JP2005030515A - Normally-open-type solenoid valve - Google Patents

Normally-open-type solenoid valve Download PDF

Info

Publication number
JP2005030515A
JP2005030515A JP2003272000A JP2003272000A JP2005030515A JP 2005030515 A JP2005030515 A JP 2005030515A JP 2003272000 A JP2003272000 A JP 2003272000A JP 2003272000 A JP2003272000 A JP 2003272000A JP 2005030515 A JP2005030515 A JP 2005030515A
Authority
JP
Japan
Prior art keywords
current
current value
valve
coil
relief
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003272000A
Other languages
Japanese (ja)
Inventor
Mitsuru Matsuda
充 松田
Keiichi Tatsuno
敬一 龍野
Naoki Masuda
直己 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Kogyo Co Ltd
Original Assignee
Nissin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Kogyo Co Ltd filed Critical Nissin Kogyo Co Ltd
Priority to JP2003272000A priority Critical patent/JP2005030515A/en
Publication of JP2005030515A publication Critical patent/JP2005030515A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Safety Valves (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a normally-open-type solenoid valve for controlling relief pressure by a current, which can change the relief pressure in compliance with demand and can be set at a stable high relief pressure. <P>SOLUTION: The normally-open-type solenoid valve 10 includes a current control means which controls the value of the current supplied to a coil 12, and a relief means contained in a movable core 40. The current control means can supply the current within a first current value range and the current within a second current value range to the coil 12. By supplying the current within the first current value range to the coil 12, it is possible to set a first relief pressure specified by the elastic force of an elastic urging member 44, and by supplying the current within the second current value range to the coil 12, it is possible to set a second relief pressure lower than the first relief pressure and variably determined by the attraction force. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、作動液流路を開閉する弁体を備えた常開型電磁弁に関するものである。   The present invention relates to a normally open solenoid valve having a valve body that opens and closes a hydraulic fluid flow path.

従来、作動液体流路を開閉する電磁弁(ソレノイド・バルブ)は、通常時には開弁していると共にコイルの通電による固定コアの励磁により閉弁する常開型電磁弁(ノーマルオープン・バルブ)がある。このような常開型電磁弁は、作動液流路を開口形成する弁座と、この弁座に対し当接・離間移動可能な弁体とを備えている。弁体は固定コア内を進退するリテーナの先端に設けられ、固定コアの励磁によって可動コアが吸着され、可動コアにリテーナが押動されることで弁体は弁座に当接し、作動液流路を遮蔽する。コイルへの通電をやめると、弁体が弁座から離れることで作動液流路を連通させることができる。   Conventionally, electromagnetic valves (solenoid valves) that open and close the working fluid flow path are normally open solenoid valves (normally open valves) that are normally opened and closed by excitation of a fixed core by energization of a coil. is there. Such a normally open type electromagnetic valve includes a valve seat that forms an opening of a hydraulic fluid flow path, and a valve body that can move in contact with and away from the valve seat. The valve body is provided at the tip of a retainer that moves forward and backward in the fixed core. Shield the road. When energization of the coil is stopped, the hydraulic fluid passage can be communicated by separating the valve body from the valve seat.

このような常開型電磁弁として、可動コアの内部に設けたリリーフ手段を備えたものがある(例えば、特許文献1参照。)。この常開型電磁弁のリリーフ手段は、可動コアの中心部に形成した案内孔に、リテーナを弁座側へ押動し得る押し棒と、この押し棒を弁体側へ付勢する弾性付勢部材であるリリーフばねとを収納している。コイルの励磁によって可動コアが前進し、押し棒がリテーナを押動して閉弁した状態においても、弁体が受ける流体圧がリリーフばねのバネ力を超えると、リリーフばねが圧縮されて弁体が開弁し、過剰な流体圧をリリーフすることができる。   As such a normally open type electromagnetic valve, there is one provided with a relief means provided inside a movable core (for example, see Patent Document 1). The relief means of this normally open type electromagnetic valve includes a push rod that can push the retainer to the valve seat side in the guide hole formed in the center of the movable core, and an elastic bias that biases the push rod to the valve body side. The relief spring which is a member is accommodated. Even when the movable core moves forward due to the excitation of the coil and the push rod pushes the retainer to close the valve, if the fluid pressure received by the valve body exceeds the spring force of the relief spring, the relief spring is compressed and the valve body Opens and can relieve excess fluid pressure.

しかしながら、このような常開型電磁弁においては、リリーフばねのバネ力に設定リリーフ圧を依存しなければならず、リリーフ圧を要望に応じて変更することが容易ではなかった。
特開2002-18416号公報
However, in such a normally open type electromagnetic valve, the set relief pressure must be dependent on the spring force of the relief spring, and it is not easy to change the relief pressure as desired.
JP 2002-18416 A

本発明は、リリーフ圧を電流制御する常開型電磁弁であって、要望に応じてリリーフ圧を変更可能であると共に、安定した高圧のリリーフ圧を設定可能な常開型電磁弁を提供することを目的とする。   The present invention provides a normally open solenoid valve for controlling the relief pressure as a current, wherein the relief pressure can be changed as desired and a stable high relief pressure can be set. For the purpose.

