JP2005030803A - Salt water/fresh water boundary discriminating method due to analysis of concentration of ions in muddy water - Google Patents

Salt water/fresh water boundary discriminating method due to analysis of concentration of ions in muddy water Download PDF

Info

Publication number
JP2005030803A
JP2005030803A JP2003193714A JP2003193714A JP2005030803A JP 2005030803 A JP2005030803 A JP 2005030803A JP 2003193714 A JP2003193714 A JP 2003193714A JP 2003193714 A JP2003193714 A JP 2003193714A JP 2005030803 A JP2005030803 A JP 2005030803A
Authority
JP
Japan
Prior art keywords
ions
water
ion concentration
concentration
aquifer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003193714A
Other languages
Japanese (ja)
Inventor
Hiroyuki Azuma
宏幸 東
Susumu Takahashi
進 高橋
Atsuhisa Marui
敦尚 丸井
Takeshi Hayashi
武司 林
Akinobu Miyakoshi
昭暢 宮越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oyo Corp
Original Assignee
Oyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oyo Corp filed Critical Oyo Corp
Priority to JP2003193714A priority Critical patent/JP2005030803A/en
Publication of JP2005030803A publication Critical patent/JP2005030803A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simply and rapidly discriminate a salt water/fresh water boundary in parallel to the excavation of a well. <P>SOLUTION: The well 16 is excavated by a boring machine 14 using excavation water. At this time, the concentrations of Na<SP>+</SP>ions and/or Cl<SP>-</SP>ions and SO<SB>4</SB><SP>2-</SP>ions in muddy water flooding from the hole port of the well are measured and, in a state that the concentration of Na<SP>+</SP>ions and/or Cl<SP>-</SP>ions is suddenly increased or increased, a depth area reduced in the concentration of SO<SB>4</SB><SP>2-</SP>ions is discriminated as a paleo-seawater aquifer while a depth area increased in the concentration of SO<SB>4</SB><SP>2-</SP>ions is discriminated as a Recent seawater aquifer. HCO<SB>3</SB><SP>-</SP>ions in muddy water flooding from the hole port are measured and a region low in the concentration of HCO<SB>3</SB><SP>-</SP>ions is discriminated as a meteoric fresh ground water aquifer and a region high in the concentration HCO<SB>3</SB><SP>-</SP>ions is discriminated as a flowable fresh ground water aquifer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、井戸を掘削しながら塩淡境界を判別できる方法に関し、更に詳しく述べると、掘削時に孔口から溢流する泥水中に存在する所定イオンの濃度を求めることにより、簡便且つ迅速に塩淡境界を判別する方法に関するものである。
【0002】
【従来の技術】
【非特許文献1】
「物理探査による沿岸地域の地下水塩淡分布調査」地球惑星科学関連学会2002年合同大会H060−008、2000年5月27−31日、東宏幸他
【0003】
沿岸地域では、地下に存在する水には通常の地下水(淡水)と塩水がある。一般に塩水の方が密度が大きいため深度の大きな領域(深部)にあるが、その中でも深い部分には現世海水とは性質の異なる古海水(化石海水)が存在する。これらの地下水は、その性質が異なるため、利用目的も異なり資源としての価値も異なる。
