JP5821553B2 - RQL low NOx combustor - Google Patents

RQL low NOx combustor Download PDF

Info

Publication number
JP5821553B2
JP5821553B2 JP2011247617A JP2011247617A JP5821553B2 JP 5821553 B2 JP5821553 B2 JP 5821553B2 JP 2011247617 A JP2011247617 A JP 2011247617A JP 2011247617 A JP2011247617 A JP 2011247617A JP 5821553 B2 JP5821553 B2 JP 5821553B2
Authority
JP
Japan
Prior art keywords
secondary air
air introduction
combustion
combustor
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011247617A
Other languages
Japanese (ja)
Other versions
JP2013104595A (en
Inventor
廣光 永兆
永兆 廣光
智広 井出
智広 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011247617A priority Critical patent/JP5821553B2/en
Publication of JP2013104595A publication Critical patent/JP2013104595A/en
Application granted granted Critical
Publication of JP5821553B2 publication Critical patent/JP5821553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、NOx(窒素酸化物)の排出量を低減しつつ、燃料と空気との混合気を燃焼させて、燃焼ガスを生成するRQL(Rich burn Quick quench Lean burn: 過濃燃焼急速混合希薄燃焼)方式の低NOx燃焼器に関する。   The present invention reduces the amount of NOx (nitrogen oxide) emissions, burns a mixture of fuel and air, and generates combustion gas. RQL (Rich burn Quick quench Lean burn) (Combustion) type low NOx combustor.

近年、ジェットエンジン等のガスタービンに用いられる燃焼器において、環境保護の観点からNOxの排出量の低減化が求められており、その要請に応えるために、簡易な構成からなるRQL方式の低NOx燃焼器が開発されている。このRQL方式の低NOx燃焼器は、燃焼器ライナの燃焼室内における一次燃焼領域において燃料と一次空気との混合気を燃料過濃状態(酸素不足状態)で過濃燃焼(一次燃焼)させて、燃焼器ライナの燃焼室内における二次燃焼領域において一次燃料領域からの燃焼ガスと二次空気との混合気を酸素過剰状態(燃料希薄状態)で希薄燃焼(二次燃焼)させることにより、火炎温度を下げて、NOxの排出量の低減を図る燃焼方式である。   In recent years, combustors used in gas turbines such as jet engines have been required to reduce NOx emissions from the viewpoint of environmental protection. In order to meet the demand, RQL low NOx having a simple configuration is required. Combustors have been developed. This low NOx combustor of the RQL method performs rich combustion (primary combustion) of a mixture of fuel and primary air in a fuel rich state (oxygen-deficient state) in a primary combustion region in a combustion chamber of a combustor liner, The flame temperature is obtained by performing lean combustion (secondary combustion) in the secondary combustion region in the combustion chamber of the combustor liner in an oxygen-excess state (fuel lean state) with a mixture of combustion gas and secondary air from the primary fuel region. This is a combustion system that lowers the NOx emission amount and reduces NOx emissions.

なお、本発明に関連する先行技術として特許文献1から特許文献3に示すものがある。   In addition, there exist some which are shown to patent document 1-patent document 3 as a prior art relevant to this invention.

特開2011−208938号公報JP 2011-208938 A 特開2011−163626号公報JP 2011-163626 A 特開2009−74798号公報JP 2009-74798 A

ところで、一次燃焼領域における過濃燃焼によってRQL方式の低NOx燃焼器の運転中におけるNOxの排出量を低減するためには、燃焼室内において一次燃焼領域を十分に確保して、一次燃焼領域における混合気の均質性(混合度合い)を高める必要がある。一方、燃焼室内において一次燃焼領域を大きくすると、その分だけ二次燃焼領域が小さくなって、一次燃焼領域における過濃燃焼によって排出されたスモーク(煤煙)を二次燃焼領域において十分に燃焼(希薄燃焼)させることができず、低NOx燃焼器の運転中におけるスモークの排出量が増大する。つまり、低NOx燃焼器の運転中におけるNOxの排出量の低減とスモークの排出量の低減を両立させることが困難であるという問題がある。   By the way, in order to reduce the amount of NOx emission during operation of the RQL type low NOx combustor by over-concentration combustion in the primary combustion region, a sufficient primary combustion region is secured in the combustion chamber, and mixing in the primary combustion region is performed. Qi homogeneity (mixing degree) needs to be improved. On the other hand, when the primary combustion region is enlarged in the combustion chamber, the secondary combustion region is reduced by that amount, and smoke (smoke) discharged by over-concentration combustion in the primary combustion region is sufficiently burned (lean). Combustion), and smoke emissions during operation of the low NOx combustor increase. That is, there is a problem that it is difficult to achieve both reduction of NOx emission amount and reduction of smoke emission amount during operation of the low NOx combustor.

そこで、本発明は、前述の問題を解決することができる、新規な構成のRQL方式の低NOx燃焼器を提供することを目的とする。   Accordingly, an object of the present invention is to provide an RQL-type low NOx combustor having a novel configuration that can solve the above-described problems.

本発明の発明者は、前述の問題を解決するために、RQL方式の低NOx燃焼器を模擬した複数の試験品を試作し、二次空気導入孔の主流方向の位置、及び燃焼器ライナの燃焼室内に導入される全ての空気の流量に対する複数の二次空気導入孔から導入される二次空気の流量の比(二次空気の流量比)をパラメータとして変化させつつ、複数の試験品について燃焼試験を行った。そして、本発明の発明者は、その燃焼試験を行った結果、各二次空気導入孔を燃料噴射弁に近づけた場合でも、二次空気の流量比を20〜70%に設定することにより、低NOx燃焼器の運転中におけるNOx(窒素酸化物)、CO(一酸化炭素)、THC(未燃炭化水素)の排出量を低減できるという、新規な知見を得ることができ、本発明を完成するに至った。ここで、各二次空気導入孔を燃料噴射弁に近づけた場合とは、各二次空気導入孔の主流方向の位置を、非燃焼状態において平均流速(低NOx燃焼器の運転時の平均流速)で流れる流れ(主流)が燃焼室内に滞留する滞留時間の1/3時間で到達する箇所からその上流側の位置に設定した場合のことをいう。   In order to solve the above-mentioned problems, the inventor of the present invention prototyped a plurality of test products simulating an RQL type low NOx combustor, the position of the secondary air introduction hole in the main flow direction, and the combustor liner. While changing the ratio of the flow rate of secondary air introduced from multiple secondary air introduction holes to the flow rate of all air introduced into the combustion chamber (secondary air flow rate ratio) as a parameter, multiple test products A combustion test was conducted. And as a result of conducting the combustion test, the inventor of the present invention sets the flow rate ratio of the secondary air to 20 to 70% even when each secondary air introduction hole is brought close to the fuel injection valve. New knowledge that NOx (nitrogen oxide), CO (carbon monoxide), and THC (unburned hydrocarbon) emissions during operation of a low NOx combustor can be reduced, and the present invention is completed. It came to do. Here, when each secondary air introduction hole is brought close to the fuel injection valve, the position in the main flow direction of each secondary air introduction hole is the average flow rate in the non-combustion state (the average flow rate during operation of the low NOx combustor). ) Is set to a position on the upstream side from the point where the flow (main flow) flowing in (1) reaches in 1/3 hour of the residence time in the combustion chamber.