上記課題を解決するため、本発明の第一の態様に係る常開型電磁弁においては、
固定コアと、
弁座に対し着座可能に対向配置され、作動液の流路を開閉する弁部材と、
前記弁部材を離座方向に付勢する座ばねと、
前記固定コアに対向配置され、前記弁座に対し前記弁部材と共に進退可能な可動コアと、
通電によって前記固定コアを励磁させて前記可動コアを前記弁部材の着座方向に前進させるコイルと、
前記コイルへ通電する電流値を制御する電流制御手段と、
前記可動コアに内蔵され、前記可動コアが前記弁部材の着座方向に前進した際、弾性付勢部材の弾性力により前記弁部材を閉弁方向に押動するリリーフ手段と、を含み、
前記電流制御手段は、
前記弾性付勢部材を圧縮して前記固定コアが前記可動コアを吸着させ、前記弁部材を前記弁座に着座させる吸引力を発生させる第1の電流値範囲の電流と、
前記弾性付勢部材を圧縮せず、かつ前記固定コアと前記可動コアとが離間した状態のまま前記弁部材を前記弁座に着座させる吸引力を発生させる第2の電流値範囲の電流と、を前記コイルへ選択的に通電制御し、
前記第1の電流値範囲の電流を前記コイルへ通電することで、前記弾性付勢部材の弾性力により特定される第1のリリーフ圧と、
前記第2の電流値範囲の電流を前記コイルへ通電することで、前記吸引力により可変設定され、かつ第1のリリーフ圧より低い第2のリリーフ圧と、を選択的に設定可能である。
In order to solve the above problems, in the normally open solenoid valve according to the first aspect of the present invention,
A fixed core;
A valve member that is disposed so as to be seated with respect to the valve seat, and that opens and closes the flow path of the hydraulic fluid;
A seat spring for urging the valve member in the separating direction;
A movable core disposed opposite to the fixed core and capable of moving forward and backward with the valve member with respect to the valve seat;
A coil that energizes the fixed core by energization to advance the movable core in the seating direction of the valve member;
Current control means for controlling a current value to be supplied to the coil;
A relief means built in the movable core, and when the movable core advances in the seating direction of the valve member, the relief means pushes the valve member in the valve closing direction by the elastic force of the elastic biasing member,
The current control means includes
A current in a first current value range that compresses the elastic biasing member to cause the stationary core to adsorb the movable core and generate a suction force to seat the valve member on the valve seat;
A current in a second current value range that does not compress the elastic urging member and generates a suction force to seat the valve member on the valve seat while the fixed core and the movable core are separated from each other; Is selectively controlled to energize the coil,
By energizing the coil with a current in the first current value range, the first relief pressure specified by the elastic force of the elastic biasing member,
By energizing the coil with a current in the second current value range, a second relief pressure that is variably set by the suction force and lower than the first relief pressure can be selectively set.

本発明の第一の態様によれば、第1のリリーフ圧は弾性付勢部材の弾性力によって特定されるので、弁部材の作動液から受ける圧力に対して安定したリリーフ圧を設定できる。したがって、バラツキの少ない高圧のリリーフ圧を、弾性付勢部材という比較的単純な構成を採用することで設定可能とした。また、第2の電流値範囲においては、弾性付勢部材の弾性力に関係なく、電流値によって第1のリリーフ圧より低い第2のリリーフ圧を可変設定し、要望に応じたリリーフ圧を設定することができる。   According to the first aspect of the present invention, since the first relief pressure is specified by the elastic force of the elastic biasing member, a stable relief pressure can be set with respect to the pressure received from the hydraulic fluid of the valve member. Accordingly, a high relief pressure with little variation can be set by adopting a relatively simple configuration of an elastic biasing member. In the second current value range, the second relief pressure lower than the first relief pressure is variably set according to the current value regardless of the elastic force of the elastic urging member, and the relief pressure is set according to the request. can do.

さらに、本発明の第一の態様に係る常開型電磁弁によれば、第2の電流値範囲における電流変化量による吸引力の変化量を小さくして、電流値のバラツキによる第2のリリーフ圧(すなわち低圧のリリーフ圧)の変動を低減する構成とすることもできる。この場合には、第1の電流値範囲においては、固定コアと可動コアが吸着して離間した状態よりも高い吸引力を発生しているため、第1のリリーフ圧を設定するのに必要な第1の電流値範囲はそれほど高くならず、省電力が達成される。   Furthermore, according to the normally open solenoid valve according to the first aspect of the present invention, the amount of change in the attractive force due to the amount of change in current in the second current value range is reduced, and the second relief due to the variation in current value. It is also possible to reduce the fluctuations in pressure (that is, low relief pressure). In this case, in the first current value range, a higher suction force is generated than in the state where the fixed core and the movable core are attracted and separated from each other, so that it is necessary to set the first relief pressure. The first current value range is not so high, and power saving is achieved.

ここで、本発明の第一の態様に係る常開型電磁弁は、
前記電流制御手段は、前記コイルへ通電する前記第2の電流値範囲の電流の値を可変制御し、前記第2のリリーフ圧を任意の圧力値に可変設定可能とすることができる。
Here, the normally open solenoid valve according to the first aspect of the present invention is:
The current control means can variably control the value of the current in the second current value range energized to the coil so that the second relief pressure can be variably set to an arbitrary pressure value.

このような構成とすることで、第2のリリーフ圧を任意の圧力値に可変設定することができ、使用状態の要望に応じた任意の圧力設定の自由度が高くなる。   By setting it as such a structure, the 2nd relief pressure can be variably set to arbitrary pressure values, and the freedom degree of the arbitrary pressure setting according to the request | requirement of a use condition becomes high.