【0004】
図2に模式的に示すように、関東平野を始めとする殆ど全ての平野や大地は、海洋性堆積物で構成されており、人間居住域の地下水は、その殆ど全てが、
1.表層の天水性淡水系地下水
2.流動性淡水系地下水
3.(特に海岸域で)現世海水系地下水
4.深部に存在するミネラル分の多い古海水系地下水
の順で堆積している。勿論、これらの帯水層の全てが常に存在しているわけではない。
【0005】
ここで沿岸地域の深部に存在する古海水は、その地層ができたときに取り込まれた海水であり、拡散せずに止まっている。つまり、この古海水帯水層は、海水(現世海水)が潮汐などで動いても動かずに止まっている安定な地層である。そのため、最近、高レベル放射性廃棄物の地層処分場の構築箇所として注目されている。また地下水(淡水)には、表層の天水性淡水系地下水と流動性淡水系地下水があるが、流動性淡水地下水は遠くから流れてくる枯れない水であり、安定しているために、特に地下水資源として有用である。
【0006】
従って、必要に応じてこれら各層の境界を判別することが必要となる。しかし従来方法では、井戸の掘削を行い、地下水の深度方向の混入を避けるためにパッカー工法などの煩雑な処理を行った後、深度毎に地下水を採取し、採取した試料を特別な分析機関に送り、炭素あるいは水素の放射性同位体による年代測定を行うことによって古海水帯水層の位置を特定している。しかし、これら放射性同位体の分析は高度な技術を必要とし、多くの時間と費用がかかる欠点がある。
【0007】
【発明が解決しようとする課題】
最近、本発明者等は、物理探査による沿岸地域の地下水塩淡分布調査を試みた(非特許文献1参照)。ここでは、物理探査手法を利用して間隙水の電導度を測定し、塩淡の区分を行っている。この手法による調査結果は信頼性が高いと考えられるが、測定が大掛かりになる。
【0008】
また、飲料用や温泉などに地下水を利用する場合には、井戸を掘削して地下水を採取した後、実験室に持ち帰り、各種の水質分析を行い地下水の性状を判定している。その後、適切な深度まで井戸を埋め戻したり、あるいはケーシングパイプを挿入して関係のない深度の地下水が井戸に混入しないように施工し、目的とする深度の地下水だけを井戸内に導入する措置を講じている。
【0009】
しかし、この方法では井戸掘削から竣工までに時間がかかり、管理経費の増大や事故(孔壁の崩壊など)の可能性を解消できないなどの問題も生じる。
【0010】
更に、いずれにしても従来技術では井戸を掘削しながら並行して効率よく塩淡境界を判別することはできない。
【0011】
本発明の目的は、井戸を掘削しながら並行して簡便且つ迅速に塩淡境界を判別できる方法を提供することである。
【0012】
【課題を解決するための手段】
塩水が地層に長期間取り込まれ還元状態に長く置かれるとSO 2− イオンが減少することが分かってきた。本発明は、その現象を利用して地下水の性状を掘削と並行して判定する方法である。即ち本発明は、掘削水を用いてボーリングマシンにより井戸を掘削し、その際、孔口から溢流する泥水中のNaイオン及び/又はClイオンとSO 2− イオンの濃度を測定し、Naイオン及び/又はClイオン濃度が急増するか又は増大した状態で、且つSO 2− イオン濃度が低減している深度を古海水帯水層とすることを特徴とする泥水中のイオン濃度分析による塩淡境界判別方法である。また、SO 2− イオン濃度が増大している深度は現世海水帯水層と判別する。
【0013】
更に、淡水系地下水は、滞留時間が長くなると、その地下水中でのHCO イオンの溶存比率が増すことが分かってきた。本発明は、その現象を利用して地下水の性状を掘削に並行して判定する方法である。即ち本発明は、掘削水を用いてボーリングマシンにより井戸を掘削し、その際、孔口から溢流する泥水中のHCO イオン濃度を測定し、HCO イオン濃度が小さい領域を天水性淡水系地下水帯水層とし、HCO イオン濃度が大きい領域を流動性淡水系地下水帯水層と判別することを特徴とする泥水中のイオン濃度分析による塩淡境界判別方法である。
【0014】
泥水は産業廃棄物となる。そこで実際には、環境汚染を極力低減するために、孔口から溢流する泥水を掘削水タンクに貯め、ボーリングマシンに戻して再注入する循環方式が採用されている。その場合には、井戸の孔口と掘削水注入部とで各イオン濃度の差を求め、その差の大小で必要な判別を行うことになる。
【0015】
【発明の実施の形態】
図1は、本発明方法を実施する掘削装置の一例を示す説明図である。先端に掘削ビット10を装着したボーリングロッド12をロータリ式ボーリングマシン14によって回転駆動することにより、井戸16を掘削する。掘削の際、地上に設置した掘削水タンク18からポンプ20で吸引し、掘削水を圧送しボーリングロッド12を通して先端の掘削ビット10に供給する。掘削水は、掘削ビットを冷却する機能を果たす。そして、この掘削水と地下水とが混合した泥水が孔口から溢流し、掘削水タンク18に貯められる。泥水は、切削したスライムを孔外に排出する機能、逸水を防止する機能、孔壁を保護する機能などを果たす。孔口から溢流する泥水は産業廃棄物となるので、通常、掘削水タンク18に一旦貯め、濃度などを調整して掘削水としてポンプ20でボーリングマシン14に戻してボーリングロッド12を通して再注入し、循環使用する。
【0016】
このような井戸掘削システムにおいて、この実施例では、孔口から溢流する泥水と注入部からボーリングロッドに注入する掘削水に現れる所定のイオン(HCO イオン、Naイオン及び/又はClイオン、SO 2− イオン)の各濃度を、例えば図1のA位置とB位置で測定する。勿論、測定に便利なように、B位置に代えて吸引口のC位置で測定してもよい。そして、それぞれのイオン濃度の差を求める。
【0017】
