JP2005031064A - Liquid inspection chip, and its manufacturing method - Google Patents

Liquid inspection chip, and its manufacturing method Download PDF

Info

Publication number
JP2005031064A
JP2005031064A JP2004063353A JP2004063353A JP2005031064A JP 2005031064 A JP2005031064 A JP 2005031064A JP 2004063353 A JP2004063353 A JP 2004063353A JP 2004063353 A JP2004063353 A JP 2004063353A JP 2005031064 A JP2005031064 A JP 2005031064A
Authority
JP
Japan
Prior art keywords
flow path
liquid
self
inspection chip
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004063353A
Other languages
Japanese (ja)
Inventor
Yoshitaka Taniguchi
義隆 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CSTEC KK
Original Assignee
CSTEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CSTEC KK filed Critical CSTEC KK
Priority to JP2004063353A priority Critical patent/JP2005031064A/en
Publication of JP2005031064A publication Critical patent/JP2005031064A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively manufacture a liquid inspection chip having high analytical precision. <P>SOLUTION: In this liquid inspection chip, an opening part 10d corresponding to a flow passage is formed by laser work in the first member 10 provided with adhesive layers 10b, 10c having a self-adhesive property on both faces of a base material 10a. In the liquid inspection chip, planar support members 12, 13 are bonded to both upper and under faces of the adhesive layers 10b, 10c of the first member 10, using the self-adhesive property of the adhesive layers 10b, 10c of the first member 10, so as to form a flow passage 11 surrounded by a lower face of the support member 12, an upper face of the support member 13, and the opening part 10d. The liquid tightness is thereby high between the first member 10 and the support members 12, 13, and the precision of a cross-sectional area in the flow passage 11 is high because one-portions of the adhesive layers 10b, 10c are not protruded toward the flow passage or retracted therefrom. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、血液等の生体液を初めとする流動性を有する試料を検査するための液体検査用チップ及びその作製方法に関する。   The present invention relates to a liquid testing chip for testing a fluid sample such as a biological fluid such as blood and a method for manufacturing the same.

血液中に含まれる各種成分の測定法として、毛細管現象や電気泳動等を利用して微細な断面積を有する流路に血液を流し、それによって血液中の各成分を分離して透過分光分析を行ったり、或いは試薬との発光反応を行わせてその発光光を分光分析したりする方法がある。こうした血液分析をより簡便に且つ少量の試料(血液)で行うために、チップ状の小型の装置が提案されている(例えば特許文献1、2など参照)。   As a method of measuring various components in blood, blood is flowed through a flow path having a fine cross-sectional area using capillary action, electrophoresis, etc., thereby separating each component in the blood and performing transmission spectroscopic analysis. Or performing a luminescence reaction with a reagent and spectroscopically analyzing the emitted light. In order to perform such blood analysis more simply and with a small amount of sample (blood), a chip-like small device has been proposed (see, for example, Patent Documents 1 and 2).

こうした血液検査用チップでは、例えば上記特許文献2に記載があるように、ガラスや合成樹脂などの基板に所定形状の溝パターンを形成し、その基板に他の基板を貼り合わせることにより、上記溝パターンに相当する部分を流路とするのが一般的である。両基板を貼り合わせるためには、両面粘着テープや接着剤などが利用されるほか、超音波融着などによる接合が行われる場合もある。分析手法にもよるが、こうして形成される流路の形状やサイズは、血液中の成分の分離性能などに大きな影響を与える重要な要素である。   In such a blood test chip, as described in Patent Document 2, for example, a groove pattern having a predetermined shape is formed on a substrate such as glass or synthetic resin, and another substrate is bonded to the substrate, whereby the groove is formed. In general, a portion corresponding to a pattern is used as a flow path. In order to bond the two substrates together, a double-sided pressure-sensitive adhesive tape, an adhesive, or the like is used, and there are cases where bonding by ultrasonic fusion or the like is performed. Although depending on the analysis method, the shape and size of the flow path formed in this way are important factors that greatly affect the separation performance of components in blood.

上記のような両面粘着テープを用いた貼り合わせ方法では、粘着テープの一部が流路内に露出し、流路内の血液の流れに悪影響を与えるおそれがある。また、溝のエッジと粘着テープとのエッジとを完全に一致させることは困難であり、そのために流路の断面積が設計値からずれて誤差の原因となる。   In the laminating method using the double-sided pressure-sensitive adhesive tape as described above, a part of the pressure-sensitive adhesive tape is exposed in the flow path, which may adversely affect the blood flow in the flow path. Further, it is difficult to make the edge of the groove and the edge of the adhesive tape completely coincide with each other, so that the cross-sectional area of the flow path deviates from the design value and causes an error.

