JPH0694940A (en) Waveguide-type optical module
JP3138516B2 (en) Optical functional element coupling member and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

R150 Certificate of patent or registration of utility model

Ref document number: 4134833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees