JP2005030667A - Combustor for gas turbine and operation method therefor - Google Patents

Combustor for gas turbine and operation method therefor Download PDF

Info

Publication number
JP2005030667A
JP2005030667A JP2003195554A JP2003195554A JP2005030667A JP 2005030667 A JP2005030667 A JP 2005030667A JP 2003195554 A JP2003195554 A JP 2003195554A JP 2003195554 A JP2003195554 A JP 2003195554A JP 2005030667 A JP2005030667 A JP 2005030667A
Authority
JP
Japan
Prior art keywords
fuel
combustor
gas turbine
annular burner
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003195554A
Other languages
Japanese (ja)
Other versions
JP3996100B2 (en
Inventor
Keisuke Miura
圭祐 三浦
Hiroshi Inoue
洋 井上
Hiromi Koizumi
浩美 小泉
Takeo Saito
武雄 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003195554A priority Critical patent/JP3996100B2/en
Publication of JP2005030667A publication Critical patent/JP2005030667A/en
Application granted granted Critical
Publication of JP3996100B2 publication Critical patent/JP3996100B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combustor for a gas turbine capable of more effectively suppressing NOx. <P>SOLUTION: In this combustor, a fuel supply amount of an annular burner group positioned on the radially inner side among a plurality of radially divided annular burner groups 11A-11C is set to be smaller than the annular burner group positioned on the radially outer side. Thereby, fuel spouted from the annular burner group positioned on the radially inner side is present on the upstream side of a combustion chamber 2 as non-combusted amount, and it is combusted on the downstream side to allow sluggish progress of combustion. As a result, combustion temperature in a center part of the combustor falls to suppress generation of NOx. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はガスタービン用燃焼器及びその運転方法に係り、特に、半径方向に複数に分けた環状バーナ群に夫々対応する燃料供給系を個別に制御するようにしたガスタービン用燃焼器及びその運転方法に関する。
【0002】
【従来の技術】
従来、半径方向に複数に分けた環状バーナ群に夫々対応する燃料供給系を個別に制御するようにしたガスタービン用燃焼器は、例えば特許文献1及び特許文献2で、既に提案されている。
【0003】
【特許文献1】
特開昭56−119423号公報(第2a図及び第2b図とその説明)
【特許文献2】
特開平6−323543号公報(図4及び明細書の段落番号0013)
【0004】
【発明が解決しようとする課題】
従来におけるガスタービン用燃焼器は、複数に分けた環状バーナ群への燃料の供給を夫々個別に制御することができるものの、より効果的な窒素酸化物(以下NOxと称する)の抑制については配慮されていない。
【0005】
本発明の目的は、NOxをより効果的に抑制できるガスタービン用燃焼器を提供することにある。
【0006】
【課題を解決するための手段】
本発明は上記目的を達成するために、半径方向に複数に分けられた複数の環状バーナ群のうち、半径方向内側に位置する環状バーナ群の燃料供給量を半径方向外側に位置する環状バーナ群に比べて少なくしたのである。
【0007】
上記構成とすることにより、半径方向内側に位置する環状バーナ群から噴出される燃料が燃焼室の上流側で未燃焼分として存在する。これが下流側で既燃ガスと混ざりながら燃焼されるので緩慢に燃焼が進むことになり、その結果、燃焼器の中心部における燃焼温度が下がり、NOxの発生を抑制できるのである。
【0008】
【発明の実施の形態】
以下本発明によるガスタービン用燃焼器の第1の実施の形態を図1〜図4に基づいて説明する。
【0009】
ガスタービン用燃焼器1は、大きく分けると燃焼ガス流通方向に燃焼器中心軸Xを有する燃焼室2と、この燃焼室2に混合気を噴出させる燃焼バーナ3と、この燃焼バーナ3へ燃料を供給する燃料供給系4とを備えている。
【0010】
燃焼室2は、外筒5の内側に間隔をもって配置された筒状の燃焼器ライナ6によって形成されている。
【0011】
前記燃焼バーナ3は、前記燃焼器ライナ6の上流側端を塞ぐ端板7と、この端板7に設けられた多数の空気孔8と、これら空気孔8と対をなし前記燃焼器中心軸Xと平行な多数の燃料ノズル9と、これら燃料ノズル9に供給する燃料を分配する燃料ヘッダ10とを備えている。
【0012】
前記多数の燃料ノズル9は、図3及び図4に示すように、前記燃料ヘッダ10を内側から半径方向Yに分割した第1燃料ヘッダ10A,第2燃料ヘッダ10B,第3燃料ヘッダ10Cによって、第1燃料ノズル群9A,第2燃料ノズル群9B,第3燃料ノズル群9Cに区分けされている。そして、区分けされた第1燃料ノズル群9A,第2燃料ノズル群9B,第3燃料ノズル群9Cの各燃料ノズル9に対向する空気孔8とで第1環状バーナ群11A,第2環状バーナ群11B,第3環状バーナ群11Cを構成している。