接着剤を用いた貼り合わせ方法でも接着剤が流路内にはみ出し、そのために流路の断面積が設計値からずれて誤差の原因となる。また、超音波融着による貼り合わせ方法では、溝の全ての周囲を完全に融着することが困難であるため、流路に注入された血液が基板間の隙間に侵入して試料量が変化し、やはり誤差の原因となり得る。   Even in the bonding method using an adhesive, the adhesive protrudes into the flow path, and the cross-sectional area of the flow path deviates from the design value, causing an error. Also, in the bonding method using ultrasonic fusion, it is difficult to completely fuse the entire periphery of the groove, so that the blood injected into the flow path enters the gap between the substrates and the amount of sample changes. However, it can still cause errors.

また、上記特許文献2では基板に溝パターンを形成するためにエッチングが採用されているが、エッチングでは溝のエッジを鋭くすることが難しく、流路の断面積の誤差が大きくなる。基板が合成樹脂製である場合には射出成形により溝を形成することも可能であるが、こうした方法では精密な金型が必要となる。一般に、流路を設計するには或る程度、試行錯誤的な実験を行う必要があるが、その度に金型を作製するのでは大きなコストがかかるとともに時間も掛かる。   Further, in Patent Document 2, etching is employed to form a groove pattern on the substrate. However, it is difficult to sharpen the edge of the groove by etching, and an error in the cross-sectional area of the flow path increases. If the substrate is made of synthetic resin, it is possible to form grooves by injection molding, but such a method requires a precise mold. In general, it is necessary to carry out a trial and error experiment to some extent to design the flow path. However, it takes a lot of cost and time to manufacture a mold each time.

特開平8−294639号公報Japanese Patent Laid-Open No. 8-294439 特開2002−267677号公報JP 2002-267777 A

本発明はこうした課題を解決するために成されたものであり、その主たる目的は、低廉なコストで以て高い分析精度が得られる液体検査用チップとその製作方法を提供することである。   The present invention has been made to solve these problems, and a main object of the present invention is to provide a liquid testing chip capable of obtaining high analysis accuracy at a low cost and a manufacturing method thereof.

課題を解決するための手段、及び発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するために成された第1発明は、小さな断面積を有する流路に検査対象の試料液を流すことにより、該試料液に含まれる成分の検査を行うための液体検査用チップであって、
a)両面に自己粘着層が設けられた樹脂シートであって、所定形状の流路に相当する開口部が形成されて成る第1部材と、
b)前記自己粘着層の粘着性を利用して前記第1部材の両面にそれぞれ貼り付けられた平板状の第2部材及び第3部材と、
から成ることを特徴としている。
A first invention made to solve the above problems is a liquid inspection chip for inspecting a component contained in a sample liquid by flowing the sample liquid to be inspected through a flow path having a small cross-sectional area. Because
a) a resin sheet provided with self-adhesive layers on both sides, a first member formed with openings corresponding to flow paths of a predetermined shape;
b) a flat plate-like second member and a third member respectively attached to both surfaces of the first member using the adhesiveness of the self-adhesive layer;
It is characterized by comprising.

また上記課題を解決するために成された第2発明は、小さな断面積を有する流路に検査対象の試料液を流すことにより、該試料液に含まれる成分の検査を行うための液体検査用チップであって、
a)片面に自己粘着層が設けられた樹脂シートであって、所定形状の流路に相当する開口部が形成されて成る第1部材と、
b)前記自己粘着層の粘着性を利用して前記第1部材の一方の面に貼り付けられた平板状の第2部材と、
c)片面に自己粘着層を有し、該自己粘着層の粘着性を利用して前記第1部材の他方の面に貼り付けられた平板状の第3部材と、
から成ることを特徴としている。
A second invention made to solve the above problems is for liquid inspection for inspecting a component contained in a sample liquid by flowing the sample liquid to be inspected through a flow path having a small cross-sectional area. A chip,
a) a resin sheet provided with a self-adhesive layer on one side, wherein a first member formed with an opening corresponding to a predetermined-shaped flow path;
b) a flat plate-like second member attached to one surface of the first member using the adhesiveness of the self-adhesive layer;
c) a flat plate-like third member that has a self-adhesive layer on one side and is bonded to the other surface of the first member using the adhesiveness of the self-adhesive layer;
It is characterized by comprising.