本発明の態様は、ガスタービンに用いられ、NOxの排出量を低減しつつ、燃料と空気(一次空気、二次空気)との混合気を燃焼させて、燃焼ガスを生成するRQL方式の低NOx燃焼器において、上流側に隔壁を備え、内側に混合気を燃焼させるための燃焼室を有した燃焼器ライナと、前記隔壁に設けられ、前記燃焼室内に燃料を噴射(噴霧)する燃料噴射弁と、前記隔壁に設けられ、前記燃焼室内に一次空気を導入する一次空気導入部材と、を具備し、前記燃焼器ライナの周面に二次空気を前記燃焼室内に導入する複数の二次空気導入孔が周方向に沿って間隔を置いて設けられ、前記燃焼室内における前記二次空気導入孔の上流側に燃料と一次空気との混合気を燃料過濃状態(酸素不足状態)で過濃燃焼(一次燃焼)させるための一次燃焼領域が形成されると共に、前記燃焼室内における前記二次空気導入孔の下流側に前記一次燃焼領域からの燃焼ガスと二次空気との混合気を酸素過剰状態(燃料希薄状態)で希薄燃焼(二次燃焼)させるための二次燃焼領域が形成されるようになっており、各二次空気導入孔の前記主流方向の位置は、非燃焼状態において平均流速(前記低NOx燃焼器の運転時の平均流速)で流れる流れ(主流)が前記燃焼室内に滞留する滞留時間の1/5〜1/3時間で到達する箇所設定され、複数の前記二次空気導入孔の総開口面積は、前記燃焼室内に導入される全ての空気の流量に対する複数の前記二次空気導入孔から導入される二次空気の流量の比(二次空気の流量比)が20〜70%になるように設定されていることである。 An aspect of the present invention is used in a gas turbine, and is a low RQL method that generates a combustion gas by burning a mixture of fuel and air (primary air and secondary air) while reducing NOx emissions. In a NOx combustor, a combustor liner having a partition on the upstream side and having a combustion chamber for burning an air-fuel mixture inside, and fuel injection provided in the partition and injecting (spraying) fuel into the combustion chamber A primary air introduction member provided on the partition wall and introducing primary air into the combustion chamber, and a plurality of secondary airs that introduce secondary air into the combustion chamber on the peripheral surface of the combustor liner Air introduction holes are provided at intervals along the circumferential direction, and an air-fuel mixture of fuel and primary air is passed upstream of the secondary air introduction holes in the combustion chamber in a fuel rich state (oxygen-deficient state). Primary combustion for rich combustion (primary combustion) A region is formed, and a mixture of the combustion gas and the secondary air from the primary combustion region is lean-burned in an oxygen-excess state (fuel lean state) downstream of the secondary air introduction hole in the combustion chamber ( A secondary combustion region for secondary combustion) is formed, and the position of each secondary air introduction hole in the main flow direction is an average flow velocity in the non-combustion state (during operation of the low NOx combustor). The average flow velocity of the secondary air introduction holes is set at a location where the flow (main flow) flowing at a rate of 1/5 to 1/3 hours of the residence time in the combustion chamber is reached, The ratio of the flow rate of secondary air introduced from the plurality of secondary air introduction holes to the flow rate of all air introduced into the combustion chamber (secondary air flow rate ratio) is set to 20 to 70%. Ru der that it is.

なお、本願の明細書及び特許請求の範囲において、「設けられ」とは、直接的に設けられたことの他に、別部材を介して間接的に設けられたことを含む意である。また、「主流方向」とは、空気、混合気、又は燃焼ガスの主流の流れ方向のことをいい、「上流側」とは、主流方向から見て上流側のことをいい、「下流側」とは、主流方向から見て下流側のことをいう。   In the specification and claims of the present application, “provided” means not only directly provided but also indirectly provided via another member. The “main flow direction” refers to the flow direction of the main flow of air, air-fuel mixture or combustion gas, and “upstream side” refers to the upstream side when viewed from the main flow direction, and “downstream side”. Means the downstream side when viewed from the mainstream direction.

本発明の態様によると、前記燃料噴射弁によって前記燃焼室内に燃料が噴射されると共に、前記一次空気導入部材から一次空気が前記燃焼室内に導入されることにより、前記一次燃焼領域において燃料と一次空気との混合気を燃料過濃状態で過濃燃焼させて、燃焼ガスを生成する。続いて、複数の前記二次空気導入孔から多量の二次空気が前記燃焼室内に導入されることにより、前記一次燃焼領域と前記二次燃焼領域の間で燃焼ガスと二次空気が急速に混合され、前記二次燃焼領域において燃焼ガスと二次空気との混合気を酸素過剰状態(燃料希薄状態)で希薄燃焼させて、燃焼ガスを生成して前記燃焼器ライナから排出する。そして、前記一次燃焼領域における過濃燃焼と前記二次燃焼領域における希薄燃焼が連続して行われることにより、前記低NOx燃焼器の下流側に配設されたタービンを駆動することができる。 According to an aspect of the present invention, fuel is injected into the combustion chamber by the fuel injection valve, and primary air is introduced from the primary air introduction member into the combustion chamber, so that the fuel and the primary in the primary combustion region. An air-fuel mixture is burned with rich fuel in a fuel rich state to generate combustion gas. Subsequently, a large amount of secondary air is introduced into the combustion chamber from the plurality of secondary air introduction holes, so that the combustion gas and the secondary air rapidly move between the primary combustion region and the secondary combustion region. In the secondary combustion region, the air-fuel mixture of the combustion gas and the secondary air is lean-burned in an oxygen-excess state (fuel lean state), and combustion gas is generated and discharged from the combustor liner. Further, the turbine disposed on the downstream side of the low NOx combustor can be driven by continuously performing the rich combustion in the primary combustion region and the lean combustion in the secondary combustion region.