【0013】
一方、前記燃料供給系4は、燃料供給管12と、この燃料供給管12から分岐された第1燃料供給管13A,第2燃料供給管13B,第3燃料供給管13Cとを備えている。そして、各管12,13A,13B,13Cには、夫々燃料制御弁14,15a〜15cが設けられ、さらに第1〜3燃料供給管13A〜13Cには、遮断弁16a〜16cが設けられている。
【0014】
このように構成されたガスタービン用燃焼器1に対し、圧縮機17により圧縮された空気が燃焼器ライナ6の下流側から燃焼器ライナ6と外筒5との間に圧送される。圧送された空気の一部は、燃焼器ライナ6に設けた冷却空気孔(図示省略)から燃焼室2内に流入し、残りの空気は、端板7の上流側から空気孔8を通過して燃焼室2の最上流側に流入する。ここで、端板7に設けた空気孔8が、燃料ノズル9と同軸に配置されているので、燃料ノズル9から噴出される燃料噴流を空気環状流で包んだ状態で燃焼室2内に噴出し、そこで混合された燃料と空気は火炎を形成して燃焼する。燃焼による燃焼ガスは、燃焼器ライナ6の下流側に連結されたトランジションピース18を経由して前記圧縮機17と同軸のガスタービン19に供給され、ガスタービンに回転力を付与する。
【0015】
次に、上記構成のガスタービン用燃焼器の運転方法について図5に基づいて説明する。図中の折れ線は、燃焼器着火から100%負荷に対する局所燃空比の変化を示す。(1)は着火時、(2)は負荷をかけ始めた時点、(3)は100%負荷時である。着火から負荷をかけ始めるまでは、第2燃料供給管13B,第3燃料供給管13Cの遮断弁16b,16cを閉じ、第1燃料供給管13Aの遮断弁16aを開いて第1環状バーナ群11Aにのみ燃料を供給して火炎を形成するモードIで運転する。この状態で負荷をかけ始めると、局所燃空比は上昇し、これにともない燃焼温度が上昇するので、NOxの排出量が増加してゆく。さらに負荷を増加させてゆく途中(4)で、第2燃料供給管13Bの遮断弁16bを開いて第1環状バーナ群11Aに加えて第2環状バーナ群11Bにも燃料を供給して火炎を形成するモードIIで運転する。そうすると、同じ量の燃料が広範囲に供給されるので、形成される火炎は、燃焼室2の燃焼器中心軸Xに対して半径方向Yに広がる。このとき、局所燃空比は(5)に下がるので、燃焼温度が下がりNOxの排出量を抑えることができる。
【0016】
さらに、負荷を増加させてゆくと、局所燃空比は(6)まで上昇する。ここで、第3燃料供給管13Cの遮断弁16cを開いて第1環状バーナ群11A及び第2環状バーナ群11Bに加えて第3環状バーナ群11Cにも燃料を供給して全バーナから燃料を噴出させてモードIIIで燃焼させると、燃焼室2の下流全体に火炎が形成される。このとき、局所燃空比は、(7)まで下がり、それにより燃焼温度が下がってNOxの排出量は少なくなる。
【0017】
さらに、負荷を増加させて100%(3)までモードIIIでの運転を行う。
【0018】
上記運転方法によれば、常に、燃焼器中心軸Xから半径方向Yに広がる一つの纏まった火炎を形成でき、燃焼器出口における温度分布の偏りを小さくすることができる。
【0019】
尚、部分負荷領域では、条件によって局所燃空比が(4)及び(6)のように高くなって燃焼温度が上昇するので、これにより燃焼器ライナ6を加熱して寿命を短くする虞がある。しかし本実施の形態においては、モードI及びモードIIで示されるように、部分負荷時に形成される火炎は第1及び第2環状バーナ群11A,11Bによるもので、燃焼器ライナ6から離れており、しかも燃焼器ライナ6と火炎との間には第3環状バーナ群11Cからの空気の噴流があって燃焼器ライナ6の温度上昇を抑えているので、寿命の低下を抑制することができる。
【0020】
この外、本実施の形態によれば、燃焼器軸方向Xに対し燃焼バーナ3を、半径方向Yに第1環状バーナ群11A,第2環状バーナ群11B,第3環状バーナ群11Cに分割し、夫々燃料の供給及び供給量の調節が行えるように構成しているので、火炎中の局所燃空比を半径方向Yに分布をつけて形成することができる。例えば、図6の変形モードIに示すように、第2環状バーナ群11Bと第3環状バーナ群11Cにおける局所燃空比は、火炎が安定に保炎される燃空比であるのに対し、第1環状バーナ群11Aの燃空比を、第1環状バーナ群11Aの近傍に保炎しない程度に下げることができる。このとき、第1環状バーナ群11Aから噴出される燃料は燃焼室2の上流側では多くの未燃焼分として存在しているが、周囲の高温燃焼ガスとの間の熱伝導や対流拡散混合によって熱の授受が行われるので緩慢に燃焼が進んで行く。そして、最終的には、燃焼反応が完結するので、一酸化炭素や未燃焼炭化水素の排出量は極めて少なくなる。この場合、燃焼室2の中央部における燃焼温度は下がり、NOxの排出量を抑えることができる。
【0021】
また、例えば、図7の変形モードIIに示すように、第1環状バーナ群11Aに加え、第2環状バーナ群11Bの燃空比もバーナ近傍に保炎しないように下げて第3環状バーナ群11Cのみによる燃焼を行うことも可能である。このように、第3環状バーナ群11Cのみによる燃焼を行うと、燃焼温度が低い領域が増えるので、全体のNOxの排出量を下げることができる。ただし、このとき火炎の保炎領域が半径方向に狭くなり過ぎると安定性が下がり、周囲を流れる空気流の影響により一酸化炭素や未燃炭化水素が排出される可能性が高まるので、保炎領域を半径方向にある程度の幅で確保することが望ましい。
【0022】
このように、第3環状バーナ群11Cの内側に位置する第1環状バーナ群11A又は第1環状バーナ群11Aと第2環状バーナ群11Bの燃空比を下げることにより、NOxの排出量を下げることができる。
【0023】
このときの負荷に対する運転方法を図8に基づいて説明する。局所燃空比が(7)〜(3)に対応する負荷ではモードIIIで運転され、火炎は燃焼バーナの下流前面に形成されている。ここから負荷を下げる場合、全体的に燃空比を下げると、火炎が保持されなくなるために、モードIIに切替える。この時、局所燃空比が大きくなるために燃焼温度が上昇し、NOxが多量に排出される。そこで、第1環状バーナ群11A又は第1環状バーナ群11Aと第2環状バーナ群11Bの燃空比を保炎しない程度に下げて変形モードIIに切替えれば、燃焼バーナ前面から燃料が流れているために、モードIIに比べて局所燃空比が下がり、その結果、燃焼温度が低下するので、NOxの排出量を抑えることができる。また、第3環状バーナ群11Cの局所燃空比は、火炎を保持する値に維持されているので、低NOxで運転できる負荷帯を広げることができる。
【0024】
同様に、局所燃空比が(5)に対応する負荷では、モードIIから変形モードI´に切替えて運転する。変形モードI´はモードIに比べて同一の負荷でも局所燃空比が低く燃焼温度が低いため、NOxの排出量はモードIに比べて少なく、その結果、低NOxで運転できる負荷帯を広げることができる。
【0025】