さらにまた、上記課題を解決するために成された第3発明は、小さな断面積を有する流路に検査対象の試料液を流すことにより、該試料液に含まれる成分の検査を行うための液体検査用チップであって、
a)所定形状の流路に相当する開口部が形成された樹脂シートである第1部材と、
b)それぞれ片面に自己粘着層を有し、該自己粘着層の粘着性を利用して前記第1部材の両面にそれぞれ貼り付けられた平板状の第2部材及び第3部材と、
から成ることを特徴としている。
Furthermore, the third invention made to solve the above-described problem is a liquid for inspecting a component contained in a sample liquid by flowing the sample liquid to be inspected through a flow path having a small cross-sectional area. An inspection chip,
a) a first member which is a resin sheet in which an opening corresponding to a predetermined-shaped channel is formed;
b) each having a self-adhesive layer on one side, and using the adhesiveness of the self-adhesive layer, the flat plate-like second member and third member respectively attached to both sides of the first member;
It is characterized by comprising.

第1乃至第3発明に係る液体検査用チップではいずれも、樹脂シートである第1部材に流路に相当する開口部が形成され、その第1部材を両面から挟み込む第2部材と第3部材との間に第1部材の厚みを深さ方向のサイズとする流路が形成される。また、第1部材と第2及び第3部材との貼り合わせは、接着剤や両面粘着テープなどに拠るのではなく、対面する一方の面に設けられた自己粘着層の粘着性を利用する。   In any of the liquid inspection chips according to the first to third inventions, an opening corresponding to a flow path is formed in the first member that is a resin sheet, and the second member and the third member sandwich the first member from both sides. A channel having the thickness of the first member in the depth direction is formed between the first member and the second member. Further, the bonding of the first member and the second and third members does not depend on an adhesive or a double-sided pressure-sensitive adhesive tape, but utilizes the adhesiveness of the self-adhesive layer provided on one side facing each other.

第1又は第2発明の一実施形態として、第1部材はPET(ポリエチレンテレフタレート)を基材としてその両面又は片面に自己粘着性を有するエラストマ(オレフィン系、ウレタン系、シリコーン系など)等をコーティングして薄膜層を形成したものとすることができる。また、第2又は第3発明の一実施形態として、第2部材又は第3部材は上記のような自己粘着性を有する材料をガラスや合成樹脂製の板状部材の片面にコーティングして薄膜層を形成したものとすることができる。   As one embodiment of the first or second invention, the first member is coated with an elastomer (olefin-based, urethane-based, silicone-based, etc.) having self-adhesiveness on both sides or one side using PET (polyethylene terephthalate) as a base material. Thus, a thin film layer can be formed. Further, as one embodiment of the second or third invention, the second member or the third member is a thin film layer formed by coating a self-adhesive material as described above on one side of a plate member made of glass or synthetic resin. Can be formed.

なお、第2、第3部材の間に形成された流路に試料液(血液など)を外部から注入したり、その試料液を流路中に流通させるために電圧を印加したり、或いは流路途中に試薬を注入したりするために、第2又は第3部材は流路に連通する位置に貫通穴を穿孔した構成とすることができる。   Note that a sample liquid (blood, etc.) is injected from the outside into the flow path formed between the second and third members, or a voltage is applied to flow the sample liquid into the flow path. In order to inject a reagent in the middle of the path, the second or third member can be configured to have a through hole drilled at a position communicating with the flow path.

このように第1乃至第3発明に係る液体検査用チップによれば、第1部材の厚さを制御することで流路の深さ方向のサイズを決めることができる。また、自己粘着性により第1部材と第2、第3部材とは高い液密性を以て貼り合わされるので、流路に流れる試料液がその隙間に浸入することがなく、接着剤や粘着テープと異なり粘着層が流路へはみ出したり逆に流路から後退することがないので、流路断面積の誤差が小さくなる。また、エラストマなどの粘着層は基本的に撥水性であるため、こうした面が流路内に露出していても試料液の流通に影響を及ぼすこともない。これらのことによって、高い分析精度を確保することができる。   As described above, according to the liquid inspection chip according to the first to third aspects of the invention, the size of the flow path in the depth direction can be determined by controlling the thickness of the first member. Moreover, since the first member and the second and third members are bonded together with high liquid-tightness due to self-adhesiveness, the sample liquid flowing in the flow path does not enter the gap, and the adhesive and the adhesive tape In contrast, since the adhesive layer does not protrude into the flow path or reversely move from the flow path, the error in the cross-sectional area of the flow path is reduced. In addition, since an adhesive layer such as an elastomer is basically water-repellent, even if such a surface is exposed in the flow path, it does not affect the flow of the sample liquid. By these things, high analysis accuracy can be ensured.