井戸掘削の掘削水としては、通常、河川水や水道水(工業用水道)を使用することが多い。これらの水には、上記のような特定のイオンは殆ど含まれていない。従って、掘削時に孔口から溢流する泥水(掘削水と地下水が混合したもの)中のイオン濃度に着目し、孔口の泥水と注入部の掘削水とのイオン濃度差を求めることで、掘削時に井戸に流入する地下水の影響を正しく反映させることができるのである。
【0018】
図3の(a)〜(d)に掘削深度と地層の関係を示し、各状態おける特定のイオンの濃度について以下説明する。
【0019】
まず、表層の天水性浅部淡水系地下水帯水層まで掘削した場合には(a)、泥水中に現れるHCO イオン濃度は小さい。掘削が進んで、流動性深部淡水地下水帯水層に達すると(b)、泥水中のHCO イオン濃度は急増する。流動性深部淡水系地下水のHCO イオン濃度は200〜700ppm (平均的には300ppm 程度)であり、これと掘削水が混合した後の泥水中では、最低でも50ppm 程度の濃度となる。また孔壁を保護するために使用するベントナイトなどの保護材料にはHCO イオンは含まれていないため、保護材料濃度に関係なく循環してくる泥水中のHCO イオン濃度を測定するだけで、その深度の地下水が天水性浅部淡水地下水か流動性深部淡水地下水かが判定可能である。つまり、溢流する泥水中のHCO イオン濃度がほぼ0ppm であれば天水性浅部淡水系地下水帯水層であり、数十ppm であれば流動性深部淡水系地下水帯水層であることが分かる。因みに、例えばHach社製TestKitを用いれば、0〜1000ppm までの範囲で0.1ppm の精度でHCO イオン濃度を測定することができるため、十分に判定可能である。
【0020】
更に掘削が進むと塩水が存在する深度に達する。これは、泥水中のNaCl、即ちNaイオン及び/又はClイオンが急増することで分かる。従って、原理的にはNaイオン又はClイオンのいずれかを測定すればよい。そして、SO 2− イオン濃度を指標とすることで還元状態に長く置かれていたか否かを判定できる。掘削が現世海水帯水層に達しているとすると(c)、SO 2− イオン濃度は大きいが、古海水帯水層に達しているとすると(d)、SO 2− イオン濃度は小さい。即ち、現世海水のSO 2− イオン濃度は2000〜3000ppm 程度であるが、通常の応力状態では百年程度が経過すると100ppm 以下になる。従って、例えば共立理化学研究所製デジタル簡易水質計ラムダ8000シリーズを使用すると、5〜200ppm の範囲で測定可能であるため、泥水中のSO 2− イオン濃度を測定することで、その深度での塩水が現世海水であるか古海水であるかが判別できる。つまり、溢流する泥水中にNaイオン及び/又はClイオンが十分に存在し、しかもSO 2− イオン濃度が数百ppm であれば現世海水帯水層であり、SO 2− イオン濃度がほぼ0ppm であれば古海水帯水層であることが判別できる。
【0021】
古海水帯水層の探査では、地下数百m〜千数百mの深度まで井戸を掘削する。このとき、掘削に並行して例えば50m毎にNaイオン及び/又はClイオン、SO 2− イオンの各濃度をする。これによって、上記のように古海水帯水層の位置を特定することができる。また、掘削に並行してHCO イオン濃度も測定すれば、掘削の過程で、現在掘削している深度が、天水性淡水系地下水、流動性淡水系地下水、現世海水系地下水、古海水系地下水のいずれの領域であるかの区分を行うことができる。
【0022】
【発明の効果】
本発明は上記のように、掘削水を用いて井戸を掘削し、孔口から溢流する泥水中の所定のイオンの濃度を測定する方法であるから、井戸の掘削と並行して簡便且つ迅速に塩淡境界を判別できる。また、天水性淡水系地下水、流動性淡水系地下水、現世海水系地下水、古海水系地下水の領域区分を行うことができる。本発明方法は、簡便且つ迅速に判別可能であるため、掘削コストを下げ、掘削事故の可能性を低減でき、地下水資源の適切な評価が行える。
【図面の簡単な説明】
【図1】本発明方法を実施するための装置の一例を示す説明図。
【図2】沿岸地域の地下水分布の説明図。
【図3】帯水層と井戸の関係を示す説明図。
【符号の説明】
10 掘削ビット
12 ボーリングロッド
14 ロータリ式ボーリングマシン
16 井戸
18 掘削水タンク
20 ポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method capable of discriminating the salt-and-white boundary while excavating a well. More specifically, the present invention relates to a method for determining the concentration of a predetermined ion present in the muddy water overflowing from a hole at the time of excavation. The present invention relates to a method for determining a light boundary.
[0002]
[Prior art]
[Non-Patent Document 1]
“Survey on the distribution of groundwater salt in coastal areas by geophysical exploration” Geoscience Union Meeting 2002, H060-008, May 27-31, 2000, Hiroyuki Higashi et al.