ところで、複数の燃焼器を備えたガスタービンは、各燃焼器に夫々点火栓を設けて各燃焼器毎に着火させるのではなく、点火栓のある特定の燃焼器で着火させた後、隣接する燃焼器にクロスファイア管を介して次々に高温燃焼ガスを流入させ、その熱により隣接する燃焼器を次々に着火させているのが一般的である。
【0026】
しかしながら、第1の実施の形態に示すように、燃焼バーナ3の端板7の全面に多数の空気孔8が存在していると、第1環状バーナ群11Aのみに着火させた場合、その半径方向外側の第2環状バーナ群11B及び第3環状バーナ群11Cの空気孔8からの噴出空気が空気のカーテンを作り、この空気のカーテンが第1環状バーナ群11Aでの高温燃焼ガスがクロスファイア管を介して隣接する燃焼器に移動することを妨げ、隣接燃焼器の着火を不可能にする不都合がある。
【0027】
このような不都合を解消した本発明によるガスタービン用燃焼器の第2の実施の形態を図9に基づいて説明する。
【0028】
即ち、燃焼バーナの端板7の第2環状バーナ群11B及び第3環状バーナ群11Cに対向する領域に半径方向に跨る保炎領域20を複数設け、この保炎領域20を図示しないクロスファイア管の開口に対向させるようにしたのである。
【0029】
前記保炎領域20は、例えば、空気孔8の開口面積を小さくした領域や、空気孔8の存在しない領域を設けて空気のカーテンが形成されないようにしたのである。その結果、この保炎領域20の下流側には火炎が伝播し易くなり、隣接燃焼器へ着火に必要な高温燃焼ガスをクロスファイア管から導入することができる。
【0030】
図10は、本発明によるガスタービン用燃焼器の第3の実施の形態を示すもので、本実施の形態は、図9に示す第2の実施の形態における空気孔8のうち、第3環状バーナ群11Cに対向する空気孔8Cに旋回角を設けたのである。旋回角は、燃焼器中心軸Xに対して周方向と半径方向の成分を有するものである。半径方向の成分は、空気孔8Cの噴出口が半径方向内側に向くように形成されている。
【0031】
上記のような旋回角を有する空気孔8Cとしたので、噴出される噴流は半径方向内側を向く旋回流を形成し、燃焼器下流において第1環状バーナ群11A及び第2環状バーナ群11Bの噴流との混合が促進される。
【0032】
通常、前述の図8の変形モードI´及び変形モードIのような半径方向内側に保炎せず、燃焼室の下流領域における半径方向外側の高温燃焼ガスとの間の熱伝導や対流拡散による熱の授受により半径方向内側の混合気の燃焼反応を進めるような燃焼モードでは、半径方向内側を流れる混合気と半径方向外側を流れる高温燃焼ガスとの間で十分な混合が行わなければ、一酸化炭素や未燃炭化水素が排出される可能性がある。
【0033】
しかし、本実施の形態によれば、半径方向外側に形成される半径方向内側を向く旋回流によって、半径方行内外側を流れる混合気と高温燃焼ガスとが十分に混合される。この混合気と高温燃焼ガスとの十分なる混合により、熱の授受が活発に行われて半径方行内側を流れる混合気の燃焼反応が促進され、一酸化炭素や未燃炭化水素の排出を低減することができる。
【0034】
図11は、本発明によるガスタービン用燃焼器の第4の実施の形態を示すもので、本実施の形態は、図9に示す第2の実施の形態における空気孔8のうち、第1環状バーナ群11Aに対向する空気孔8Aに旋回角を設けたのである。旋回角は、燃焼器中心軸Xに対して周方向と半径方向の成分を有するものである。半径方向の成分は、空気孔8Aの噴出口が半径方向外側に向くように形成されている。
【0035】
上記のような旋回角を有する空気孔8Aとしたので、第1環状バーナ群11Aから噴出される噴流は半径方向外側を向く旋回流を形成し、燃焼器下流において第2環状バーナ群11B及び第3環状バーナ群11Cの高温燃焼ガスとの混合が促進される。この半径方向内外側の混合気と高温燃焼ガスとの十分なる混合により、熱の授受が活発に行われて半径方行内側を流れる混合気の燃焼反応が促進され、一酸化炭素や未燃炭化水素の排出を低減することができる。
【0036】
図12は、本発明によるガスタービン用燃焼器の第5の実施の形態を示すもので、本実施の形態においては、第3環状バーナ群11Cを2つの半環状バーナ21A,21Bで構成し、これらに別々に制御できる燃料供給管(図示せず)を接続し、さらに、これら2つの半環状バーナ21A,21Bのうち、半環状バーナ21Bに対向してクロスファイア管22を設けたのである。
【0037】
上記構成において、着火時に、第1環状バーナ群11Aの第1燃料ノズル群9Aに燃料を供給すると共に、半環状バーナ21Bの第3燃料ノズル群9Cにも燃料を供給する。その結果、半環状バーナ21Bは、第1環状バーナ群11Aによる高温燃焼ガスをクロスファイア管22に伝える伝達機能を有し、クロスファイアを良好に行うことができる。
【0038】
したがって、本実施の形態によれば、図9〜11に示すような保炎領域20を設ける必要はない。その外は、上記各実施の形態と同じ作用効果を奏するものである。
【0039】
【発明の効果】
以上説明したように本発明によれば、NOxをより効果的に抑制できるガスタービン用燃焼器を得ることができる。
【図面の簡単な説明】
【図1】本発明によるガスタービン用燃焼器の第1の実施の形態を示す概略縦断側面図。
【図2】図1における燃焼室の上流側を下流側から見た拡大図。
【図3】図1における燃料ヘッダを示す拡大斜視図。
【図4】図3における燃料ヘッダに燃料ノズルを取り付けた斜視図。
【図5】本発明によるガスタービン用燃焼器の第1の実施の形態の運転時における局所燃空比と燃焼モードとの関係を示す説明図。
【図6】図5における変形モードを示す説明図。
【図7】図5における別の変形モードを示す説明図。
【図8】図5における局所燃空比と燃焼モードとの関係を示す別の説明図。
【図9】本発明によるガスタービン用燃焼器の第2の実施の形態を示す図2相当図。
【図10】本発明によるガスタービン用燃焼器の第3の実施の形態を示す図2相当図。
【図11】本発明によるガスタービン用燃焼器の第4の実施の形態を示す図2相当図。
【図12】本発明によるガスタービン用燃焼器の第5の実施の形態を示す図2相当図。
【符号の説明】
1…ガスタービン用燃焼器、2…燃焼室、3…燃焼バーナ、4…燃料供給系、7…端板、8…空気孔、9…燃料ノズル、9A〜9C…第1〜3燃料ノズル群、10(10A〜10C)…燃料ヘッダ、11A〜11C…第1〜3環状バーナ群、12…燃料供給管、13A〜C…第1〜3燃料供給管、14,15a〜15c…燃料制御弁、16a〜16c…遮断弁。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas turbine combustor and a method of operating the same, and more particularly to a gas turbine combustor that individually controls a fuel supply system corresponding to each of a plurality of annular burners divided in the radial direction. Regarding the method.