また、本発明の第一の態様に係る常開型電磁弁のリリーフ手段は、可動コアの軸方向に貫通する案内孔内に摺動案内されて進退可能な当接部材と、案内孔に固定された受け部材と、当接部材と受け部材の間に配置された弾性付勢部材であるリリーフばねとから構成することができる。リリーフ手段の当接部材は、弁部材の端部に当接し、可動コアが固定コア側に前進することで弁部材を押動することができる。   The relief means of the normally open solenoid valve according to the first aspect of the present invention includes a contact member that is slidably guided in a guide hole penetrating in the axial direction of the movable core and fixed to the guide hole. And a relief spring that is an elastic biasing member disposed between the contact member and the receiving member. The abutting member of the relief means abuts on the end of the valve member, and the movable core advances toward the fixed core to push the valve member.

このように構成することで、第2の電流値範囲から選択制御された電流値をコイルに通電して可動コアが固定コアに吸引されると、リリーフばねよりも早く座ばねが圧縮されて弁体が弁座体に着座する。また、第1の電流値範囲から選択制御された電流値をコイルに通電すると、弁体が弁座体に着座した後、リリーフばねを圧縮させて、可動コアが固定コアに吸着される。   With this configuration, when the current value selected and controlled from the second current value range is applied to the coil and the movable core is attracted to the fixed core, the seat spring is compressed earlier than the relief spring, and the valve The body sits on the valve seat. Further, when a current value selected and controlled from the first current value range is energized to the coil, the relief spring is compressed after the valve body is seated on the valve seat body, and the movable core is attracted to the fixed core.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施の形態に係る常開型電磁弁の開弁状態を示す縦断面図である。図2は、本発明の一実施の形態に係る常開型電磁弁の閉弁状態を示す縦断面図である。図3は、本発明の一実施の形態に係る常開型電磁弁の可動コアと固定コアが当接した閉弁状態を示す縦断面図である。図4は、図3における部分拡大図である。図5は、本発明の一実施の形態に係る常開型電磁弁の電流−リリーフ圧特性図である。   FIG. 1 is a longitudinal sectional view showing a normally opened electromagnetic valve according to an embodiment of the present invention in an open state. FIG. 2 is a longitudinal sectional view showing a closed state of the normally open electromagnetic valve according to the embodiment of the present invention. FIG. 3 is a longitudinal sectional view showing a closed valve state in which the movable core and the fixed core of the normally open solenoid valve according to the embodiment of the present invention are in contact with each other. FIG. 4 is a partially enlarged view of FIG. FIG. 5 is a current-relief pressure characteristic diagram of the normally open solenoid valve according to the embodiment of the present invention.

本発明の一実施の形態に係る電磁弁は、例えば車両用ブレーキ液圧制御装置の作動液流路を開閉するための図1に示すような常開型電磁弁10である。常開型電磁弁10は、例えばアルミニウム製の基体1に形成された装着孔3にその一部を挿入され、環状の係止部材4によって固定される。常開型電磁弁10は、基体1に固定された固定コア20と、作動液の流路を開口形成する弁座体60と、固定コア20の縦軸方向に貫通する弁孔22内に収容される弁部材としてのリテーナ30及び弁体50と、弁体50を離座方向に付勢する座ばね52と、固定コア20に対向配置され、弁座体60に対してリテーナ30及び弁体50を押動しながら前進する可動コア40と、を有する。さらに、常開型電磁弁10は、通電によって固定コア20を励磁させて可動コア40を弁体50の着座方向に前進させるコイル12と、そのコイル12へ通電する電流値を制御する図示せぬ電流制御手段と、可動コア40に内蔵され、リテーナ30を着座方向へ押動するリリーフ手段43と、を有する。   An electromagnetic valve according to an embodiment of the present invention is a normally-open electromagnetic valve 10 as shown in FIG. 1 for opening and closing a hydraulic fluid passage of a vehicle brake hydraulic pressure control device, for example. A part of the normally open solenoid valve 10 is inserted into a mounting hole 3 formed in a base 1 made of aluminum, for example, and is fixed by an annular locking member 4. The normally-open electromagnetic valve 10 is accommodated in a fixed core 20 fixed to the base body 1, a valve seat body 60 that forms an opening for a flow path of hydraulic fluid, and a valve hole 22 that penetrates the fixed core 20 in the longitudinal direction. The retainer 30 and the valve body 50 as valve members to be operated, the seat spring 52 that urges the valve body 50 in the seating direction, and the fixed core 20 are disposed so as to be opposed to the valve seat body 60. And a movable core 40 that moves forward while pushing 50. Further, the normally open type electromagnetic valve 10 controls the coil 12 that energizes the fixed core 20 by energization and advances the movable core 40 in the seating direction of the valve body 50, and the current value that is energized to the coil 12 (not shown). Current control means, and a relief means 43 that is built in the movable core 40 and pushes the retainer 30 in the seating direction.