ここで、前記二次空気の流量比が20〜70%になるように複数の前記二次空気導入孔の総開口面積が設定されているため、各二次空気導入孔を前記燃料噴射弁に近づけることにより、具体的には、各二次空気導入孔の前記主流方向の位置が前記所定の箇所からその上流側の位置に設定されることにより、前記低NOx燃焼器の運転中におけるNOx、CO、THCの排出量を低減できる。換言すれば、前記一次燃焼領域により燃焼安定性を確保した上で、前記低NOx燃焼器の運転中におけるNOx、CO、THCの排出量の低減を図りつつ、前記燃焼室内において前記二次燃焼領域を十分に確保することができる。   Here, since the total opening area of the plurality of secondary air introduction holes is set so that the flow rate ratio of the secondary air is 20 to 70%, each secondary air introduction hole is used as the fuel injection valve. Specifically, the position of each secondary air introduction hole in the main flow direction is set to the upstream position from the predetermined location, so that NOx during operation of the low NOx combustor, CO and THC emissions can be reduced. In other words, while ensuring combustion stability in the primary combustion region, the secondary combustion region is reduced in the combustion chamber while reducing NOx, CO, and THC emissions during operation of the low NOx combustor. Can be secured sufficiently.

本発明によれば、前記一次燃焼領域により燃焼安定性を確保した上で、前記低NOx燃焼器の運転中におけるNOx、CO、THCの排出量の低減を図りつつ、前記燃焼室内において前記二次燃焼領域を十分に確保できるため、前記一次燃焼領域における過濃燃焼によって排出されたスモーク(煤煙)を前記二次燃焼領域において十分に燃焼(希薄燃焼)させて、前記低NOx燃焼器の運転中におけるスモークの排出量を低減することができる。よって、前記低NOx燃焼器の運転中におけるNOx、CO、THCの排出量の低減とスモークの排出量の低減を両立させることができる。   According to the present invention, while ensuring combustion stability by the primary combustion region, the secondary NOx in the combustion chamber is reduced while reducing emissions of NOx, CO, and THC during operation of the low NOx combustor. Since a sufficient combustion area can be secured, smoke (smoke) discharged by over-rich combustion in the primary combustion area is sufficiently burned (lean combustion) in the secondary combustion area, and the low NOx combustor is operating. The amount of smoke discharged in can be reduced. Therefore, it is possible to achieve both the reduction of NOx, CO, and THC emissions during the operation of the low NOx combustor and the reduction of smoke emissions.

図1は、本発明の実施形態に係るRQL方式の低NOx燃焼器の部分側断面図である。FIG. 1 is a partial side cross-sectional view of an RQL type low NOx combustor according to an embodiment of the present invention. 図2は、図1におけるII-II線に沿った図である。FIG. 2 is a view taken along line II-II in FIG. 図3は、図2におけるIII-III線に沿った図である。FIG. 3 is a view taken along line III-III in FIG.

本発明の実施形態について図1から図3を参照して説明する。なお、図面中、「F」は、前方向(上流側)、「R」は、後方向(下流側)をそれぞれ指してある。   An embodiment of the present invention will be described with reference to FIGS. 1 to 3. In the drawings, “F” indicates the forward direction (upstream side), and “R” indicates the backward direction (downstream side).

図1及び図2に示すように、本発明の実施形態に係るRQL(Rich burn Quick quench Lean burn: 過濃燃焼急速混合希薄燃焼)方式の低NOx燃焼器1は、NOxの排出量を低減しつつ、燃料と空気(一次空気、二次空気)との混合気を燃焼させて、燃焼ガスを生成するものである。また、低NOx燃焼器1は、ジェットエンジン(図示省略)に用いられることの多い所謂アニュラ型の燃焼器である。   As shown in FIG. 1 and FIG. 2, the low NOx combustor 1 of the RQL (Rich burn Quick quench Lean burn) system according to the embodiment of the present invention reduces the amount of NOx emission. In the meantime, an air-fuel mixture of fuel and air (primary air, secondary air) is burned to generate combustion gas. The low NOx combustor 1 is a so-called annular combustor that is often used in a jet engine (not shown).

低NOx燃焼器1は、中空環状の燃焼器ケース3を具備しており、この燃焼器ケース3は、環状のアウタケース5と、このアウタケース5の内側にジェットエンジンのエンジン軸心ECを中心とした同心円状に設けられた環状のインナケース7とを備えている。また、燃焼器ケース3の入口側は、ジェットエンジンにおける圧縮機(図示省略)からの空気(圧縮空気)を導入可能である。   The low NOx combustor 1 includes a hollow annular combustor case 3, and the combustor case 3 has an annular outer case 5 and an engine center EC of a jet engine inside the outer case 5. And an annular inner case 7 provided concentrically. Further, air (compressed air) from a compressor (not shown) in the jet engine can be introduced to the inlet side of the combustor case 3.

燃焼器ケース3内には、中空環状の燃焼器ライナ9が同心状に設けられており、この燃焼器ライナ9は、環状のアウタライナ11と、このアウタライナ11の内側に同心状に設けられた環状のインナライナ13と、上流側(前側)にアウタライナ11とインナライナ13を連結するように設けられた環状の隔壁(前壁)15とを備えている。また、燃焼器ケース3は、内側に、燃料と空気(一次空気、二次空気)との混合気を燃焼させるための環状の燃焼室17を有しており、換言すれば、アウタライナ11とインナライナ13との間には、環状の燃焼室17が区画形成されている。なお、アウタライナ11、インナライナ13、及び隔壁15には、フィルム冷却等を行うための複数の冷却孔(図示省略)が形成されている。   In the combustor case 3, a hollow annular combustor liner 9 is provided concentrically. The combustor liner 9 is provided with an annular outer liner 11 and an annular concentrically provided inside the outer liner 11. And an annular partition wall (front wall) 15 provided so as to connect the outer liner 11 and the inner liner 13 to the upstream side (front side). Further, the combustor case 3 has an annular combustion chamber 17 for combusting an air-fuel mixture of fuel and air (primary air, secondary air) on the inner side, in other words, the outer liner 11 and the inner liner. An annular combustion chamber 17 is defined between the two and 13. The outer liner 11, the inner liner 13, and the partition wall 15 are formed with a plurality of cooling holes (not shown) for performing film cooling and the like.