さらにまた、第1乃至第3発明に係る液体検査用チップでは、第1部材と第2、第3部材とを適度な圧力を以て押し付けることにより貼り合わせを行うことができるので、製作工程が簡略化され、コストの低減が可能である。また、一旦、貼り合わせ後でも容易に剥離させることができるので、貼り合わせ時にずれが生じたような場合でも不良品として廃棄する必要がなく、貼り合わせをやり直せばよい。   Furthermore, in the liquid inspection chip according to the first to third inventions, the first member and the second and third members can be bonded together by pressing them with an appropriate pressure, so that the manufacturing process is simplified. The cost can be reduced. In addition, since it can be easily peeled even after the pasting, it is not necessary to discard it as a defective product even if a deviation occurs during the pasting, and the pasting can be performed again.

また、第1部材にあって開口部を形成する場合に、レーザ照射による抜き加工又は打ち抜き加工を利用することが好ましい。これによれば、幅の狭い開口部を高精度で形成することができ、射出成形で流路を形成するための高価な金型を作製する必要もなくコスト的にも有利である。また、第1部材の片面又は両面に粘着層が設けられている場合に、この粘着層を基材とともにシャープに切り落とすことができる。そのため、分析精度の確保にも有利である。   Further, when forming the opening in the first member, it is preferable to use a punching process or a punching process by laser irradiation. According to this, a narrow opening can be formed with high accuracy, and there is no need to produce an expensive mold for forming a flow path by injection molding, which is advantageous in terms of cost. Moreover, when the adhesion layer is provided in the single side | surface or both surfaces of the 1st member, this adhesion layer can be sharply cut off with a base material. Therefore, it is advantageous for ensuring analysis accuracy.

まず、第1発明の一実施例(第1実施例)である液体検査用チップについて、図1〜図3を参照して説明する。   First, a liquid inspection chip according to an embodiment (first embodiment) of the first invention will be described with reference to FIGS.

図1は第1実施例の液体検査用チップ1の斜視図、図2はこの液体検査用チップの流路を示す上面平面図、図3はこの液体検査用チップの断面構造及び作製手順の説明図である。   FIG. 1 is a perspective view of a liquid testing chip 1 of the first embodiment, FIG. 2 is a top plan view showing a flow path of the liquid testing chip, and FIG. FIG.

第1実施例の液体検査用チップ1は、相対的に厚い2枚の平板状の上部支持部材12、下部支持部材13(本発明における第2、第3部材)によって薄い樹脂シートである第1部材10が挟み込まれた3層構造を有する。第1部材10において流路11に相当する部分は後述するような抜き加工等によって切除されて開口部10dとなっており(図3(B)参照)、その開口部10dの上下両面を支持部材12、13で閉塞することにより、両支持部材12、13の間に流路11が形成されている。したがって、基本的には、流路11の幅は開口部10dの幅で決まり、流路11の深さは第1部材10の厚さで決まる。   The liquid inspection chip 1 of the first embodiment is a thin resin sheet formed by two relatively thick flat plate-like upper support members 12 and lower support members 13 (second and third members in the present invention). It has a three-layer structure in which the member 10 is sandwiched. A portion corresponding to the flow path 11 in the first member 10 is cut out by a punching process or the like as will be described later to form an opening 10d (see FIG. 3B). By closing with 12 and 13, the flow path 11 is formed between the support members 12 and 13. Therefore, basically, the width of the flow path 11 is determined by the width of the opening 10 d, and the depth of the flow path 11 is determined by the thickness of the first member 10.