固定コア20は、例えば鉄や鉄合金等の磁性材料で形成された略円筒状の部材である。固定コア20は、基体1に形成された作動液流路2に対して開口する第1開口部24と第2開口部26とを有している。固定コア20の第1開口部24側には、ゴム組成物からなる環状シール部材C2が基体1との間に配置され、第1開口部24側と第2開口部26側の作動液流路2を液密にシールしている。また、固定コア20の第2開口部26側には、ゴム組成物からなる環状シール部材C1が基体1との間に配置され、第2開口部26側の作動液流路2と基体1の外部とを液密にシールしている。固定コア20の第1開口部24には第1フィルタ部材F1が装着されている。固定コア20の弁孔22の一方の開口端である第1開口部24側には、円筒状の弁座体60が嵌合固定されている。   The fixed core 20 is a substantially cylindrical member formed of a magnetic material such as iron or an iron alloy. The fixed core 20 has a first opening 24 and a second opening 26 that open to the hydraulic fluid channel 2 formed in the base 1. On the first opening 24 side of the fixed core 20, an annular seal member C <b> 2 made of a rubber composition is disposed between the base 1 and the working fluid flow path on the first opening 24 side and the second opening 26 side. 2 is liquid-tightly sealed. An annular seal member C1 made of a rubber composition is disposed between the fixed core 20 and the base 1 at the second opening 26 side. The outside is liquid-tightly sealed. A first filter member F <b> 1 is attached to the first opening 24 of the fixed core 20. A cylindrical valve seat body 60 is fitted and fixed to the first opening 24 side which is one open end of the valve hole 22 of the fixed core 20.

基体1の上面から突出した固定コア20に対して、有底筒状の案内筒18の開口側が溶接固定されると共に、樹脂製のボビン14に巻装されたコイル12と、コイル12の外側を覆うコイルケース16とが取り付けられている。案内筒18は、固定コア20の外周面とほぼ同径の内径を有する薄肉の筒状部と、該筒状部の端部を閉塞する半球状の底部と、を有している。案内筒18の筒上部の開口側内周面が、固定コア20の外周面と溶接固定されている。案内筒18の内部には、可動コア40が内蔵され、可動コア40は、筒状部の内周面に摺動案内されると共に、底部内面に当接して後退規制される。   The opening side of the bottomed cylindrical guide tube 18 is welded and fixed to the fixed core 20 protruding from the upper surface of the base 1, and the coil 12 wound around the resin bobbin 14 and the outside of the coil 12 are connected. A covering coil case 16 is attached. The guide cylinder 18 has a thin cylindrical portion having an inner diameter substantially the same as the outer peripheral surface of the fixed core 20 and a hemispherical bottom portion that closes an end portion of the cylindrical portion. The opening-side inner peripheral surface of the upper portion of the guide tube 18 is welded and fixed to the outer peripheral surface of the fixed core 20. A movable core 40 is built in the guide cylinder 18, and the movable core 40 is slidably guided on the inner peripheral surface of the cylindrical portion, and is retracted by contacting the inner surface of the bottom portion.

コイル12は、端子13によって、図示せぬ電流制御手段に電気的に接続されている。電流制御手段は、ブレーキ液圧制御装置の使用状況に応じてコイル12へ選択的に任意の電流値を通電制御する。   The coil 12 is electrically connected to current control means (not shown) through a terminal 13. The current control unit selectively controls the energization of an arbitrary current value to the coil 12 according to the use state of the brake fluid pressure control device.

可動コア40は、磁性材料例えば鉄系金属からなる略円筒状で、外周面には縦軸方向に沿って延びる連通溝41が周方向に複数例えば、3つ形成され、固定コア20の弁孔22と連通させることで作動液を流通可能としている。可動コア40は、コイル12の非通電状態において、固定コア20に対向して離間配置され、コイル12の通電状態において、固定コア20側に吸引されて前進する。可動コア40の中心には、軸方向に貫通する案内孔42が形成され、案内孔42には、リリーフ手段43を備えている。   The movable core 40 has a substantially cylindrical shape made of a magnetic material such as an iron-based metal, and a plurality of, for example, three communication grooves 41 extending along the longitudinal axis direction are formed on the outer peripheral surface in the circumferential direction. The hydraulic fluid can be circulated by communicating with 22. The movable core 40 is spaced apart from the fixed core 20 in a non-energized state of the coil 12, and is moved forward by being attracted to the fixed core 20 side in the energized state of the coil 12. A guide hole 42 penetrating in the axial direction is formed at the center of the movable core 40, and a relief means 43 is provided in the guide hole 42.

リリーフ手段43は、案内孔42内に摺動案内されて進退可能な当接部材48と、案内孔42の後端部(図1における上端部)に圧入固定された有底筒状の受け部材47と、当接部材48と受け部材47の間に配置された弾性付勢部材であるリリーフばね44とから構成される。リリーフ手段43の当接部材48は、リテーナ30の端部に当接し、コイル12が励磁して、可動コア40が固定コア20側に吸引されて前進することでリテーナ30を押動する。リリーフばね44は、弁体50を弁座体60から離座方向へ付勢する座ばね52よりも強いばね力に設定されている。したがって、コイル12が通電して可動コア40が固定コア20に吸引されると、リリーフばね44よりも早く座ばね52が圧縮されて弁体50が弁座体60に着座する。   The relief means 43 includes a contact member 48 that is slidably guided in the guide hole 42 and can be advanced and retracted, and a bottomed cylindrical receiving member that is press-fitted and fixed to the rear end portion (the upper end portion in FIG. 1) of the guide hole 42. 47 and a relief spring 44 that is an elastic biasing member disposed between the contact member 48 and the receiving member 47. The abutting member 48 of the relief means 43 abuts against the end of the retainer 30, the coil 12 is excited, and the movable core 40 is attracted toward the fixed core 20 and moves forward to push the retainer 30. The relief spring 44 is set to have a stronger spring force than the seat spring 52 that urges the valve body 50 from the valve seat body 60 in the separating direction. Therefore, when the coil 12 is energized and the movable core 40 is attracted to the fixed core 20, the seat spring 52 is compressed earlier than the relief spring 44 and the valve body 50 is seated on the valve seat body 60.