隔壁15には、燃焼室17内に燃料を円錐状の噴霧流Sとして噴霧する複数の燃料噴射弁(燃料噴射ノズル)19が周方向に沿って間隔を置いて設けられており、各燃料噴射弁19は、例えば公知の構成からなる渦巻き噴射弁であって、中央(中心部)に、燃料を噴霧可能な噴射孔(ノズル孔)19hを有している。また、アウタケース5には、燃料を供給可能な複数の燃料供給管21が前記同心円の周方向に沿って間隔を置いて設けられており、各燃料供給管21の先端部は、対応する燃料噴射弁19の基部に接続されている。なお、アウタケース5の適宜位置には、燃焼室17内で燃料に着火(点火)する複数の点火栓(図示省略)が燃焼室17側へ突出して設けられている。   The partition wall 15 is provided with a plurality of fuel injection valves (fuel injection nozzles) 19 that spray fuel as a conical spray flow S in the combustion chamber 17 at intervals along the circumferential direction. The valve 19 is a spiral injection valve having a known configuration, for example, and has an injection hole (nozzle hole) 19h capable of spraying fuel at the center (center portion). In addition, the outer case 5 is provided with a plurality of fuel supply pipes 21 that can supply fuel at intervals along the circumferential direction of the concentric circles, and the tip of each fuel supply pipe 21 has a corresponding fuel supply. It is connected to the base of the injection valve 19. A plurality of spark plugs (not shown) for igniting (igniting) fuel in the combustion chamber 17 are provided at appropriate positions on the outer case 5 so as to protrude toward the combustion chamber 17.

隔壁15における各燃料噴射弁19の周りには、燃焼室17内に一次空気を旋回流として導入する一次空気導入部材としてのスワラ(軸流スワラ又は接線流スワラ)23が設けられている。また、スワラ23の総開口面積は、燃焼室17内に導入される全ての空気の流量に対するスワラ23から導入される一次空気の流量の比(一次空気の流量比)が20%以下になるように設定されている。前記一次空気の流量比が20%以下になるように設定されるようにしたのは、20%を超えてされると、後述の二次空気の流量比を十分に確保することが困難になり、NOxの排出量の低減効果が小さくなるからである。   Around each fuel injection valve 19 in the partition wall 15, a swirler (axial flow swirler or tangential flow swirler) 23 is provided as a primary air introduction member that introduces primary air into the combustion chamber 17 as a swirling flow. Further, the total opening area of the swirler 23 is such that the ratio of the flow rate of primary air introduced from the swirler 23 to the flow rate of all air introduced into the combustion chamber 17 (primary air flow rate ratio) is 20% or less. Is set to The primary air flow rate ratio is set to be 20% or less. If the primary air flow rate ratio exceeds 20%, it becomes difficult to sufficiently secure the secondary air flow rate ratio described later. This is because the NOx emission reduction effect is reduced.

アウタライナ11の周面(燃焼器ライナ9の外周面)には、アウタスリーブ25とアウタスリーブ27が燃焼室17側へ突出しかつ周方向に沿って交互に設けられており、各アウタスリーブ25は、内側に、二次空気を燃焼室17内に導入するアウタ二次空気導入孔25hを有してあって、各アウタスリーブ27は、内側に、二次空気を燃焼室17内に導入するアウタ二次空気導入孔27hを有してある。換言すれば、アウタライナ11の周面には、アウタ二次空気導入孔25hとアウタ二次空気導入孔27hが複数のアウタスリーブ25,27を介して周方向に沿って交互に設けられている。同様に、インナライナ13の周面(燃焼器ライナ9の内周面)には、インナスリーブ29とインナスリーブ31が燃焼室17側へ突出しかつ周方向に沿って交互に設けられており、各インナスリーブ29は、内側に、二次空気を燃焼室17内に導入するインナ二次空気導入孔29hを有してあって、各インナスリーブ31は、内側に、二次空気を燃焼室17内に導入するインナ二次空気導入孔31hを有してある。換言すれば、インナライナ13の周面には、インナ二次空気導入孔29hとインナ二次空気導入孔31hが複数のインナスリーブ29,31を介して周方向に沿って交互に設けられている。   Outer sleeves 25 and outer sleeves 27 protrude from the outer peripheral surface 11 (outer peripheral surface of the combustor liner 9) toward the combustion chamber 17 and are alternately provided along the circumferential direction. An outer secondary air introduction hole 25h for introducing secondary air into the combustion chamber 17 is provided on the inner side, and each outer sleeve 27 has an outer secondary for introducing the secondary air into the combustion chamber 17 on the inner side. A secondary air introduction hole 27h is provided. In other words, the outer secondary air introduction hole 25 h and the outer secondary air introduction hole 27 h are alternately provided on the peripheral surface of the outer liner 11 along the circumferential direction via the plurality of outer sleeves 25 and 27. Similarly, on the peripheral surface of the inner liner 13 (inner peripheral surface of the combustor liner 9), an inner sleeve 29 and an inner sleeve 31 protrude toward the combustion chamber 17 side and are provided alternately along the circumferential direction. The sleeve 29 has an inner secondary air introduction hole 29 h for introducing secondary air into the combustion chamber 17 on the inner side, and each inner sleeve 31 has the secondary air inside the combustion chamber 17 on the inner side. An inner secondary air introduction hole 31h to be introduced is provided. In other words, on the peripheral surface of the inner liner 13, inner secondary air introduction holes 29 h and inner secondary air introduction holes 31 h are alternately provided along the circumferential direction via the plurality of inner sleeves 29, 31.

ここで、燃焼室17内における二次空気導入孔25h,27h,29h,31hの上流側(前側)には、燃料と一次空気との混合気を燃料過濃状態(酸素不足状態)で過濃燃焼(一次燃焼)させるための一次燃焼領域A1が形成されようになっている。また、燃焼室17内における二次空気導入孔25h,27h,29h,31hの下流側(後側)には、一次燃焼領域A1からの燃焼ガスと二次空気との混合気を酸素過剰状態(燃料希薄状態)で希薄燃焼(二次燃焼)させるための二次燃焼領域A2が形成されるようになっている。   Here, on the upstream side (front side) of the secondary air introduction holes 25h, 27h, 29h, 31h in the combustion chamber 17, the mixture of fuel and primary air is excessively concentrated in a fuel-rich state (oxygen-deficient state). A primary combustion region A1 for combustion (primary combustion) is formed. Further, on the downstream side (rear side) of the secondary air introduction holes 25h, 27h, 29h, 31h in the combustion chamber 17, the mixture of the combustion gas and the secondary air from the primary combustion region A1 is in an oxygen excess state ( A secondary combustion region A2 for lean combustion (secondary combustion) in a fuel lean state is formed.