[0002]
[Prior art]
Conventionally, for example, Patent Document 1 and Patent Document 2 have already proposed a combustor for a gas turbine in which a fuel supply system corresponding to each of a plurality of annular burner groups divided in a radial direction is individually controlled.
[0003]
[Patent Document 1]
JP-A-56-119423 (FIGS. 2a and 2b and description thereof)
[Patent Document 2]
JP-A-6-323543 (FIG. 4 and paragraph number 0013 of the specification)
[0004]
[Problems to be solved by the invention]
Conventional gas turbine combustors can individually control the supply of fuel to a plurality of annular burner groups, but consider more effective suppression of nitrogen oxides (hereinafter referred to as NOx). It has not been.
[0005]
The objective of this invention is providing the combustor for gas turbines which can suppress NOx more effectively.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an annular burner group in which the fuel supply amount of an annular burner group located radially inside among a plurality of annular burner groups divided into a plurality in the radial direction is located radially outward. It is less than that.
[0007]
With the above configuration, the fuel ejected from the annular burner group located on the radially inner side exists as an unburned portion upstream of the combustion chamber. This is burned while being mixed with burned gas on the downstream side, so that the combustion proceeds slowly. As a result, the combustion temperature at the center of the combustor is lowered, and the generation of NOx can be suppressed.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
A gas turbine combustor according to a first embodiment of the present invention will be described below with reference to FIGS.
[0009]
The gas turbine combustor 1 is roughly divided into a combustion chamber 2 having a combustor central axis X in the combustion gas flow direction, a combustion burner 3 for injecting an air-fuel mixture into the combustion chamber 2, and fuel to the combustion burner 3. And a fuel supply system 4 to be supplied.
[0010]
The combustion chamber 2 is formed by a cylindrical combustor liner 6 that is disposed inside the outer cylinder 5 with an interval.
[0011]
The combustion burner 3 is paired with an end plate 7 that closes the upstream end of the combustor liner 6, a large number of air holes 8 provided in the end plate 7, and the air holes 8. A number of fuel nozzles 9 parallel to X and a fuel header 10 for distributing fuel to be supplied to the fuel nozzles 9 are provided.
[0012]
As shown in FIGS. 3 and 4, the multiple fuel nozzles 9 include a first fuel header 10 </ b> A, a second fuel header 10 </ b> B, and a third fuel header 10 </ b> C obtained by dividing the fuel header 10 in the radial direction Y from the inside. It is divided into a first fuel nozzle group 9A, a second fuel nozzle group 9B, and a third fuel nozzle group 9C. Then, the first annular burner group 11A and the second annular burner group are formed by the air holes 8 facing the fuel nozzles 9 of the divided first fuel nozzle group 9A, second fuel nozzle group 9B, and third fuel nozzle group 9C. 11B and the 3rd annular burner group 11C are constituted.
[0013]
On the other hand, the fuel supply system 4 includes a fuel supply pipe 12, and a first fuel supply pipe 13A, a second fuel supply pipe 13B, and a third fuel supply pipe 13C branched from the fuel supply pipe 12. The pipes 12, 13A, 13B, and 13C are respectively provided with fuel control valves 14, 15a to 15c, and the first to third fuel supply pipes 13A to 13C are provided with shut-off valves 16a to 16c. Yes.
[0014]
The air compressed by the compressor 17 is pumped between the combustor liner 6 and the outer cylinder 5 from the downstream side of the combustor liner 6 to the gas turbine combustor 1 configured as described above. A part of the pumped air flows into the combustion chamber 2 from cooling air holes (not shown) provided in the combustor liner 6, and the remaining air passes through the air holes 8 from the upstream side of the end plate 7. And flows into the uppermost stream side of the combustion chamber 2. Here, since the air hole 8 provided in the end plate 7 is arranged coaxially with the fuel nozzle 9, the fuel jet jetted from the fuel nozzle 9 is jetted into the combustion chamber 2 in a state of being wrapped in an air annular flow. However, the fuel and air mixed there form a flame and burn. Combustion gas by combustion is supplied to a gas turbine 19 coaxial with the compressor 17 via a transition piece 18 connected to the downstream side of the combustor liner 6 and imparts rotational force to the gas turbine.
[0015]
Next, a method for operating the gas turbine combustor having the above-described configuration will be described with reference to FIG. The broken line in the figure shows the change in the local fuel-air ratio with respect to 100% load from the combustor ignition. (1) is at the time of ignition, (2) is when the load is started, and (3) is at 100% load. From ignition until the load is started, the shutoff valves 16b and 16c of the second fuel supply pipe 13B and the third fuel supply pipe 13C are closed, and the shutoff valve 16a of the first fuel supply pipe 13A is opened to open the first annular burner group 11A. Operation is performed in mode I in which only the fuel is supplied to form a flame. When a load is applied in this state, the local fuel-air ratio increases, and the combustion temperature rises accordingly. Therefore, the NOx emission amount increases. In the middle of further increasing the load (4), the shutoff valve 16b of the second fuel supply pipe 13B is opened and fuel is supplied to the second annular burner group 11B in addition to the first annular burner group 11A. Operate in mode II to form. Then, since the same amount of fuel is supplied over a wide range, the formed flame spreads in the radial direction Y with respect to the combustor central axis X of the combustion chamber 2. At this time, since the local fuel-air ratio falls to (5), the combustion temperature is lowered and the NOx emission amount can be suppressed.