図3(A)に示すように、第1部材10は、適度な剛性と可撓性とを有するシート状の基材10aの両面に自己粘着性を有する材料をごく薄くコーティングして粘着層10b、10cを形成したものである。基材10aとしては種々の樹脂を用いることができるが、例えばPET(ポリエチレンテレフタレート)等が好適である。一方、粘着層10b、10cは例えばエラストマであり、より具体的には、例えばポリオレフィン系エラストマ、シリコーン系エラストマ、ポリウレタン系エラストマなどが好適である。ポリオレフィン系エラストマを用いたものの一例を挙げると、パナック株式会社のゲルポリマーシートなどを利用することができる。   As shown in FIG. 3 (A), the first member 10 is formed by coating an adhesive layer 10b with a self-adhesive material very thinly on both surfaces of a sheet-like substrate 10a having appropriate rigidity and flexibility. 10c is formed. Various resins can be used as the base material 10a, and for example, PET (polyethylene terephthalate) is preferable. On the other hand, the adhesive layers 10b and 10c are, for example, an elastomer, and more specifically, for example, a polyolefin-based elastomer, a silicone-based elastomer, a polyurethane-based elastomer, and the like are preferable. If an example using a polyolefin elastomer is given, a gel polymer sheet of Panac Corporation may be used.

一方、上部及び下部支持部材12、13はガラスや合成樹脂(例えばアクリル樹脂など)から成る板状部材であって、第1部材10との密着面は高い平滑性を有することが好ましい。   On the other hand, the upper and lower support members 12 and 13 are plate-like members made of glass or synthetic resin (for example, acrylic resin), and the close contact surface with the first member 10 preferably has high smoothness.

なお、前述したようにこの液体検査用チップ1における流路11の深さは、基本的にこの第1部材10の厚さによって決まる。したがって、目的とする流路11の断面積やサイズなどに応じて第1部材10のシート厚を選ぶ必要がある。典型的には、基材10aの厚さは数十μm〜数百μm程度であり、粘着層10c、10dの厚さは数μm〜数十μm程度である。一般に、これらの厚さは非常に高い精度で制御することが可能であり、それによって流路11の深さ方向のサイズも高い精度となる。   As described above, the depth of the flow path 11 in the liquid inspection chip 1 is basically determined by the thickness of the first member 10. Therefore, it is necessary to select the sheet thickness of the first member 10 according to the cross-sectional area and size of the target flow path 11. Typically, the thickness of the base material 10a is about several tens of μm to several hundreds of μm, and the thickness of the adhesive layers 10c and 10d is about several μm to several tens of μm. In general, these thicknesses can be controlled with very high accuracy, whereby the size of the flow path 11 in the depth direction is also highly accurate.

次に図3により本液体検査用チップ1の作製手順の一例を説明する。
(1)第1部材10のシート材に対し(図3(A))、流路11に相当する部分の開口部10dをレーザ照射による抜き加工によって形成する(図3(B))。レーザ加工により開口幅が0.1〜0.3mm程度の高精度での加工が可能である。図2はこうして形成される開口部10d(つまり流路11)パターンの一例であるが、これは加工精度の制限内で任意の形状、サイズとすることができるのは当然である。
Next, an example of a manufacturing procedure of the liquid inspection chip 1 will be described with reference to FIG.
(1) On the sheet material of the first member 10 (FIG. 3A), an opening 10d corresponding to the flow path 11 is formed by punching by laser irradiation (FIG. 3B). High-precision processing with an opening width of about 0.1 to 0.3 mm is possible by laser processing. FIG. 2 shows an example of the opening 10d (that is, the flow path 11) pattern formed in this way, but it is natural that the pattern can have any shape and size within the limits of processing accuracy.

(2)上部支持部材12には、試料液を流路11に注入するための注入用の開口穴14を形成しておく。また、必要に応じて排液用、或いは試薬注入用等の他の開口穴を形成しておいてもよい。こうした開口穴のサイズは流路に比べると遙かに寸法精度は低くてよいが、第1部材10との密着面にバリなどが生じないように注意すべきである。   (2) The upper support member 12 is formed with an opening 14 for injection for injecting the sample solution into the flow path 11. Moreover, you may form other opening holes, such as for drainage or a reagent injection | pouring as needed. The size of the opening hole may be much lower in dimensional accuracy than the flow path, but care should be taken not to cause burrs or the like on the contact surface with the first member 10.