各二次空気導入孔25h,27h,29h,31hの主流方向の位置(本発明の実施形態にあっては、燃焼器ライナ9の軸方向の位置)Pは、非燃焼状態において平均流速(低NOx燃焼器1の運転時の平均流速)で流れる流れ(主流)が燃焼室17内に滞留する滞留時間Tの1/3時間で到達する箇所、望ましくは、滞留時間Tの1/4時間で到達する箇所からその上流側の位置でかつ滞留時間Tの1/5時間で到達する箇所からその下流側の位置に設定されている。各二次空気導入孔25h,27h,29h,31hの主流方向の位置Pが滞留時間Tの1/5時間で到達する箇所からその下流側の位置に設定されるようにしたのは、滞留時間Tの1/5時間で到達する箇所よりも上流側の位置に設定されると、低負荷時における燃焼安定性を十分に確保することが困難になるからである。なお、非燃焼状態において平均流速で流れる流れが燃焼室17内に滞留する滞留時間Tで到達する箇所は、燃焼器ライナ9の出口端である。   The position P in the main flow direction of each secondary air introduction hole 25h, 27h, 29h, 31h (in the embodiment of the present invention, the position in the axial direction of the combustor liner 9) P is an average flow velocity (low) in the non-combustion state. The point where the flow (main flow) flowing at the NOx combustor 1 (average flow velocity) reaches in 1/3 hour of the residence time T staying in the combustion chamber 17, preferably in 1/4 hour of the residence time T It is set at a position on the upstream side from a position where it reaches and on a position on the downstream side from a position that reaches in 1/5 hour of the residence time T. The residence time is such that the position P in the main flow direction of each of the secondary air introduction holes 25h, 27h, 29h, 31h is set to a position downstream from the location where the arrival time T reaches 1/5 hour. This is because if it is set at a position on the upstream side of the position that reaches in 1/5 hour of T, it becomes difficult to sufficiently ensure the combustion stability at the time of low load. In addition, the part which reaches | attains with the residence time T in which the flow which flows at an average flow velocity in a non-combustion state stays in the combustion chamber 17 is an exit end of the combustor liner 9.

複数の二次空気導入孔25h,27h,29h,31hの総開口面積は、燃焼室17内に導入される全ての空気の流量に対する複数の二次空気導入孔25h,27h,29h,31hから導入される二次空気の流量の比(二次空気の流量比)が20〜70%、好ましくは30〜50%になるように設定されている。前記二次空気の流量比が20%以上になるように設定されようにしたのは、20%未満になるように設定されると、一次燃焼領域A1からの燃焼ガスと二次空気との混合気の希薄化を促進できず、低NOx燃焼器1の運転中におけるNOx(窒素酸化物)低減することが困難になるからである。一方、前記二次空気の流量比が70%以下になるように設定されようにしたのは、70%を超えるように設定されると、二次燃焼領域A2における燃焼効果が十分に発揮されず、CO(一酸化炭素)、THC(未燃炭化水素)の排出量を低減することが困難になるからである。
The total opening area of the plurality of secondary air introduction holes 25h, 27h, 29h, 31h is introduced from the plurality of secondary air introduction holes 25h, 27h, 29h, 31h with respect to the flow rate of all the air introduced into the combustion chamber 17. The ratio of the secondary air flow rate (secondary air flow rate ratio) is set to 20 to 70%, preferably 30 to 50%. The flow rate ratio of the secondary air is set to be 20% or more. When the flow rate is set to be less than 20%, the mixing of the combustion gas from the primary combustion region A1 and the secondary air is performed. This is because the dilution of the gas cannot be promoted, and it becomes difficult to reduce NOx (nitrogen oxide) during the operation of the low NOx combustor 1. On the other hand, the flow rate ratio of the secondary air is set to be 70% or less. If it is set to exceed 70%, the combustion effect in the secondary combustion region A2 is not sufficiently exhibited. This is because it becomes difficult to reduce emissions of CO (carbon monoxide) and THC (unburned hydrocarbons).

複数のアウタ二次空気導入孔25h,27h及び複数のインナ二次空気導入孔29h,31hは、非対向になるように周方向に沿って互い違いに配置されている。ただし、二次空気の流量比が40%以下になるように設定された場合には、複数のアウタ二次空気導入孔25h,27h及び複数のインナ二次空気導入孔29h,31hが対向になるように配置されてあっても構わない。また、アウタ二次空気導入孔25hの開口面積は、アウタ二次空気導入孔27hの開口面積よりも大きくなるように設定されており、インナ二次空気導入孔29hの開口面積は、インナ二次空気導入孔31hの開口面積よりも大きくなるように設定されている。換言すれば、燃料噴射弁19に近い側の二次空気導入孔25h,29hの開口面積は、燃料噴射弁19に遠い側の二次空気導入孔27h,31hの開口面積よりも大きくなるように設定されている。   The plurality of outer secondary air introduction holes 25h, 27h and the plurality of inner secondary air introduction holes 29h, 31h are alternately arranged along the circumferential direction so as not to face each other. However, when the flow rate ratio of the secondary air is set to be 40% or less, the plurality of outer secondary air introduction holes 25h and 27h and the plurality of inner secondary air introduction holes 29h and 31h are opposed to each other. It may be arranged as follows. The opening area of the outer secondary air introduction hole 25h is set to be larger than the opening area of the outer secondary air introduction hole 27h, and the opening area of the inner secondary air introduction hole 29h is It is set to be larger than the opening area of the air introduction hole 31h. In other words, the opening areas of the secondary air introduction holes 25h and 29h on the side close to the fuel injection valve 19 are larger than the opening areas of the secondary air introduction holes 27h and 31h on the side far from the fuel injection valve 19. Is set.

続いて、本発明の実施形態の作用及び効果について説明する。   Then, the effect | action and effect of embodiment of this invention are demonstrated.

複数の燃料噴射弁19によって燃焼室17内に燃料が円錐状の噴霧流Sとして噴射されると共に、複数のスワラ23から一次空気が旋回流として導入される。これにより、一次燃焼領域A1において燃料と一次空気との混合気を燃料過濃状態で過濃燃焼させて、燃焼ガスを生成する。なお、燃料と一次空気との混合気を燃焼させる直前に、点火栓によって混合気中の燃料を着火する。   Fuel is injected as a conical spray flow S into the combustion chamber 17 by the plurality of fuel injection valves 19, and primary air is introduced as a swirl flow from the plurality of swirlers 23. As a result, in the primary combustion region A1, the air-fuel mixture of fuel and primary air is excessively burned in a fuel rich state to generate combustion gas. The fuel in the air-fuel mixture is ignited by the spark plug immediately before the air-fuel mixture of fuel and primary air is combusted.