In coastal areas, the underground water includes normal groundwater (fresh water) and salt water. In general, salt water has a higher density and is in a deeper region (deep part), but there is paleo-seawater (fossil seawater) that is different in nature from modern seawater in the deeper part. Since these groundwaters have different properties, they have different purposes of use and different resources.
[0004]
As shown schematically in Fig. 2, almost all plains and the earth, including the Kanto Plain, are composed of marine sediments, and almost all of the groundwater in human settlements is
1. Surface water-based freshwater groundwater 2. 2. Fluid freshwater groundwater 3. Modern seawater groundwater (especially in coastal areas) It is deposited in the order of paleoseawater groundwater with a high mineral content in the deep part. Of course, not all of these aquifers are always present.
[0005]
Here, the paleo seawater that exists in the deep part of the coastal area is the seawater that was taken in when the stratum was formed, and stopped without spreading. In other words, this paleosea aquifer is a stable formation where seawater (current seawater) remains stationary even if it moves due to tides. Therefore, it has recently attracted attention as a construction site for geological disposal sites for high-level radioactive waste. In addition, groundwater (freshwater) includes surface water-based freshwater groundwater and fluid freshwater groundwater. Fluid freshwater groundwater is an unbearable water that flows from a distance and is particularly stable because it is stable. Useful as a resource.
[0006]
Therefore, it is necessary to determine the boundary between these layers as necessary. However, in the conventional method, after excavating a well and performing complicated processing such as a packer method in order to avoid contamination in the depth direction of groundwater, groundwater is collected at each depth, and the collected sample is used as a special analysis organization. The location of paleo aquifers is determined by feeding and dating with carbon or hydrogen radioisotopes. However, the analysis of these radioisotopes requires a high level of technology, and has a drawback of being time consuming and expensive.
[0007]
[Problems to be solved by the invention]
Recently, the present inventors tried to investigate the distribution of groundwater salt in coastal areas by geophysical exploration (see Non-Patent Document 1). Here, the geophysical exploration method is used to measure the conductivity of pore water and classify the salt. Although the survey results by this method are considered to be highly reliable, the measurement becomes large.