(3)開口部10dを形成した第1部材10を両側から上部及び下部支持部材12、13で挟み込む。そして、支持部材12、13を第1部材10に密着させて適度な圧力で押圧すると、粘着層10b、10cの自己粘着作用によって、間の空気が抜けて高い気密性、液密性を有して粘着する。それによって、上部支持部材12の下面、下部支持部材13の上面及び第1部材10の開口部10cで囲まれる流路11が形成される。   (3) The first member 10 having the opening 10d is sandwiched between the upper and lower support members 12 and 13 from both sides. When the supporting members 12 and 13 are brought into close contact with the first member 10 and pressed with an appropriate pressure, the self-adhesive action of the adhesive layers 10b and 10c causes the air between them to escape and has high air tightness and liquid tightness. And stick. Thereby, the flow path 11 surrounded by the lower surface of the upper support member 12, the upper surface of the lower support member 13 and the opening 10 c of the first member 10 is formed.

したがって、この液体検査用チップ1を用いた検査時に開口穴14を通して流路11内に注入された試料液(血液)は流路11に沿って流れ、その途中で第1部材10と支持部材12、13との隙間等に浸入することがない。また、流路11の断面積はほぼ設計通りの高い精度が確保され、それによって高い分析精度を達成することができる。   Therefore, the sample liquid (blood) injected into the flow channel 11 through the opening hole 14 during the test using the liquid test chip 1 flows along the flow channel 11, and the first member 10 and the support member 12 are in the middle. , 13 does not enter the gap. Moreover, the cross-sectional area of the flow path 11 is ensured with high accuracy almost as designed, thereby achieving high analysis accuracy.

次に、第2発明の一実施例(第2実施例)について、上記図3に相当する図4により説明する。上記第1実施例と同一の構成要素については同一符号を付して説明を省略する。第1実施例と最も異なる点は、第1部材10は片面(図4では上面)にのみ粘着層10bを有しており、その代わりに、下面に貼り合わされる下部支持部材13は基材13aの上面に自己粘着性を有する粘着層13bを備える。この場合、流路11内に粘着層13bが露出するが、粘着層13bは撥水性であるため、流路11に試料液が流れる際にその流通に影響を殆ど与えることはない。   Next, an embodiment (second embodiment) of the second invention will be described with reference to FIG. 4 corresponding to FIG. The same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. The most different point from the first embodiment is that the first member 10 has an adhesive layer 10b only on one side (upper surface in FIG. 4), and instead, the lower support member 13 bonded to the lower surface is a base material 13a. An adhesive layer 13b having self-adhesiveness is provided on the upper surface. In this case, the adhesive layer 13b is exposed in the flow path 11, but the adhesive layer 13b is water-repellent, so that it hardly affects the flow of the sample liquid when it flows through the flow path 11.

続いて、第3発明の一実施例(第3実施例)について、上記図3に相当する図5により説明する。上記第1、第2実施例と同一の構成要素については同一符号を付して説明を省略する。第2実施例と異なる点は、第1部材10は上面、下面ともに粘着層を有さず、その代わりに上面に貼り合わされる上部支持部材12、も基材12aの下面に粘着層12bを備えている。   Subsequently, an embodiment (third embodiment) of the third invention will be described with reference to FIG. 5 corresponding to FIG. The same components as those in the first and second embodiments are denoted by the same reference numerals and the description thereof is omitted. The difference from the second embodiment is that the first member 10 does not have an adhesive layer on the upper surface and the lower surface, but instead has an upper support member 12 bonded to the upper surface, and an adhesive layer 12b on the lower surface of the substrate 12a. ing.

上記第2、第3実施例の構成においても第1実施例と同様の作用・効果を奏することは明らかである。なお、上記実施例はいずれも本発明の一例にすぎず、本発明の趣旨の範囲で適宜、変形、修正又は追加を行っても本願請求項に包含されることは明白である。例えば、上記実施例ではレーザ照射による抜き加工によって流路を形成していたが、打ち抜き加工などによっても同様の流路を形成することができる。   Obviously, the configurations of the second and third embodiments have the same effects and advantages as the first embodiment. The above-described embodiments are merely examples of the present invention, and it is obvious that any modification, modification, or addition as appropriate within the scope of the present invention is included in the claims of the present application. For example, in the above embodiment, the flow path is formed by the punching process by laser irradiation, but a similar flow path can be formed by a punching process or the like.