続いて、複数のアウタ二次空気導入孔25h,27h及び複数のインナ二次空気導入孔29h,31hから多量の二次空気が燃焼室17内に高い貫通度(径方向の貫通度)で導入される。これにより、一次燃焼領域A1と二次燃焼領域A2の間で燃焼ガスと二次空気が急速に混合され、二次燃焼領域A2において燃焼ガスと二次空気との混合気を酸素過剰状態で希薄燃焼させて、燃焼ガスを生成して燃焼器ライナ9から排出する。   Subsequently, a large amount of secondary air is introduced into the combustion chamber 17 from the plurality of outer secondary air introduction holes 25h, 27h and the plurality of inner secondary air introduction holes 29h, 31h with high penetration (radial penetration). Is done. As a result, the combustion gas and the secondary air are rapidly mixed between the primary combustion region A1 and the secondary combustion region A2, and the mixture of the combustion gas and the secondary air is diluted in the oxygen excess state in the secondary combustion region A2. Combustion produces combustion gas and discharges it from the combustor liner 9.

ここで、複数のアウタ二次空気導入孔25h,27hがアウタライナ11の外周面に複数のアウタスリーブ25,27を介して設けられかつ複数のインナ二次空気導入孔29h,31hがインナライナ13の内周面に複数のインナスリーブ29,31を介して設けられているため、前述のように、燃焼室17内に導入される二次空気の貫通度を高く設定することができる。また、複数のアウタ二次空気導入孔25h,27h及び複数のインナ二次空気導入孔29h,31hが非対向になるように周方向に沿って互い違いに配置されているため、複数のアウタ二次空気導入孔25h,27hから導入された二次空気と複数のインナ二次空気導入孔29h,31hから導入された二次空気との衝突による強い逆流を阻止できる。更に、燃料噴射弁19に近い側の二次空気導入孔25h,29hの開口面積が燃料噴射弁19に遠い側の二次空気導入孔27h,31hの開口面積よりも大きくなるように設定されているため、燃焼室17内における周方向の燃料の濃淡分布に応じて、燃焼室17内に二次空気が導入されることになる。   Here, a plurality of outer secondary air introduction holes 25 h and 27 h are provided on the outer peripheral surface of the outer liner 11 via a plurality of outer sleeves 25 and 27, and a plurality of inner secondary air introduction holes 29 h and 31 h are provided in the inner liner 13. Since the circumferential surface is provided with a plurality of inner sleeves 29 and 31, the penetration degree of the secondary air introduced into the combustion chamber 17 can be set high as described above. In addition, since the plurality of outer secondary air introduction holes 25h and 27h and the plurality of inner secondary air introduction holes 29h and 31h are alternately arranged along the circumferential direction so as not to face each other, a plurality of outer secondary air introduction holes It is possible to prevent a strong reverse flow due to a collision between the secondary air introduced from the air introduction holes 25h and 27h and the secondary air introduced from the plurality of inner secondary air introduction holes 29h and 31h. Further, the opening area of the secondary air introduction holes 25h and 29h on the side close to the fuel injection valve 19 is set to be larger than the opening area of the secondary air introduction holes 27h and 31h on the side far from the fuel injection valve 19. Therefore, secondary air is introduced into the combustion chamber 17 according to the concentration distribution of fuel in the circumferential direction in the combustion chamber 17.

前述の一次燃焼領域A1における過濃燃焼と二次燃焼領域A2における希薄燃焼が連続して行われることにより、低NOx燃焼器1の下流側に配設されたタービン(図示省略)を駆動して、ジェットエンジンの稼動を継続することができる。   By continuously performing the rich combustion in the primary combustion region A1 and the lean combustion in the secondary combustion region A2, the turbine (not shown) disposed downstream of the low NOx combustor 1 is driven. The operation of the jet engine can be continued.

ここで、前記二次空気の流量比が20〜70%になるように複数の二次空気導入孔25h,27h,29h,31hの総開口面積が設定されているため、各二次空気導入孔25h,27h,29h,31hを燃料噴射弁19に近づけることにより、具体的には、各二次空気導入孔25h,27h,29h,31hの主流方向の位置Pが前記所定の箇所からその上流側の位置に設定されることにより、低NOx燃焼器1の運転中におけるNOx、CO、THCの排出量を低減できる。換言すれば、一次燃焼領域A1により燃焼安定性を確保した上で、低NOx燃焼器1の運転中におけるNOx、CO、THCの排出量の低減を図りつつ、燃焼室17内において二次燃焼領域A2を十分に確保することができる。   Here, since the total opening area of the plurality of secondary air introduction holes 25h, 27h, 29h, 31h is set so that the flow rate ratio of the secondary air is 20 to 70%, each secondary air introduction hole is Specifically, by bringing 25h, 27h, 29h, 31h closer to the fuel injection valve 19, the position P in the main flow direction of each of the secondary air introduction holes 25h, 27h, 29h, 31h is located upstream from the predetermined position. The NOx, CO, and THC emissions during operation of the low NOx combustor 1 can be reduced by setting to the position. In other words, while ensuring the combustion stability by the primary combustion region A1, while reducing the amount of NOx, CO, and THC emissions during operation of the low NOx combustor 1, the secondary combustion region in the combustion chamber 17 A2 can be sufficiently secured.

従って、本発明の実施形態によれば、一次燃焼領域A1により燃焼安定性を確保した上で、低NOx燃焼器1の運転中におけるNOx、CO、THCの排出量の低減を図りつつ、燃焼室17内において二次燃焼領域A2を十分に確保できるため、一次燃焼領域A1における過濃燃焼によって排出されたスモーク(煤煙)を二次燃焼領域A2において十分に燃焼(希薄燃焼)させて、低NOx燃焼器1の運転中におけるスモークの排出量を低減することができる。よって、低NOx燃焼器1の運転中におけるNOx、CO、THCの排出量の低減とスモークの排出量の低減を両立させることができる。   Therefore, according to the embodiment of the present invention, the combustion chamber is secured while the combustion stability is ensured by the primary combustion region A1, and the emission amount of NOx, CO, and THC during the operation of the low NOx combustor 1 is reduced. 17 can sufficiently secure the secondary combustion region A2, so that smoke (smoke) discharged by the rich combustion in the primary combustion region A1 is sufficiently burned (lean combustion) in the secondary combustion region A2, thereby reducing the low NOx. Smoke emission during operation of the combustor 1 can be reduced. Therefore, it is possible to achieve both the reduction of NOx, CO, and THC emissions during the operation of the low NOx combustor 1 and the reduction of smoke emissions.