当接部材48は、図4に示すように、薄肉の有底筒状で、小径部481と、大径部482と、小径部481の端部に形成された底部483と、小径部481から大径部482へと接続する段部484と、を有する。段部484の内側面は、リリーフばね44の一端が当接し、段部484の外側面は、可動コア40の案内孔42の内側へ突出形成されたストッパ段部462と当接することで当接部材48の前進限を規定する。底部483は、平坦面に形成され、リテーナ30の端面36と当接する。当接部材48の小径部481及び大径部482の小径部481側と、案内孔42との間には、作動液が流通可能な程度の連通路が形成され、大径部482の側面に形成された連通孔49によって、リリーフ手段内にも作動液が連通可能となっている。   As shown in FIG. 4, the contact member 48 has a thin bottomed cylindrical shape, and includes a small diameter portion 481, a large diameter portion 482, a bottom portion 483 formed at the end of the small diameter portion 481, and a small diameter portion 481. And a step portion 484 connected to the large diameter portion 482. One end of the relief spring 44 comes into contact with the inner side surface of the stepped portion 484, and the outer side surface of the stepped portion 484 comes into contact with a stopper stepped portion 462 formed to protrude inside the guide hole 42 of the movable core 40. The advance limit of the member 48 is defined. The bottom 483 is formed on a flat surface and abuts against the end surface 36 of the retainer 30. Between the small diameter portion 481 of the contact member 48 and the small diameter portion 481 side of the large diameter portion 482 and the guide hole 42, a communication path is formed so that hydraulic fluid can flow. The hydraulic fluid can communicate with the relief means by the formed communication hole 49.

リテーナ30は、略円柱形状で、固定コア20の軸方向に貫通する弁孔22に摺動案内されて進退自在に配置される。リテーナ30の先端には略円錐形状の弁体50が圧入固定され、他端には可動コア40の当接部材48が当接する端面36が形成される。リテーナ30の外周壁面には、流通溝32が複数形成され、作動液を流通可能にしている。弁体50は、環状に突出するフランジ部で付勢部材である座ばね52の当接部になる。   The retainer 30 has a substantially cylindrical shape, and is slidably guided by a valve hole 22 penetrating in the axial direction of the fixed core 20 so as to freely advance and retract. A substantially conical valve body 50 is press-fitted and fixed at the tip of the retainer 30, and an end surface 36 with which the contact member 48 of the movable core 40 contacts is formed at the other end. A plurality of flow grooves 32 are formed on the outer peripheral wall surface of the retainer 30 to allow the working fluid to flow. The valve body 50 is an abutting portion of a seat spring 52 as a biasing member with a flange portion protruding in an annular shape.

弁座体60は、略円筒状であって、軸方向に貫通する内部流路を有し、小径の第1弁座体開口部62と、大径の第2弁座体開口部64とを有する。弁座体60は、固定コア20の弁孔22の第1開口部24側に嵌合固定され、第2弁座体開口部64は、固定コア20の第1開口部24に開口する。弁座体60の第1弁座体開口部62には、弁体50の先端に形成されたシール部が着座する弁座66が形成される。弁座66は、弁座体60の外側に向かって拡径するテーパ面で形成され、弁体50の先端に形成された縦断面円弧状のシール部が当接することで、第1弁座体開口部62を閉鎖して閉弁する。   The valve seat body 60 is substantially cylindrical and has an internal flow passage penetrating in the axial direction. The valve seat body 60 includes a first valve seat body opening portion 62 having a small diameter and a second valve seat body opening portion 64 having a large diameter. Have. The valve seat body 60 is fitted and fixed to the first opening 24 side of the valve hole 22 of the fixed core 20, and the second valve seat body opening 64 opens into the first opening 24 of the fixed core 20. In the first valve seat opening 62 of the valve seat 60, a valve seat 66 is formed on which a seal portion formed at the tip of the valve body 50 is seated. The valve seat 66 is formed with a tapered surface that increases in diameter toward the outside of the valve seat body 60, and a first cross section of the first valve seat body is brought into contact with an arc-shaped seal portion formed at the tip of the valve body 50. The opening 62 is closed and closed.

以下、本実施の形態に係る常開型電磁弁10の動作について説明する。常開型電磁弁10は、弁体50が常時開弁している消磁状態と、第1の電流値範囲の電流値で制御された状態と、第2の電流値範囲の電流値で制御された状態と、を有する。   Hereinafter, the operation of the normally open solenoid valve 10 according to the present embodiment will be described. The normally open solenoid valve 10 is controlled by a demagnetized state in which the valve body 50 is normally opened, a state controlled by a current value in the first current value range, and a current value in the second current value range. And having a state.