[0016]
Furthermore, when the load is increased, the local fuel-air ratio increases to (6). Here, the shutoff valve 16c of the third fuel supply pipe 13C is opened and fuel is supplied to the third annular burner group 11C in addition to the first annular burner group 11A and the second annular burner group 11B, and fuel is supplied from all the burners. When jetted and burned in mode III, a flame is formed throughout the downstream of the combustion chamber 2. At this time, the local fuel-air ratio decreases to (7), thereby lowering the combustion temperature and reducing NOx emission.
[0017]
Further, the operation in mode III is performed up to 100% (3) by increasing the load.
[0018]
According to the operation method described above, a single flame that spreads in the radial direction Y from the combustor central axis X can always be formed, and the temperature distribution bias at the combustor outlet can be reduced.
[0019]
In the partial load region, the local fuel-air ratio increases as shown in (4) and (6) and the combustion temperature rises depending on the conditions, which may heat the combustor liner 6 and shorten the life. is there. However, in the present embodiment, as shown in mode I and mode II, the flame formed at the time of partial load is due to the first and second annular burner groups 11A and 11B and is away from the combustor liner 6. Moreover, since there is a jet of air from the third annular burner group 11C between the combustor liner 6 and the flame to suppress the temperature rise of the combustor liner 6, it is possible to suppress a decrease in life.
[0020]
In addition, according to the present embodiment, the combustion burner 3 is divided into the first annular burner group 11A, the second annular burner group 11B, and the third annular burner group 11C in the radial direction Y with respect to the combustor axial direction X. Since the fuel can be supplied and the supply amount can be adjusted, the local fuel-air ratio in the flame can be distributed in the radial direction Y. For example, as shown in the deformation mode I in FIG. 6, the local fuel-air ratio in the second annular burner group 11B and the third annular burner group 11C is the fuel-air ratio at which the flame is stably held, The fuel-air ratio of the first annular burner group 11A can be lowered to the extent that the flame is not held in the vicinity of the first annular burner group 11A. At this time, the fuel ejected from the first annular burner group 11A exists as a large amount of unburned fuel on the upstream side of the combustion chamber 2, but it is caused by heat conduction and convection diffusion mixing with the surrounding high-temperature combustion gas. Since the heat is transferred, the combustion proceeds slowly. And finally, since the combustion reaction is completed, the emission amount of carbon monoxide and unburned hydrocarbons becomes extremely small. In this case, the combustion temperature in the central portion of the combustion chamber 2 is lowered, and the NOx emission amount can be suppressed.
[0021]
Further, for example, as shown in the deformation mode II of FIG. 7, in addition to the first annular burner group 11A, the fuel-air ratio of the second annular burner group 11B is also lowered so as not to hold the flame in the vicinity of the burner. It is also possible to perform combustion using only 11C. As described above, when the combustion is performed only by the third annular burner group 11C, the region where the combustion temperature is low increases, so that the entire NOx emission amount can be reduced. However, if the flame holding area of the flame becomes too narrow in the radial direction at this time, the stability will be lowered, and the possibility of carbon monoxide and unburned hydrocarbons being discharged due to the influence of the airflow flowing around the flame will increase. It is desirable to secure the region with a certain width in the radial direction.
[0022]
In this way, the NOx emission amount is reduced by lowering the fuel-air ratio of the first annular burner group 11A or the first annular burner group 11A and the second annular burner group 11B located inside the third annular burner group 11C. be able to.
[0023]
An operation method for the load at this time will be described with reference to FIG. The load corresponding to the local fuel-air ratio (7) to (3) is operated in mode III, and the flame is formed on the downstream front surface of the combustion burner. When the load is reduced from this point, if the fuel-air ratio is lowered as a whole, the flame is not maintained, so the mode is switched to mode II. At this time, since the local fuel-air ratio becomes large, the combustion temperature rises and a large amount of NOx is discharged. Therefore, if the fuel-air ratio of the first annular burner group 11A or the first annular burner group 11A and the second annular burner group 11B is lowered to a level that does not hold the flame and switched to the deformation mode II, the fuel flows from the front of the combustion burner. Therefore, the local fuel-air ratio is lower than that in mode II, and as a result, the combustion temperature is lowered, so that the amount of NOx emission can be suppressed. Further, since the local fuel-air ratio of the third annular burner group 11C is maintained at a value that holds the flame, the load band that can be operated with low NOx can be widened.
[0024]
Similarly, at the load corresponding to the local fuel-air ratio (5), the operation is switched from the mode II to the deformation mode I ′. In the deformation mode I ′, since the local fuel-air ratio is low and the combustion temperature is low even at the same load as in the mode I, the amount of NOx emission is smaller than in the mode I, and as a result, the load band that can be operated with low NOx is expanded. be able to.
[0025]
By the way, gas turbines having a plurality of combustors are not adjacent to each combustor by igniting each combustor by igniting each combustor, but are ignited by a specific combustor having a spark plug and then adjacent to each other. In general, high-temperature combustion gas flows into the combustor one after another through the crossfire pipe, and the adjacent combustors are ignited one after another by the heat.
[0026]
However, as shown in the first embodiment, if a large number of air holes 8 exist on the entire surface of the end plate 7 of the combustion burner 3, when only the first annular burner group 11A is ignited, its radius The air blown out from the air holes 8 of the second annular burner group 11B and the third annular burner group 11C on the outer side in the direction forms an air curtain, and this curtain of air causes the high-temperature combustion gas in the first annular burner group 11A to crossfire. There is an inconvenience that prevents the adjacent combustor from being ignited by preventing movement to the adjacent combustor through the tube.
[0027]
A second embodiment of the gas turbine combustor according to the present invention in which such inconvenience is eliminated will be described with reference to FIG.
[0028]
That is, a plurality of flame-holding regions 20 extending in the radial direction are provided in regions facing the second annular burner group 11B and the third annular burner group 11C of the end plate 7 of the combustion burner, and the flame-holding regions 20 are not shown. It was made to face the opening.
[0029]
In the flame holding region 20, for example, a region where the opening area of the air hole 8 is reduced or a region where the air hole 8 does not exist is provided so that an air curtain is not formed. As a result, the flame easily propagates to the downstream side of the flame holding region 20, and high-temperature combustion gas necessary for ignition can be introduced into the adjacent combustor from the crossfire pipe.