[0008]
When groundwater is used for beverages or hot springs, wells are excavated to collect groundwater, and then taken back to the laboratory to analyze the water quality and determine the properties of groundwater. After that, refill the well to an appropriate depth, or insert a casing pipe so that groundwater of an unrelated depth does not enter the well, and take measures to introduce only the desired depth of groundwater into the well. I'm taking it.
[0009]
However, this method takes time from well drilling to completion, and causes problems such as an increase in management costs and the possibility of an accident (such as collapse of a hole wall).
[0010]
Furthermore, in any case, the conventional technology cannot efficiently distinguish the salt-and-white boundary while excavating a well.
[0011]
An object of the present invention is to provide a method that can easily and quickly discriminate a salt-and-white boundary while excavating a well.
[0012]
[Means for Solving the Problems]
It has been found that SO 4 2− ions decrease when salt water is taken into the formation for a long time and placed in a reduced state for a long time. The present invention is a method for determining the properties of groundwater in parallel with excavation using the phenomenon. That is, the present invention excavates a well with a boring machine using drilling water, and measures the concentration of Na + ions and / or Cl ions and SO 4 2− ions in the muddy water overflowing from the hole. , Na + ion and / or Cl ion concentration is rapidly increased or increased, and the depth at which SO 4 2− ion concentration is reduced is defined as paleosea aquifer. This is a method for discriminating salt / border boundaries by ion concentration analysis. In addition, the depth at which the SO 4 2− ion concentration is increased is determined as the current seawater aquifer.
[0013]
Furthermore, it has been found that as the residence time of freshwater groundwater increases, the dissolved ratio of HCO 3 ions in the groundwater increases. The present invention is a method for determining the properties of groundwater in parallel with excavation using the phenomenon. That is, the present invention uses a drilling water drilling wells by boring machine, in which, HCO 3 in mud overflowing from the hole opening - ion concentration was measured, HCO 3 - Tianshui resistance region ion concentration is less It is a salt-water boundary determination method by ion concentration analysis in mud, characterized in that it is a freshwater groundwater aquifer, and a region having a high HCO 3 ion concentration is determined as a fluid freshwater groundwater aquifer.
[0014]
Mud becomes industrial waste. Therefore, in order to reduce environmental pollution as much as possible, a circulation system is adopted in which muddy water overflowing from the hole is stored in a drilling water tank and returned to the boring machine for reinjection. In that case, the difference of each ion concentration is calculated | required by the hole of a well and a drilling water injection | pouring part, and required discrimination | determination is performed by the magnitude of the difference.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an explanatory view showing an example of an excavator for carrying out the method of the present invention. The well 16 is excavated by rotationally driving a boring rod 12 having a drill bit 10 attached to the tip by a rotary boring machine 14. At the time of excavation, the water is sucked by the pump 20 from the excavation water tank 18 installed on the ground, and the excavation water is pumped and supplied to the excavation bit 10 at the tip through the boring rod 12. The drilling water functions to cool the drill bit. The mud mixed with the drilling water and the groundwater overflows from the hole and is stored in the drilling water tank 18. The muddy water functions to discharge the cut slime out of the hole, to prevent water loss, and to protect the hole wall. Since the muddy water overflowing from the hole becomes industrial waste, it is usually temporarily stored in the drilling water tank 18, adjusted in concentration, etc., returned to the boring machine 14 by the pump 20 as drilling water, and reinjected through the boring rod 12. Use for circulation.
[0016]
In such a well excavation system, in this embodiment, predetermined ions (HCO 3 ions, Na + ions and / or Cl −) appearing in the muddy water overflowing from the hole and the drilling water injected from the injection portion into the boring rod. Each concentration of ions (SO 4 2− ions) is measured, for example, at positions A and B in FIG. Of course, for convenience of measurement, the measurement may be performed at the C position of the suction port instead of the B position. And the difference of each ion concentration is calculated | required.