(消磁状態における動作)
図1は、常開型電磁弁10の消磁状態を示す。電流制御手段からコイル12へ電流を供給しないいわゆる消磁状態では、弁部材であるリテーナ30及び弁体50は、座ばね52によって弁座66から離間して配置される。したがって、この消磁状態で弁体50は常時開弁しており、作動液は、第1開口部24から第1弁座体開口部62を通過して、第2開口部26へと流れる。このとき座ばね52のバネ力によってリテーナ30は可動コア40側へ付勢される。リリーフ手段の当接部材48はリテーナ30の端面36に当接しているが、座ばね52のバネ力はリリーフばね44のばね力よりも小さいため、リリーフばね44は圧縮されない。したがって、当接部材48の段部484が案内孔42のストッパ段部462に当接した状態のまま、リテーナ30は可動コア40を押し上げ、可動コア40の端部は案内筒18の底部内面に押し付けられた後退限で保持される。
(Operation in the demagnetized state)
FIG. 1 shows a demagnetized state of the normally open solenoid valve 10. In a so-called demagnetization state in which no current is supplied from the current control means to the coil 12, the retainer 30 and the valve body 50, which are valve members, are arranged away from the valve seat 66 by a seat spring 52. Accordingly, the valve body 50 is always open in this demagnetized state, and the hydraulic fluid flows from the first opening 24 through the first valve seat opening 62 to the second opening 26. At this time, the retainer 30 is biased toward the movable core 40 by the spring force of the seat spring 52. Although the contact member 48 of the relief means is in contact with the end surface 36 of the retainer 30, the spring force of the seat spring 52 is smaller than the spring force of the relief spring 44, so the relief spring 44 is not compressed. Therefore, the retainer 30 pushes up the movable core 40 while the step 484 of the contact member 48 is in contact with the stopper step 462 of the guide hole 42, and the end of the movable core 40 is placed on the inner surface of the bottom of the guide tube 18. It is held at the pushed back limit.

(第2の電流値範囲における動作)
次に、第2の電流値範囲から選択された電流値をコイル12へ通電した図2の動作状態について、図5の電流−リリーフ圧特性グラフを参照しながら、説明する。図5は、横軸をコイル12に通電する電流値、縦軸を設定リリーフ圧として、常開型電磁弁10の特性線S1及びS2を示すものである。図示せぬ電流制御手段が、第2の電流値範囲の電流値を選択的に制御することで、常開型電磁弁10のリリーフ圧を第2のリリーフ圧に設定することができる。
(Operation in the second current value range)
Next, the operation state of FIG. 2 in which the coil 12 is energized with a current value selected from the second current value range will be described with reference to the current-relief pressure characteristic graph of FIG. FIG. 5 shows the characteristic lines S1 and S2 of the normally open solenoid valve 10 with the horizontal axis representing the current value for energizing the coil 12 and the vertical axis representing the set relief pressure. The current control means (not shown) selectively controls the current value in the second current value range, whereby the relief pressure of the normally open solenoid valve 10 can be set to the second relief pressure.

本実施の形態において、第2の電流値範囲の電流値は、図5における電流値Fよりも低い電流値Aから電流値Eで示される範囲であり、常開型電磁弁10は、特性線S1を示す。図示せぬ電流制御手段によって電流値が、第2の電流値範囲で通電制御されると、第2のリリーフ圧は、図5におけるリリーフ圧P2からリリーフ圧P5で示される範囲に設定される。   In the present embodiment, the current value in the second current value range is a range indicated by a current value A to a current value E lower than the current value F in FIG. S1 is shown. When the current value is controlled to be energized within a second current value range by a current control means (not shown), the second relief pressure is set to a range indicated by the relief pressure P2 to the relief pressure P5 in FIG.

第2のリリーフ圧に設定された常開型電磁弁10は、図2に示すように、リリーフばね44を圧縮することなく可動コア40が固定コア20側へ前進する。例えば、図示せぬ電流制御手段からコイル12に第2の電流値範囲から選択された電流値Bを通電制御すると、磁気吸引力によって可動コア40が固定コア20側に吸引される。この吸引力は、固定コア20の可動コア40側の端面28と、端面28に対向する可動コア40の対向部46との間において、磁束によって互いに引き寄せあう力である。電流値Bを通電制御された常開型電磁弁10の第2のリリーフ圧は、リリーフ圧P4である。可動コア40が吸引されると、リテーナ30の端面36に当接している当接部材48がリテーナ30を押動する。この固定コア20と可動コア40との間に発生する吸引力は、座ばね52のばね力を上回り、弁体50は弁座66に着座して第1開口部26の流路を閉弁する。このときの吸引力は、リリーフばね44を圧縮する力はないので、図2に示すように固定コア20と可動コア40は離間状態が維持されている。   As shown in FIG. 2, the normally open solenoid valve 10 set at the second relief pressure advances the movable core 40 toward the fixed core 20 without compressing the relief spring 44. For example, when a current value B selected from the second current value range is energized and controlled to the coil 12 from a current control unit (not shown), the movable core 40 is attracted to the fixed core 20 side by the magnetic attraction force. This attractive force is a force that attracts each other by the magnetic flux between the end face 28 of the fixed core 20 on the movable core 40 side and the facing portion 46 of the movable core 40 that faces the end face 28. The second relief pressure of the normally open solenoid valve 10 in which the current value B is energized is the relief pressure P4. When the movable core 40 is sucked, the contact member 48 that is in contact with the end surface 36 of the retainer 30 pushes the retainer 30. The suction force generated between the fixed core 20 and the movable core 40 exceeds the spring force of the seat spring 52, and the valve body 50 is seated on the valve seat 66 to close the flow path of the first opening 26. . Since the suction force at this time does not compress the relief spring 44, the fixed core 20 and the movable core 40 are maintained in a separated state as shown in FIG.

このとき、閉弁した弁体50の受ける作動液の液圧がP4以上になると、弁体50及びリテーナ30は、リリーフ手段43と共に可動コア40を押動して開弁し、作動液をリリーフする。なお、リリーフ手段43は、リリーフばね44を圧縮せずに当接部材48の段部484が案内孔42のストッパ段部462に当接した状態のまま、可動コア40とともに後退する。   At this time, when the hydraulic pressure of the hydraulic fluid received by the closed valve body 50 becomes P4 or more, the valve body 50 and the retainer 30 push the movable core 40 together with the relief means 43 to open the valve, thereby releasing the hydraulic fluid. To do. The relief means 43 moves back together with the movable core 40 while the step 484 of the contact member 48 is in contact with the stopper step 462 of the guide hole 42 without compressing the relief spring 44.