[0030]
FIG. 10 shows a third embodiment of the combustor for a gas turbine according to the present invention. This embodiment is a third annular shape among the air holes 8 in the second embodiment shown in FIG. A swivel angle is provided in the air hole 8C facing the burner group 11C. The swirl angle has components in the circumferential direction and the radial direction with respect to the combustor central axis X. The radial component is formed so that the jet port of the air hole 8C faces inward in the radial direction.
[0031]
Since the air hole 8C having the swirl angle as described above is formed, the jet flow ejected forms a swirl flow directed radially inward, and the jet flow of the first annular burner group 11A and the second annular burner group 11B downstream of the combustor. Mixing with is promoted.
[0032]
Normally, the flame is not held radially inward as in the deformation mode I ′ and deformation mode I in FIG. 8 described above, but by heat conduction or convection diffusion with the high-temperature combustion gas radially outside in the downstream region of the combustion chamber. In a combustion mode in which the combustion reaction of the gas mixture on the radially inner side is advanced by the transfer of heat, if sufficient mixing is not performed between the gas mixture flowing on the radially inner side and the hot combustion gas flowing on the radially outer side, Carbon oxides and unburned hydrocarbons may be emitted.
[0033]
However, according to the present embodiment, the air-fuel mixture flowing inside and outside the radial direction and the high-temperature combustion gas are sufficiently mixed by the swirl flow that is formed radially outward and faces radially inward. By sufficient mixing of this mixture and high-temperature combustion gas, heat is actively transferred and the combustion reaction of the mixture flowing radially inward is promoted, reducing the emission of carbon monoxide and unburned hydrocarbons. can do.
[0034]
FIG. 11 shows a fourth embodiment of a gas turbine combustor according to the present invention. This embodiment is a first annular shape among the air holes 8 in the second embodiment shown in FIG. A swivel angle is provided in the air hole 8A facing the burner group 11A. The swirl angle has components in the circumferential direction and the radial direction with respect to the combustor central axis X. The radial component is formed such that the jet port of the air hole 8A faces outward in the radial direction.
[0035]
Since the air hole 8A has the swirl angle as described above, the jet flow ejected from the first annular burner group 11A forms a swirl flow directed radially outward, and the second annular burner group 11B and the first Mixing of the three annular burner groups 11C with the high-temperature combustion gas is promoted. By sufficient mixing of the gas mixture inside and outside the radial direction and the high-temperature combustion gas, heat is actively transferred and the combustion reaction of the gas mixture flowing inside the radial direction is promoted, and carbon monoxide and unburned carbon Hydrogen emissions can be reduced.
[0036]
FIG. 12 shows a fifth embodiment of the gas turbine combustor according to the present invention. In this embodiment, the third annular burner group 11C is composed of two semi-annular burners 21A and 21B. A fuel supply pipe (not shown) that can be controlled separately is connected to these, and a cross fire pipe 22 is provided facing the semi-annular burner 21B out of these two semi-annular burners 21A and 21B.
[0037]
In the above configuration, at the time of ignition, fuel is supplied to the first fuel nozzle group 9A of the first annular burner group 11A, and fuel is also supplied to the third fuel nozzle group 9C of the semi-annular burner 21B. As a result, the semi-annular burner 21B has a transmission function of transmitting the high-temperature combustion gas from the first annular burner group 11A to the crossfire tube 22, and can perform crossfire well.
[0038]
Therefore, according to the present embodiment, it is not necessary to provide the flame holding region 20 as shown in FIGS. Other than that, the same operational effects as the above-described embodiments are exhibited.
[0039]
【The invention's effect】
As described above, according to the present invention, a gas turbine combustor capable of more effectively suppressing NOx can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional side view showing a first embodiment of a gas turbine combustor according to the present invention.
FIG. 2 is an enlarged view of the upstream side of the combustion chamber in FIG. 1 as viewed from the downstream side.
FIG. 3 is an enlarged perspective view showing a fuel header in FIG. 1;
4 is a perspective view in which a fuel nozzle is attached to the fuel header in FIG. 3. FIG.
FIG. 5 is an explanatory diagram showing a relationship between a local fuel-air ratio and a combustion mode during operation of the first embodiment of the gas turbine combustor according to the present invention.
6 is an explanatory diagram showing a deformation mode in FIG. 5. FIG.
FIG. 7 is an explanatory view showing another deformation mode in FIG. 5;
8 is another explanatory diagram showing the relationship between the local fuel-air ratio and the combustion mode in FIG. 5. FIG.
FIG. 9 is a view corresponding to FIG. 2 showing a second embodiment of a combustor for a gas turbine according to the present invention.
FIG. 10 is a view corresponding to FIG. 2 showing a third embodiment of a gas turbine combustor according to the present invention.
FIG. 11 is a view corresponding to FIG. 2 showing a fourth embodiment of a gas turbine combustor according to the present invention.
FIG. 12 is a view corresponding to FIG. 2 showing a fifth embodiment of a gas turbine combustor according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Gas turbine combustor, 2 ... Combustion chamber, 3 ... Combustion burner, 4 ... Fuel supply system, 7 ... End plate, 8 ... Air hole, 9 ... Fuel nozzle, 9A-9C ... 1st-3rd fuel nozzle group DESCRIPTION OF SYMBOLS 10 (10A-10C) ... Fuel header, 11A-11C ... 1st-3rd annular burner group, 12 ... Fuel supply pipe, 13A-C ... 1st-3rd fuel supply pipe, 14, 15a-15c ... Fuel control valve , 16a to 16c: shut-off valves.