特に、複数のアウタ二次空気導入孔25h,27hから導入された二次空気と複数のインナ二次空気導入孔29h,31hから導入された二次空気との衝突による強い逆流を阻止できるため、一次燃焼領域A1が希釈されて、一次燃焼領域A1の火炎温度が局所的に高くなることを抑えることができる。また、燃焼室17内における周方向の燃料の濃淡分布に応じて、燃焼室17内に二次空気が導入されるため、二次燃焼領域A2における混合気の均質性(混合度合い)を高めることができる。よって、低NOx燃焼器1の運転中におけるNOxの排出量を十分に低減することができる。   In particular, it is possible to prevent a strong back flow caused by a collision between the secondary air introduced from the plurality of outer secondary air introduction holes 25h and 27h and the secondary air introduced from the plurality of inner secondary air introduction holes 29h and 31h. It is possible to prevent the primary combustion region A1 from being diluted and the flame temperature in the primary combustion region A1 from becoming locally high. Further, since secondary air is introduced into the combustion chamber 17 according to the concentration distribution of fuel in the circumferential direction in the combustion chamber 17, the homogeneity (mixing degree) of the air-fuel mixture in the secondary combustion region A2 is increased. Can do. Therefore, the NOx emission amount during the operation of the low NOx combustor 1 can be sufficiently reduced.

具体的には、燃焼試験の結果、低NOx燃焼器1の運転中におけるNOxの排出量及びスモークの排出量をICAO規制値(2004年施行基準)の半分以下に低減できることが確認された。また、低NOx燃焼器1の出口温度不均一率PTF(PTF=(燃焼器出口最大温度−燃焼器出口平均温度)/燃焼器平均温度上昇)が0.2よりも小さくできることが確認された。   Specifically, as a result of the combustion test, it was confirmed that the NOx emissions and smoke emissions during operation of the low NOx combustor 1 can be reduced to less than half of the ICAO regulation value (2004 enforcement standard). It was also confirmed that the outlet temperature non-uniformity PTF (PTF = (combustor outlet maximum temperature−combustor outlet average temperature) / combustor average temperature rise) of the low NOx combustor 1 can be made smaller than 0.2.

なお、本発明は、前述の実施形態の説明に限るものでなく、例えばアニュラ型の低NOx燃焼器1に適用した技術的思想をカン型の低NOx燃焼器(図示省略)に適用する等、その他、種々の態様で実施可能である。また、本発明に包含される権利範囲は、これらの実施形態に限定されないものである。   The present invention is not limited to the description of the above-described embodiment. For example, the technical idea applied to the annular type low NOx combustor 1 is applied to a can type low NOx combustor (not shown). In addition, various embodiments can be implemented. Further, the scope of rights encompassed by the present invention is not limited to these embodiments.

A1 一次燃焼領域
A2 二次燃焼領域
G 定在渦
S 噴霧流
1 燃焼器
3 燃焼器ケース
5 アウタケース
7 インナケース
9 燃焼器ライナ
11 アウタライナ
13 インナライナ
15 隔壁
17 燃焼室
19 燃料噴射弁
21 燃料供給管
23 スワラ
25 アウタスリーブ
25h アウタ二次空気導入孔
27 アウタスリーブ
27h アウタ二次空気導入孔
29 インナスリーブ
29h インナ二次空気導入孔
31 インナスリーブ
31h インナ二次空気導入孔
A1 Primary combustion region A2 Secondary combustion region G Standing vortex S Spray flow 1 Combustor 3 Combustor case 5 Outer case 7 Inner case 9 Combustor liner 11 Outer liner 13 Inner liner 15 Partition 17 Combustion chamber 19 Fuel injection valve 21 Fuel supply pipe 23 Swirler 25 Outer sleeve 25h Outer secondary air introduction hole 27 Outer sleeve 27h Outer secondary air introduction hole 29 Inner sleeve 29h Inner secondary air introduction hole 31 Inner sleeve 31h Inner secondary air introduction hole

Claims (4)

ガスタービンに用いられ、NOxの排出量を低減しつつ、燃料と空気との混合気を燃焼させて、燃焼ガスを生成するRQL方式の低NOx燃焼器であって、
上流側に隔壁を備え、内側に混合気を燃焼させるための燃焼室を有した燃焼器ライナと、
前記隔壁に設けられ、前記燃焼室内に燃料を噴射する燃料噴射弁と、
前記隔壁に設けられ、前記燃焼室内に一次空気を導入する一次空気導入部材と、を具備し、
前記燃焼器ライナの周面に二次空気を前記燃焼室内に導入する複数の二次空気導入孔が周方向に沿って間隔を置いて設けられ、前記燃焼室内における前記二次空気導入孔の上流側に燃料と一次空気との混合気を燃料過濃状態で過濃燃焼させるための一次燃焼領域が形成されると共に、前記燃焼室内における前記二次空気導入孔の下流側に前記一次燃焼領域からの燃焼ガスと二次空気との混合気を酸素過剰状態で希薄燃焼させるための二次燃焼領域が形成されるようになっており、
各二次空気導入孔の前記主流方向の位置は、非燃焼状態において平均流速で流れる流れが前記燃焼室内に滞留する滞留時間の1/5〜1/3時間で到達する箇所設定され、複数の前記二次空気導入孔の総開口面積は、前記燃焼室内に導入される全ての空気の流量に対する複数の前記二次空気導入孔から導入される二次空気の流量の比が20〜70%になるように設定されている、RQL方式の低NOx燃焼器。
An RQL-type low NOx combustor that is used in a gas turbine and generates combustion gas by burning a mixture of fuel and air while reducing NOx emissions,
A combustor liner having a partition on the upstream side and having a combustion chamber for burning the air-fuel mixture inside;
A fuel injection valve provided in the partition wall for injecting fuel into the combustion chamber;
A primary air introduction member that is provided in the partition wall and introduces primary air into the combustion chamber;
A plurality of secondary air introduction holes for introducing secondary air into the combustion chamber are provided in the circumferential surface of the combustor liner at intervals along the circumferential direction, and upstream of the secondary air introduction hole in the combustion chamber. A primary combustion region for over-burning the mixture of fuel and primary air in the fuel-rich state is formed on the side, and the downstream side of the secondary air introduction hole in the combustion chamber from the primary combustion region A secondary combustion region for lean combustion of the mixture of combustion gas and secondary air in an oxygen-excess state is formed,
The mainstream direction position of the secondary air induction hole is set at a position where the flow flowing at an average flow rate in the non-combustion state is reached in 1/5 1/3 hours of dwell time staying in the combustion chamber, a plurality The total opening area of the secondary air introduction holes is such that the ratio of the flow rate of secondary air introduced from the plurality of secondary air introduction holes to the flow rate of all the air introduced into the combustion chamber is 20 to 70%. An RQL low NOx combustor that is set to be
前記燃焼器ライナは中空環状を呈し、前記隔壁は環状を呈してあって、前記燃料噴射弁が前記隔壁に周方向に沿って間隔を置いて複数設けられ、前記一次空気導入部材が前記隔壁における各燃料噴射弁の周囲に設けられ、
複数の前記二次空気導入孔は、前記燃焼器ライナの外周面に周方向に沿って間隔を置いて設けられた複数のアウタ二次空気導入孔と、前記燃焼器ライナの内周面に周方向に沿って間隔を置いて設けられた複数のインナ二次空気導入孔とからなり、複数の前記アウタ二次空気導入孔及び複数の前記インナ二次空気導入孔は、非対向になるように周方向に沿って互い違いに配置されている請求項1記載のRQL方式の低NOx燃焼器。
The combustor liner exhibits a hollow ring, the partitions are each other by an annular shape, the fuel injection valve is provided with a plurality at intervals along the circumferential direction on the partition wall, in the primary air introduction member is the partition wall Provided around each fuel injection valve,
The plurality of secondary air introduction holes are circumferentially provided on the outer peripheral surface of the combustor liner and at a plurality of outer secondary air introduction holes provided at intervals along the circumferential direction, and on the inner peripheral surface of the combustor liner. A plurality of inner secondary air introduction holes provided at intervals along the direction, and the plurality of outer secondary air introduction holes and the plurality of inner secondary air introduction holes are not opposed to each other. are staggered along the circumferential direction, the low NOx combustor RQL method according to claim 1.
前記燃料噴射弁に近い側の前記アウタ二次空気導入孔の開口面積は、前記燃料噴射弁に遠い側の前記アウタ二次空気導入孔の開口面積よりも大きくなるように設定され、前記燃料噴射弁に近い側の前記インナ二次空気導入孔の開口面積は、前記燃料噴射弁に遠い側の前記インナ二次空気導入孔の開口面積よりも大きくなるように設定されている請求項に記載のRQL方式の低NOx燃焼器。 An opening area of the outer secondary air introduction hole on the side close to the fuel injection valve is set to be larger than an opening area of the outer secondary air introduction hole on the side far from the fuel injection valve, and the fuel injection opening area of the inner secondary air inlet holes near the valve side is set to be larger than the opening area of the inner secondary air introducing hole on the far side to the fuel injection valve, in claim 2 RQL type low NOx combustor as described. 各二次空気導入孔は、前記燃焼器ライナに設けられたスリーブの内側に有している請求項1から請求項のうちのいずれか項に記載のRQL方式の低NOx燃焼器。 Each secondary air introduction hole has on the inner side of the sleeve provided in the combustor liner, the low NOx combustor RQL method according to any one of claims 1 to 3.
JP2011247617A 2011-11-11 2011-11-11 RQL low NOx combustor Active JP5821553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011247617A JP5821553B2 (en) 2011-11-11 2011-11-11 RQL low NOx combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011247617A JP5821553B2 (en) 2011-11-11 2011-11-11 RQL low NOx combustor