このような低圧時におけるリリーフ動作は、車両用のブレーキ液圧制御装置において自動追従走行制御などで使われる。固定コア20と可動コア40の吸引力をリリーフ動作に利用する場合、電流制御手段からコイル12へ供給する電流値を第2の電流値範囲内で選択的に制御(例えばBからDへ変化)させることで、多様なリリーフ圧(例えばP4からP3へ)の設定が可能となる。   Such a relief operation at low pressure is used for automatic follow-up traveling control or the like in a brake fluid pressure control device for a vehicle. When the suction force of the fixed core 20 and the movable core 40 is used for the relief operation, the current value supplied from the current control means to the coil 12 is selectively controlled within the second current value range (for example, changed from B to D). By doing so, various relief pressures (for example, from P4 to P3) can be set.

なお、電流−リリーフ圧特性を図5に示す特性線R1のように急勾配に設定すると、例えば電流値が変動しやすい状態においては、設定リリーフ圧のバラツキが大きくなってしまう。そこで、本実施の形態においては、コイル12の巻数を調整し、特性線S1のように緩勾配とすることで、電流値の望ましくない変動によるリリーフ圧のバラツキを抑えている。特性線の勾配を緩やかにすることができれば、コイル12の巻数調整以外であっても、適宜採用することができる。   If the current-relief pressure characteristic is set to be steep as shown by the characteristic line R1 shown in FIG. 5, for example, in a state where the current value is likely to fluctuate, the variation of the set relief pressure becomes large. Therefore, in the present embodiment, the number of turns of the coil 12 is adjusted so as to have a gentle gradient like the characteristic line S1, thereby suppressing variations in relief pressure due to undesirable fluctuations in the current value. If the gradient of the characteristic line can be made gentle, it can be adopted as appropriate even when the number of turns of the coil 12 is not adjusted.

(第1の電流値範囲における動作)
図示せぬ電流制御手段からコイル12に供給する電流値をさらに上げ、第1の電流値範囲から選択される電流値に制御すると、常開型電磁弁10のリリーフ圧を第1のリリーフ圧に設定することができる。
(Operation in the first current value range)
When the current value supplied to the coil 12 from a current control means (not shown) is further increased and controlled to a current value selected from the first current value range, the relief pressure of the normally open solenoid valve 10 is changed to the first relief pressure. Can be set.

本実施の形態における第1の電流値範囲の電流値は、図5における電流値F以上で示される範囲として設定される。また、図5の電流−リリーフ圧特性を特性線S1のように緩勾配に設定しても、第1の電流値範囲の電流値が電流値G未満の範囲として設定することで、消費電流を小さくすることができる。第1の電流値範囲の電流値に制御された常開型電磁弁10は、特性線S2を示し、第1のリリーフ圧は、図5におけるリリーフ圧P1に設定される。常開型電磁弁10は、図3に示す状態になる。   The current value in the first current value range in the present embodiment is set as a range indicated by the current value F or higher in FIG. In addition, even if the current-relief pressure characteristic of FIG. 5 is set to a gentle slope as shown by the characteristic line S1, the current value in the first current value range is set as a range less than the current value G, thereby reducing the current consumption. Can be small. The normally open solenoid valve 10 controlled to a current value in the first current value range shows the characteristic line S2, and the first relief pressure is set to the relief pressure P1 in FIG. The normally open solenoid valve 10 is in the state shown in FIG.

図示せぬ電流制御手段からコイル12へ第1の電流値範囲から選択された電流例えば電流値Fを通電制御すると、固定コア20は、可動コア20を第2の電流値範囲の電流で制御されたときよりも強い吸引力を発生する。リリーフ手段43の当接部材48は、可動コア20と共に、リテーナ30を押動し、座ばね52のバネ力に抗して座ばね52を圧縮させ、弁部材50を弁座66に着座させる。さらに、可動コア20は、リリーフばね44を圧縮して固定コア40に吸着される。   When a current selected from a first current value range, for example, a current value F, is controlled from the current control means (not shown) to the coil 12, the fixed core 20 controls the movable core 20 with a current in the second current value range. Generates a stronger suction force than when The abutting member 48 of the relief means 43 pushes the retainer 30 together with the movable core 20, compresses the seat spring 52 against the spring force of the seat spring 52, and seats the valve member 50 on the valve seat 66. Further, the movable core 20 is attracted to the fixed core 40 by compressing the relief spring 44.

図3の状態において、固定コア20と可動コア40が当接した状態での吸着力は、同じ電流値で離間状態のときの吸引力よりもさらに強いものとなる。また、このときの固定コア20と可動コア40の吸着力は、圧縮されたリリーフばね44のばね力よりも強い。したがって、例えばコイル12へ供給する電流が少なくともF以上であれば、弁体50の受ける作動液の液圧がリリーフ圧P1であっても可動コア40は後退しない。   In the state of FIG. 3, the attractive force in a state where the fixed core 20 and the movable core 40 are in contact with each other is stronger than the attractive force in the separated state with the same current value. Further, the adsorption force of the fixed core 20 and the movable core 40 at this time is stronger than the spring force of the compressed relief spring 44. Therefore, for example, if the current supplied to the coil 12 is at least F or more, the movable core 40 does not move backward even if the hydraulic fluid received by the valve body 50 is at the relief pressure P1.