[0017]
In general, river water or tap water (industrial water) is often used as drilling water for well drilling. These waters contain almost no specific ions as described above. Therefore, paying attention to the ion concentration in the muddy water overflowing from the hole at the time of excavation (mixed of drilling water and groundwater), the difference in ion concentration between the muddy water at the hole and the drilled water at the injection part is obtained. It can accurately reflect the effects of groundwater that sometimes flows into the wells.
[0018]
3A to 3D show the relationship between the excavation depth and the formation, and the concentration of specific ions in each state will be described below.
[0019]
First, when excavating up to a surface aquifer shallow freshwater groundwater aquifer (a), the concentration of HCO 3 ions appearing in the mud is small. Drilling proceeds, and reaches the fluidity deep freshwater aquifers (b), HCO in mud 3 - ion concentration increases rapidly. The HCO 3 ion concentration of the fluid deep freshwater groundwater is 200 to 700 ppm (average is about 300 ppm), and in the mud after mixing this with the drilling water, the concentration is at least about 50 ppm. Also the protective material, such as bentonite used to protect the hole wall HCO 3 - the ion is not included, HCO circulation to come in mud regardless protective material concentration 3 - only measuring ion concentration Therefore, it is possible to determine whether the groundwater at that depth is rainwater shallow freshwater groundwater or fluid deep freshwater groundwater. In other words, if the HCO 3 ion concentration in the overflowing mud is approximately 0 ppm, it is a freshwater shallow freshwater aquifer, and if it is several tens of ppm, it is a fluid deep freshwater aquifer. I understand. For example, if a Test Kit manufactured by Hach is used, the HCO 3 ion concentration can be measured with an accuracy of 0.1 ppm within a range of 0 to 1000 ppm, and therefore it can be sufficiently determined.
[0020]
As the excavation progresses, it reaches a depth where salt water exists. This can be seen by a sudden increase in NaCl, ie, Na + ions and / or Cl ions in the mud. Therefore, in principle, either Na + ions or Cl ions may be measured. Then, it can be determined whether or not the reduced state has been left for a long time by using the SO 4 2− ion concentration as an index. If the excavation reaches the modern seawater aquifer (c), the SO 4 2- ion concentration is high, but if it reaches the paleo-water aquifer (d), the SO 4 2- ion concentration is low. . That is, the SO 4 2− ion concentration of modern seawater is about 2000 to 3000 ppm, but it becomes 100 ppm or less after about a hundred years in a normal stress state. Therefore, for example, if the digital simple water quality meter Lambda 8000 series manufactured by Kyoritsu Riken is used, it is possible to measure in the range of 5 to 200 ppm. Therefore, by measuring the SO 4 2- ion concentration in the mud, It can be determined whether the salt water is modern sea water or paleo sea water. That is, if there is sufficient Na + ions and / or Cl ions in the overflowing mud and the SO 4 2− ion concentration is several hundred ppm, this is a modern seawater aquifer, and SO 4 2− ions. If the concentration is approximately 0 ppm, it can be determined that the sea is an paleo aquifer.
[0021]
In the exploration of paleo aquifers, wells are excavated to a depth of several hundred to several hundreds of meters below ground. At this time, each concentration of Na + ions and / or Cl ions and SO 4 2− ions is set, for example, every 50 m in parallel with the excavation. As a result, the position of the paleosea aquifer can be specified as described above. Further, parallel HCO 3 in the drilling - when ion concentration measurement, in the course of drilling, the depth is currently drilling, rainwater resistance freshwater groundwater, fluidity fresh water groundwater, this world seawater groundwater, old seawater groundwater It is possible to classify which area is.
[0022]
【The invention's effect】
As described above, the present invention is a method for excavating a well using drilling water and measuring the concentration of a predetermined ion in the mud overflowing from the hole, so that it is simple and quick in parallel with the drilling of the well. It is possible to discriminate the salty light boundary. In addition, it is possible to classify rainwater freshwater groundwater, fluid freshwater groundwater, modern seawater groundwater, and paleoseawater groundwater. Since the method of the present invention can be easily and quickly discriminated, the excavation cost can be reduced, the possibility of an excavation accident can be reduced, and an appropriate evaluation of groundwater resources can be performed.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example of an apparatus for carrying out the method of the present invention.