第1発明の一実施例による液体検査用チップの斜視図。The perspective view of the chip | tip for a liquid test | inspection by one Example of 1st invention. 第1発明の一実施例による液体検査用チップの平面図。The top view of the chip | tip for a liquid test | inspection by one Example of 1st invention. 第1発明の一実施例による液体検査用チップの断面構造及び作製手順の説明図。Explanatory drawing of the cross-section of the chip | tip for a liquid test | inspection by one Example of 1st invention, and a preparation procedure. 第2発明の一実施例による液体検査用チップの断面構造及び作製手順の説明図。Explanatory drawing of the cross-section of the chip | tip for a liquid test | inspection by one Example of 2nd invention, and a preparation procedure. 第3発明の一実施例による液体検査用チップの断面構造及び作製手順の説明図。Explanatory drawing of the cross-section of the chip | tip for liquid inspection by one Example of 3rd invention, and a preparation procedure.

符号の説明Explanation of symbols

1…液体検査用チップ
10…第1部材
10a、12a、13a…基材
10b、12b、13b…粘着層
10d…開口部
11…流路
12、13…支持部材
14…開口穴
DESCRIPTION OF SYMBOLS 1 ... Chip | tip 10 for liquid inspection ... 1st member 10a, 12a, 13a ... Base material 10b, 12b, 13b ... Adhesive layer 10d ... Opening part 11 ... Flow path 12, 13 ... Support member 14 ... Opening hole

Claims (4)

小さな断面積を有する流路に検査対象の試料液を流すことにより、該試料液に含まれる成分の検査を行うための液体検査用チップであって、
a)両面に自己粘着層が設けられた樹脂シートであって、所定形状の流路に相当する開口部が形成されて成る第1部材と、
b)前記自己粘着層の粘着性を利用して前記第1部材の両面にそれぞれ貼り付けられた平板状の第2部材及び第3部材と、
から成ることを特徴とする液体検査用チップ。
A liquid inspection chip for inspecting components contained in a sample liquid by flowing the sample liquid to be inspected through a flow path having a small cross-sectional area,
a) a resin sheet provided with self-adhesive layers on both sides, a first member formed with openings corresponding to flow paths of a predetermined shape;
b) a flat plate-like second member and a third member respectively attached to both surfaces of the first member using the adhesiveness of the self-adhesive layer;
A liquid inspection chip comprising:
小さな断面積を有する流路に検査対象の試料液を流すことにより、該試料液に含まれる成分の検査を行うための液体検査用チップであって、
a)片面に自己粘着層が設けられた樹脂シートであって、所定形状の流路に相当する開口部が形成されて成る第1部材と、
b)前記自己粘着層の粘着性を利用して前記第1部材の一方の面に貼り付けられた平板状の第2部材と、
c)片面に自己粘着層を有し、該自己粘着層の粘着性を利用して前記第1部材の他方の面に貼り付けられた平板状の第3部材と、
から成ることを特徴とする液体検査用チップ。
A liquid inspection chip for inspecting components contained in a sample liquid by flowing the sample liquid to be inspected through a flow path having a small cross-sectional area,
a) a resin sheet provided with a self-adhesive layer on one side, wherein a first member formed with an opening corresponding to a predetermined-shaped flow path;
b) a flat plate-like second member attached to one surface of the first member using the adhesiveness of the self-adhesive layer;
c) a flat plate-like third member that has a self-adhesive layer on one side and is bonded to the other surface of the first member using the adhesiveness of the self-adhesive layer;
A liquid inspection chip comprising:
小さな断面積を有する流路に検査対象の試料液を流すことにより、該試料液に含まれる成分の検査を行うための液体検査用チップであって、
a)所定形状の流路に相当する開口部が形成された樹脂シートである第1部材と、
b)それぞれ片面に自己粘着層を有し、該自己粘着層の粘着性を利用して前記第1部材の両面にそれぞれ貼り付けられた平板状の第2部材及び第3部材と、
から成ることを特徴とする液体検査用チップ。
A liquid inspection chip for inspecting components contained in a sample liquid by flowing the sample liquid to be inspected through a flow path having a small cross-sectional area,
a) a first member which is a resin sheet in which an opening corresponding to a predetermined-shaped channel is formed;
b) each having a self-adhesive layer on one side, and using the adhesiveness of the self-adhesive layer, the flat plate-like second member and third member respectively attached to both sides of the first member;
A liquid inspection chip comprising:
請求項1〜3に記載の液体検査用チップの作製方法であって、前記第1部材の開口部をレーザ照射による抜き加工又は打ち抜き加工により形成することを特徴とする液体検査用チップの作製方法。   The method for producing a liquid inspection chip according to claim 1, wherein the opening of the first member is formed by a punching process or a punching process by laser irradiation. .
JP2004063353A 2003-06-17 2004-03-08 Liquid inspection chip, and its manufacturing method Pending JP2005031064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004063353A JP2005031064A (en) 2003-06-17 2004-03-08 Liquid inspection chip, and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003171520 2003-06-17
JP2004063353A JP2005031064A (en) 2003-06-17 2004-03-08 Liquid inspection chip, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005031064A true JP2005031064A (en) 2005-02-03