Publications (2)

Publication Number Publication Date
JP2013104595A JP2013104595A (en) 2013-05-30
JP5821553B2 true JP5821553B2 (en) 2015-11-24

Family

ID=48624281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011247617A Active JP5821553B2 (en) 2011-11-11 2011-11-11 RQL low NOx combustor

Country Status (1)

Country Link
JP (1) JP5821553B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6331717B2 (en) * 2014-06-03 2018-05-30 株式会社Ihi Jet engine combustor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100061U (en) * 1989-01-25 1990-08-09
US5454221A (en) * 1994-03-14 1995-10-03 General Electric Company Dilution flow sleeve for reducing emissions in a gas turbine combustor
US5996351A (en) * 1997-07-07 1999-12-07 General Electric Company Rapid-quench axially staged combustor
US6286298B1 (en) * 1998-12-18 2001-09-11 General Electric Company Apparatus and method for rich-quench-lean (RQL) concept in a gas turbine engine combustor having trapped vortex cavity
JP3841285B2 (en) * 2002-06-04 2006-11-01 石川島播磨重工業株式会社 Swivel type low NOx combustor
US7363763B2 (en) * 2003-10-23 2008-04-29 United Technologies Corporation Combustor
US7954325B2 (en) * 2005-12-06 2011-06-07 United Technologies Corporation Gas turbine combustor
US7926284B2 (en) * 2006-11-30 2011-04-19 Honeywell International Inc. Quench jet arrangement for annular rich-quench-lean gas turbine combustors
US8141365B2 (en) * 2009-02-27 2012-03-27 Honeywell International Inc. Plunged hole arrangement for annular rich-quench-lean gas turbine combustors
US8739546B2 (en) * 2009-08-31 2014-06-03 United Technologies Corporation Gas turbine combustor with quench wake control

Also Published As

Publication number Publication date
JP2013104595A (en) 2013-05-30

Similar Documents

Publication Publication Date Title
US8312722B2 (en) Flame holding tolerant fuel and air premixer for a gas turbine combustor
JP5364275B2 (en) Method and system for enabling NOx emissions to be reduced in a combustion system
US7966820B2 (en) Method and apparatus for combusting fuel within a gas turbine engine
JP6335903B2 (en) Flame sheet combustor dome
US8959921B2 (en) Flame tolerant secondary fuel nozzle
US8893500B2 (en) Lean direct fuel injector
JP5775319B2 (en) Axial multistage premixed combustion chamber
JP2016098830A (en) Premix fuel nozzle assembly
JP2010281483A (en) Staging type fuel nozzle
EP2551598B1 (en) Method of operating a turbomachine
US20140196465A1 (en) Lean-rich axial stage combustion in a can-annular gas turbine engine
US8919132B2 (en) Method of operating a gas turbine engine
JP2008196830A (en) Combustor of gas turbine engine
US9182124B2 (en) Gas turbine and fuel injector for the same
CA2845164C (en) Combustor for gas turbine engine
US11846425B2 (en) Dual fuel gas turbine engine pilot nozzles
CN108885003B (en) Gas turbine combustor
JP5821553B2 (en) RQL low NOx combustor
JP5978750B2 (en) RQL low NOx combustor
JP2004028352A (en) LOW NOx COMBUSTOR COMPRISING FUEL INJECTION VALVE FOR PREVENTING BACKFIRE AND SELF-IGNITION
JP2015072077A (en) Gas turbine combustor
US20170299189A1 (en) Single can vortex combustor
JPH0814562A (en) Combustion equipment for gas turbine
JP5057363B2 (en) Gas turbine combustor
JP2005090884A (en) Fuel injection valve for gas turbine and low nox combustor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150921

R151 Written notification of patent or utility model registration

Ref document number: 5821553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250