Claims (7)

燃料を噴流させる燃料ノズルとこの燃料ノズルと対になり空気を噴流させる空気孔とを備えたバーナ単位を燃焼室内に向けて複数形成し、これら複数のバーナ単位を半径方向に複数の環状バーナ群に分け、かつ分けられた複数の環状バーナ群の夫々に燃料供給量を個別に制御して供給する複数の燃料供給系を設けたガスタービン用燃焼器において、前記複数の燃料供給系は、半径方向内側に位置する環状バーナ群の燃料供給量を半径方向外側に位置する環状バーナ群に比べて少なくするように設定されていることを特徴とするガスタービン用燃焼器。A plurality of burner units each having a fuel nozzle for jetting fuel and an air hole that is paired with the fuel nozzle and jets air are formed in the combustion chamber, and the plurality of burner units are arranged in a plurality of annular burners in the radial direction. In the gas turbine combustor provided with a plurality of fuel supply systems that individually control and supply the fuel supply amount to each of the divided annular burner groups, the plurality of fuel supply systems have a radius A combustor for a gas turbine, characterized in that the fuel supply amount of the annular burner group located on the inner side in the direction is set to be smaller than that of the annular burner group located on the outer side in the radial direction. 半径方向外側に位置する環状バーナ群の空気孔は、下流側に半径方向内側に向う傾斜角を有していることを特徴とする請求項1記載のガスタービン用燃焼器。The combustor for a gas turbine according to claim 1, wherein the air holes of the annular burner group located on the radially outer side have an inclination angle toward the radially inner side on the downstream side. 前記空気孔は、周方向に旋回角を有していることを特徴とする請求項2記載のガスタービン用燃焼器。The combustor for a gas turbine according to claim 2, wherein the air hole has a turning angle in a circumferential direction. 半径方向内側に位置する環状バーナ群の空気孔は、周方向に旋回角を有していることを特徴とする請求項1記載のガスタービン用燃焼器。The combustor for a gas turbine according to claim 1, wherein the air holes of the annular burner group located radially inward have a turning angle in the circumferential direction. 燃料を噴流させる燃料ノズルとこの燃料ノズルと対になり空気を噴流させる空気孔とを備えたバーナ単位を燃焼室内に向けて複数形成し、これら複数のバーナ単位を半径方向に複数の環状バーナ群に分け、かつ分けられた複数の環状バーナ群の夫々に燃料供給量を個別に制御して供給する複数の燃料供給系を設けたガスタービン用燃焼器において、前記複数の燃料供給系を、半径方向内側に位置する環状バーナ群の燃料供給量を半径方向外側に位置する環状バーナ群に比べて少なくするように設定し、かつ前記燃焼室内の複数の環状バーナ群に跨って火炎伝播域を設けたことを特徴とするガスタービン用燃焼器。A plurality of burner units each having a fuel nozzle for jetting fuel and an air hole that is paired with the fuel nozzle and jets air are formed toward the combustion chamber, and the plurality of burner units are arranged in a plurality of annular burners in the radial direction. And a gas turbine combustor provided with a plurality of fuel supply systems that individually control and supply a fuel supply amount to each of the plurality of divided annular burner groups. The fuel supply amount of the annular burner group located on the inner side in the direction is set to be smaller than that of the annular burner group located on the outer side in the radial direction, and a flame propagation area is provided across the plurality of annular burner groups in the combustion chamber. A combustor for a gas turbine. 燃料を噴流させる燃料ノズルとこの燃料ノズルと対になり空気を噴流させる空気孔とを備えたバーナ単位を燃焼室内に向けて複数形成し、これら複数のバーナ単位を半径方向に複数の環状バーナ群に分け、かつ分けられた複数の環状バーナ群の夫々に燃料供給量を個別に制御して供給する複数の燃料供給系を設けたガスタービン用燃焼器の運転方法において、半径方向内側に位置する環状バーナ群に、半径方向外側に位置する環状バーナ群に比べて少ない燃料を供給するようにしたことを特徴とするガスタービン用燃焼器の運転方法。A plurality of burner units each having a fuel nozzle for jetting fuel and an air hole that is paired with the fuel nozzle and jets air are formed toward the combustion chamber, and the plurality of burner units are arranged in a plurality of annular burners in the radial direction. In the operating method of a combustor for a gas turbine provided with a plurality of fuel supply systems that supply the fuel supply amount to each of the divided annular burner groups by individually controlling the fuel supply amount. A method for operating a combustor for a gas turbine, characterized in that less fuel is supplied to an annular burner group than to an annular burner group located radially outward. 燃料を噴流させる燃料ノズルとこの燃料ノズルと対になり空気を噴流させる空気孔とを備えたバーナ単位を燃焼室内に向けて複数形成し、これら複数のバーナ単位を半径方向に複数の環状バーナ群に分け、かつ分けられた複数の環状バーナ群の夫々に燃料供給量を個別に制御して供給する複数の燃料供給系を設けたガスタービン用燃焼器の運転方法において、起動から負荷の増加とともに、半径方向内側に位置する環状バーナ群の燃料ノズルから半径方向外側に位置する環状バーナ群の燃料ノズルに対し燃料を順次増加させて供給することを特徴とするガスタービン用燃焼器の運転方法。A plurality of burner units each having a fuel nozzle for jetting fuel and an air hole that is paired with the fuel nozzle and jets air are formed toward the combustion chamber, and the plurality of burner units are arranged in a plurality of annular burners in the radial direction. And a method for operating a combustor for a gas turbine provided with a plurality of fuel supply systems that individually control and supply a fuel supply amount to each of a plurality of divided annular burner groups. An operation method of a combustor for a gas turbine, characterized in that fuel is sequentially increased from a fuel nozzle of an annular burner group positioned radially inside to a fuel nozzle of an annular burner group positioned radially outward.