FIG. 2 is an explanatory diagram of groundwater distribution in a coastal area.
FIG. 3 is an explanatory diagram showing the relationship between an aquifer and a well.
[Explanation of symbols]
10 Drilling Bit 12 Boring Rod 14 Rotary Boring Machine 16 Well 18 Drilling Water Tank 20 Pump

Claims (4)

掘削水を用いてボーリングマシンにより井戸を掘削し、その際、孔口から溢流する泥水中のNaイオン及び/又はClイオンとSO 2− イオンの濃度を測定し、Naイオン及び/又はClイオン濃度が急増するか又は増大した状態で、且つSO 2− イオン濃度が低減している深度を古海水帯水層とすることを特徴とする泥水中のイオン濃度分析による塩淡境界判別方法。The well is excavated by a boring machine using drilling water, and at that time, the concentration of Na + ions and / or Cl ions and SO 4 2− ions overflowing from the hole is measured, and Na + ions and And / or salt obtained by ion concentration analysis in mud water, characterized in that the depth at which the SO 4 2− ion concentration is reduced is a paleo aquifer in a state in which the Cl ion concentration is rapidly increased or increased. A method for distinguishing light boundaries. SO 2− イオン濃度が増大している深度を現世海水帯水層とする請求項1記載の泥水中のイオン濃度分析による塩淡境界判別方法。2. The method for discriminating a salt boundary by analyzing the ion concentration in mud according to claim 1, wherein the depth at which the SO 4 2− ion concentration increases is a modern seawater aquifer. 孔口から溢流する泥水中のHCO イオン濃度を測定し、HCO イオン濃度が小さい領域を天水性淡水地下水帯水層とし、HCO イオン濃度が大きい領域を流動性淡水地下水帯水層とする請求項1又は2記載の泥水中のイオン濃度分析による塩淡境界判別方法。HCO in mud overflowing from the bore hole 3 - ion concentration was measured, HCO 3 - ion concentration of rainfed of freshwater aquifers a small area, HCO 3 - flowability fresh groundwater zone areas ion concentration is greater The method for discriminating a salty light boundary by ion concentration analysis in muddy water according to claim 1 or 2, wherein the layer is an aqueous layer. 孔口から溢流する泥水を掘削水タンクに貯め、ボーリングマシンに戻して再注入する循環方式とし、孔口と注入部とで各イオン濃度の差を求め、その差の大小で判別する請求項1乃至4のいずれかに記載の泥水中のイオン濃度分析による塩淡境界判別方法。Claims in which the muddy water overflowing from the hole is stored in the drilling water tank, returned to the boring machine and re-injected, and the difference in each ion concentration is determined between the hole and the injection part, and the difference is determined by the magnitude of the difference. 5. A method for determining a salt-and-light boundary by ion concentration analysis in mud water according to any one of 1 to 4.