Family

ID=34219905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004063353A Pending JP2005031064A (en) 2003-06-17 2004-03-08 Liquid inspection chip, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005031064A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007020556A (en) * 2005-06-17 2007-02-01 Toppan Printing Co Ltd Reaction chip, reaction apparatus and method for producing reaction chip
JP2007064680A (en) * 2005-08-29 2007-03-15 Sysmex Corp Liquid sample suction monitoring method, device, and liquid sample analyzer
JP2010008190A (en) * 2008-06-26 2010-01-14 Fujikura Kasei Co Ltd Liquid passage device
US8499794B2 (en) 2008-10-28 2013-08-06 Fujikura Kasei Co., Ltd. Liquid channel device and production method therefor
US9283562B2 (en) 2008-06-26 2016-03-15 Fujikura Kasei Co., Ltd. Liquid channel device and production method therefor
JP2017193014A (en) * 2016-04-20 2017-10-26 株式会社ディスコ Manufacturing method of microchannel device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007020556A (en) * 2005-06-17 2007-02-01 Toppan Printing Co Ltd Reaction chip, reaction apparatus and method for producing reaction chip
JP2007064680A (en) * 2005-08-29 2007-03-15 Sysmex Corp Liquid sample suction monitoring method, device, and liquid sample analyzer
JP4593404B2 (en) * 2005-08-29 2010-12-08 シスメックス株式会社 Liquid sample suction monitoring method and apparatus, and liquid sample analyzer
JP2010008190A (en) * 2008-06-26 2010-01-14 Fujikura Kasei Co Ltd Liquid passage device
US9283561B2 (en) 2008-06-26 2016-03-15 Fujikura Kasei Co., Ltd. Liquid channel device and production method therefor
US9283562B2 (en) 2008-06-26 2016-03-15 Fujikura Kasei Co., Ltd. Liquid channel device and production method therefor
US9579653B2 (en) 2008-06-26 2017-02-28 Fujikura Kasei Co., Ltd. Liquid channel device and production method therefor
US8499794B2 (en) 2008-10-28 2013-08-06 Fujikura Kasei Co., Ltd. Liquid channel device and production method therefor
JP2017193014A (en) * 2016-04-20 2017-10-26 株式会社ディスコ Manufacturing method of microchannel device

Similar Documents

Publication Publication Date Title
EP1950569A1 (en) Flow cell and process for producing the same
CN101048338B (en) Fluid container composed of two plates
JP5585138B2 (en) Channel tip and jig
US8920727B2 (en) Arrangement and method for electrochemically measuring biochemical reactions and method for producing the arrangement
CN108120755B (en) Detection device and application thereof
JP2008518225A5 (en)
JP2008008880A (en) Microchip made from plastic, manufacturing method therefor, and biochip or microanalytical chip using the same
Khashayar et al. Rapid prototyping of microfluidic chips using laser-cut double-sided tape for electrochemical biosensors
US8851120B2 (en) Fluid handling apparatus and fluid handling system
AU2005255305A1 (en) Sensor chip and manufacturing method thereof
JP2005031064A (en) Liquid inspection chip, and its manufacturing method
JP2007240461A (en) Plastic microchip, joining method therefor, and biochip or micro analytical chip using the same
JPWO2010016372A1 (en) Microchip
US20050210996A1 (en) Flow channel structure and method
US20100074815A1 (en) Master and Microreactor
JP4811251B2 (en) Cell electrophysiological sensor
JP2019055379A (en) Micro flow channel chip, and manufacturing method of the same
JP2012073198A (en) Microchip for analyzer, analysis system, and method for manufacturing microchip for analyzer
US20110033348A1 (en) Microchip and Method for Manufacturing Microchip
US9387477B2 (en) Fluid handling device
JP2017138137A (en) Pcr microchip and nucleic acid amplifier
US20220018744A1 (en) Bridging liquid between microfluidic elements without closed channels
JP6983089B2 (en) Microchannel chip and its manufacturing method
JP4312029B2 (en) Microchannel element
JP6310327B2 (en) Fluid handling equipment