JP2003195554A 2003-07-11 2003-07-11 Gas turbine combustor and operation method thereof Expired - Lifetime JP3996100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003195554A JP3996100B2 (en) 2003-07-11 2003-07-11 Gas turbine combustor and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003195554A JP3996100B2 (en) 2003-07-11 2003-07-11 Gas turbine combustor and operation method thereof

Publications (2)

Publication Number Publication Date
JP2005030667A true JP2005030667A (en) 2005-02-03
JP3996100B2 JP3996100B2 (en) 2007-10-24

Family

ID=34206336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003195554A Expired - Lifetime JP3996100B2 (en) 2003-07-11 2003-07-11 Gas turbine combustor and operation method thereof

Country Status (1)

Country Link
JP (1) JP3996100B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154701A (en) * 2005-12-02 2007-06-21 Hitachi Ltd Gas turbine combustor, remodeling method of gas turbine conbustor and fuel supply method
JP2008292139A (en) * 2007-04-26 2008-12-04 Hitachi Ltd Combustor and fuel supply method of combustor
WO2009022449A1 (en) * 2007-08-10 2009-02-19 Kawasaki Jukogyo Kabushiki Kaisha Combustor
US7509811B2 (en) 2002-09-27 2009-03-31 United Technologies Corporation Multi-point staging strategy for low emission and stable combustion
WO2010038528A1 (en) * 2008-10-01 2010-04-08 三菱重工業株式会社 Fuel control method and fuel control system for gas turbine, and gas turbine
JP2011069607A (en) * 2009-09-22 2011-04-07 General Electric Co <Ge> Universal multi-nozzle combustion system and method
JP2011144972A (en) * 2010-01-13 2011-07-28 Hitachi Ltd Gas turbine combustor
US8127549B2 (en) 2007-11-29 2012-03-06 Hitachi, Ltd. Burner and gas turbine combustor
CN102748137A (en) * 2012-07-18 2012-10-24 深圳智慧能源技术有限公司 Fuel control system of gas turbine
JP2014016059A (en) * 2012-07-06 2014-01-30 Hitachi Ltd Gas turbine combustor and operation method for gas turbine combustor
CN117190238A (en) * 2023-08-12 2023-12-08 浙江大学 Hydrogen fuel multi-point direct injection combustion assembly, hydrogen fuel combustion chamber and aeroengine

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7509811B2 (en) 2002-09-27 2009-03-31 United Technologies Corporation Multi-point staging strategy for low emission and stable combustion
JP2007154701A (en) * 2005-12-02 2007-06-21 Hitachi Ltd Gas turbine combustor, remodeling method of gas turbine conbustor and fuel supply method
US8104284B2 (en) 2007-04-26 2012-01-31 Hitachi, Ltd. Combustor and a fuel supply method for the combustor
JP2008292139A (en) * 2007-04-26 2008-12-04 Hitachi Ltd Combustor and fuel supply method of combustor
US8607573B2 (en) 2007-04-26 2013-12-17 Hitachi, Ltd. Combustor having a first plurality of fuel nozzles having a first cross-sectional shape and a second plurality of fuel nozzles having a second cross-sectional shape different than the first cross-sectional shape
JP5412283B2 (en) * 2007-08-10 2014-02-12 川崎重工業株式会社 Combustion device
US8172568B2 (en) * 2007-08-10 2012-05-08 Kawasaki Jukogyo Kabushiki Kaisha Combustor
WO2009022449A1 (en) * 2007-08-10 2009-02-19 Kawasaki Jukogyo Kabushiki Kaisha Combustor
US8371125B2 (en) 2007-11-29 2013-02-12 Hitachi, Ltd. Burner and gas turbine combustor
US8127549B2 (en) 2007-11-29 2012-03-06 Hitachi, Ltd. Burner and gas turbine combustor
US9631559B2 (en) 2008-10-01 2017-04-25 Mitsubishi Hitachi Power Systems, Ltd. Fuel control method and fuel control apparatus for gas turbine and gas turbine
JP2010084703A (en) * 2008-10-01 2010-04-15 Mitsubishi Heavy Ind Ltd Fuel control method and fuel control device for gas turbine and the gas turbine
WO2010038528A1 (en) * 2008-10-01 2010-04-08 三菱重工業株式会社 Fuel control method and fuel control system for gas turbine, and gas turbine
US8707671B2 (en) 2008-10-01 2014-04-29 Mitsubishi Heavy Industries, Ltd. Fuel control method and fuel control apparatus for gas turbine and gas turbine
JP2011069607A (en) * 2009-09-22 2011-04-07 General Electric Co <Ge> Universal multi-nozzle combustion system and method
JP2011144972A (en) * 2010-01-13 2011-07-28 Hitachi Ltd Gas turbine combustor
JP2014016059A (en) * 2012-07-06 2014-01-30 Hitachi Ltd Gas turbine combustor and operation method for gas turbine combustor
US9464809B2 (en) 2012-07-06 2016-10-11 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine combustor and operating method for gas turbine combustor
EP2682586A3 (en) * 2012-07-06 2018-04-04 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine combustor and operating method for gas turbine combustor
CN102748137A (en) * 2012-07-18 2012-10-24 深圳智慧能源技术有限公司 Fuel control system of gas turbine
CN117190238A (en) * 2023-08-12 2023-12-08 浙江大学 Hydrogen fuel multi-point direct injection combustion assembly, hydrogen fuel combustion chamber and aeroengine
CN117190238B (en) * 2023-08-12 2024-06-11 浙江大学 Hydrogen fuel multi-point direct injection combustion assembly, hydrogen fuel combustion chamber and aeroengine

Also Published As

Publication number Publication date
JP3996100B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
US6826913B2 (en) Airflow modulation technique for low emissions combustors
JP5458121B2 (en) Gas turbine combustor and method of operating gas turbine combustor
JP5400936B2 (en) Method and apparatus for burning fuel in a gas turbine engine
JP5775319B2 (en) Axial multistage premixed combustion chamber
US7797942B2 (en) Gas turbine combustor having multiple independently operable burners and staging method thereof
EP0399336B1 (en) Combustor and method of operating same
US20020043067A1 (en) Gas turbine combustion system and combustion control method therefor
EP1106928A1 (en) Fuel system configuration and method for staging fuel for gas turbines utilizing both gaseous and liquid fuels
JP2008275299A (en) Method and system to reduce nox emission in combustion system
JP3996100B2 (en) Gas turbine combustor and operation method thereof
US9464809B2 (en) Gas turbine combustor and operating method for gas turbine combustor
JP7270517B2 (en) gas turbine combustor
JP2767403B2 (en) Low NOx burner for gas turbine
JP2004093076A (en) Diffusion combustion type low nox combuster
JP3817625B2 (en) Burner equipment
JP2006242399A (en) Combustion equipment and combustion method by combustion equipment
JP2759722B2 (en) Gas turbine combustion control device
JP2003279043A (en) LOW NOx COMBUSTOR FOR GAS TURBINE
JP2004028352A (en) LOW NOx COMBUSTOR COMPRISING FUEL INJECTION VALVE FOR PREVENTING BACKFIRE AND SELF-IGNITION
JP5057363B2 (en) Gas turbine combustor
JP5821553B2 (en) RQL low NOx combustor
JP2003130352A (en) LOW NOx COMBUSTOR FOR GAS TURBINE
JP2000314526A (en) Pre-evaporation/premixing burner and premixing burner for gas turbine combustor
JP3894681B2 (en) Burner equipment
JP2001124310A (en) Low nox combustion method and partial premixed gas low nox burner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3996100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term