JP2003193714A 2003-07-08 2003-07-08 Salt water/fresh water boundary discriminating method due to analysis of concentration of ions in muddy water Pending JP2005030803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003193714A JP2005030803A (en) 2003-07-08 2003-07-08 Salt water/fresh water boundary discriminating method due to analysis of concentration of ions in muddy water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003193714A JP2005030803A (en) 2003-07-08 2003-07-08 Salt water/fresh water boundary discriminating method due to analysis of concentration of ions in muddy water

Publications (1)

Publication Number Publication Date
JP2005030803A true JP2005030803A (en) 2005-02-03

Family

ID=34205100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003193714A Pending JP2005030803A (en) 2003-07-08 2003-07-08 Salt water/fresh water boundary discriminating method due to analysis of concentration of ions in muddy water

Country Status (1)

Country Link
JP (1) JP2005030803A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130557A1 (en) * 2016-01-27 2017-08-03 ハイテック株式会社 Groundwater detection method, boring device, and core collecting device
CN114413996A (en) * 2022-03-30 2022-04-29 山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队) Dynamic underground water level monitoring device and method for hydrological exploration
CN115575093A (en) * 2022-11-16 2023-01-06 中国海洋大学 Sea-filling area double-seepage unit simulation device and test method thereof
CN116754735A (en) * 2023-06-20 2023-09-15 北京低碳清洁能源研究院 Method for predicting water quality components and concentration content of mine water of coal mine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130557A1 (en) * 2016-01-27 2017-08-03 ハイテック株式会社 Groundwater detection method, boring device, and core collecting device
JPWO2017130557A1 (en) * 2016-01-27 2018-02-01 ハイテック株式会社 Groundwater detection method, boring device and core collecting device
CN114413996A (en) * 2022-03-30 2022-04-29 山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队) Dynamic underground water level monitoring device and method for hydrological exploration
CN115575093A (en) * 2022-11-16 2023-01-06 中国海洋大学 Sea-filling area double-seepage unit simulation device and test method thereof
CN115575093B (en) * 2022-11-16 2023-05-12 中国海洋大学 Sea-filling area double-seepage unit simulation device and testing method thereof
CN116754735A (en) * 2023-06-20 2023-09-15 北京低碳清洁能源研究院 Method for predicting water quality components and concentration content of mine water of coal mine

Similar Documents

Publication Publication Date Title
Taniguchi et al. Investigation of submarine groundwater discharge
Nativ et al. Designing a monitoring network for contaminated ground water in fractured chalk
Perrin et al. Assessing the flow regime in a contaminated fractured and karstic dolostone aquifer supplying municipal water
Nofal et al. Sea water intrusion in Nile Delta in perspective of new configuration of the aquifer heterogeneity using the recent stratigraphy data
Agoubi et al. Saltwater intrusion modelling in Jorf coastal aquifer, South‐eastern Tunisia: geochemical, geoelectrical and geostatistical application
Hepburn et al. Environmental isotopes as indicators of groundwater recharge, residence times and salinity in a coastal urban redevelopment precinct in Australia
Richard et al. Field evidence of hydraulic connections between bedrock aquifers and overlying granular aquifers: examples from the Grenville Province of the Canadian Shield
Maurice et al. Karst hydrogeology of the Chalk and implications for groundwater protection
Fu et al. Assessment of submarine groundwater discharge in the intertidal zone of Laizhou Bay, China, using electrical resistivity tomography
JP2005030803A (en) Salt water/fresh water boundary discriminating method due to analysis of concentration of ions in muddy water
Rodríguez-Estrella et al. Methodologies for abstraction from coastal aquifers for supplying desalination plants in the south-east of Spain
Gregg et al. Geologic and hydrologic control of chloride contamination in aquifers at Brunswick, Glynn County, Georgia
US11572764B2 (en) CO2 geological sequestration in synclinal ponds
Assari Defining hydrogeology of the Gohar-Zamin open pit mine, Iran: a case study in a hard-rock aquifer
Cheng Groundwater: Saltwater Intrusion
Abu-Bakr et al. Optimization of abstraction wells near coastal zone
Saxena et al. Identification of water-bearing fractures in hard rock terrain by electrical conductivity logs, India
Stanton et al. Groundwater Quality near the Montebello Oil Field, Los Angeles County, California
Izbicki Sources of high-chloride water to wells, eastern San Joaquin ground-water subbasin, California
Brassington et al. A comparison of field methods used to define saline-fresh groundwater interfaces at two sites in North West England
Morrison et al. Fresh water depth determination and mapping of saline/fresh water interphase using geographical logs in coastal aquifers of Niger Delta, Nigeria
Jiao et al. Confined groundwater at No. 52, Hollywood Road, Hong Kong
Gootee An Evaluation of Carbon Dioxide Sequestration Potential in the Luke Basin, south-central Arizona
Manyama Hydrogeophysical characterisation of shallow coastal aquifers in the Western Cape, South Africa
Muldoon et al. Tracer study for characterization of groundwater movement and contaminant transport in fractured dolomite