したがって、弁体50の受ける作動液の液圧が上昇し、リリーフ圧P1以上になると、リテーナ30は、当接部材48を押動してリリーフばね44を圧縮し、弁体50を開弁することで作動液をリリーフする。このリリーフ圧P1が、リリーフばね44の弾性力によって特定される第1のリリーフ圧である。   Therefore, when the hydraulic pressure of the hydraulic fluid received by the valve body 50 increases and becomes the relief pressure P1 or more, the retainer 30 pushes the contact member 48 to compress the relief spring 44 and opens the valve body 50. To relieve the hydraulic fluid. The relief pressure P1 is a first relief pressure specified by the elastic force of the relief spring 44.

すなわち、第1の電流値範囲において、図5におけるリリーフ圧の特性線S1は、特性線S2となる。つまり、図2の状態では、固定コア20と可動コア40が離間配置していたため磁気損失が小さくなり、図3のように端面28と対向部46が当接することで磁気損失がなくなり、吸着力が急激に大きくなるためである。   That is, in the first current value range, the relief pressure characteristic line S1 in FIG. 5 becomes the characteristic line S2. That is, in the state of FIG. 2, the magnetic loss is reduced because the fixed core 20 and the movable core 40 are spaced apart, and the magnetic loss is eliminated by the contact between the end face 28 and the facing portion 46 as shown in FIG. This is because of a sudden increase.

このような高圧時におけるリリーフ動作は、車両用のブレーキ液圧制御装置におけるトラクション制御などに使用される。高圧の第1のリリーフ圧は、リリーフばね44のバネ力に依存するため、図5に示すように、電流値F以上の第1の電流値範囲において、一定のリリーフ圧P1となる。可動コア40と固定コア20とが当接して高い吸引力を得ることができれば、少なくとも電流値F以下であれば可動コア40は後退することなく、リリーフ手段によって開弁することになる。したがって、本実施の形態においては、第2の電流値範囲において、電流値を制御することで低圧のリリーフ圧を制御し、かつ電流値の変動によって低圧のリリーフ圧のバラツキを低減させる電流−リリーフ圧特性でありながら、第1の電流値範囲において、低消費電力かつ単純な構成で高圧のリリーフ圧を達成することができる。   Such relief operation at high pressure is used for traction control in a brake fluid pressure control device for a vehicle. Since the high first relief pressure depends on the spring force of the relief spring 44, as shown in FIG. 5, the relief pressure P <b> 1 is constant within a first current value range equal to or greater than the current value F. If the movable core 40 and the fixed core 20 come into contact with each other and a high suction force can be obtained, the movable core 40 is opened by the relief means without retreating if at least the current value F or less. Therefore, in the present embodiment, in the second current value range, the current-relief that controls the low-pressure relief pressure by controlling the current value and reduces the variation in the low-pressure relief pressure due to the fluctuation of the current value. Although it is a pressure characteristic, a high relief pressure can be achieved with a low power consumption and a simple configuration in the first current value range.

なお、電流値Eと電流値Fの間は、リリーフばね44を圧縮し、かつ固定コア20と可動コア40が接触していないので、リリーフ圧がバネ力の変化によって変動してしまうため、電流値の制御によるリリーフ圧制御には使わないようにしている。   Since the relief spring 44 is compressed between the current value E and the current value F and the fixed core 20 and the movable core 40 are not in contact with each other, the relief pressure fluctuates due to changes in the spring force. It is not used for relief pressure control by value control.

なお、本発明は、本実施の形態に限定されるものではなく、本発明の要旨の範囲内において種々の形態に変形可能である。   In addition, this invention is not limited to this Embodiment, It can deform | transform into various forms within the range of the summary of this invention.

例えば、リリーフばね44は、ばね部材であるが、他の弾性部材によって構成してもよい。   For example, the relief spring 44 is a spring member, but may be constituted by another elastic member.

本発明の一実施の形態に係る常開型電磁弁の開弁状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the valve opening state of the normally open type solenoid valve which concerns on one embodiment of this invention. 本発明の一実施の形態に係る常開型電磁弁の閉弁状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the valve closing state of the normally open solenoid valve which concerns on one embodiment of this invention. 本発明の一実施の形態に係る常開型電磁弁の可動コアと固定コアが当接した閉弁状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the valve closing state which the movable core and fixed core of the normally open solenoid valve which concern on one embodiment of this invention contact | abutted. 図3における部分拡大図である。It is the elements on larger scale in FIG. 本発明の一実施の形態に係る常開型電磁弁の電流−リリーフ圧特性図である。It is an electric current-relief pressure characteristic figure of the normally open type solenoid valve concerning one embodiment of the present invention.

符号の説明Explanation of symbols

1 基体
10 常開型電磁弁
12 コイル
20 固定コア
28 固定コアの端面
30 リテーナ
36 リテーナの端面
40 可動コア
42 案内孔
44 リリーフばね
46 対向部
48 当接部材
50 弁体
52 座ばね
60 弁座体
66 弁座
DESCRIPTION OF SYMBOLS 1 Substrate 10 Normally open type solenoid valve 12 Coil 20 Fixed core 28 Fixed core end surface 30 Retainer 36 Retainer end surface 40 Movable core 42 Guide hole 44 Relief spring 46 Opposing part 48 Contact member 50 Valve body 52 Seat spring 60 Valve seat body 66 Valve seat

Claims (2)

固定コアと、
弁座に対し着座可能に対向配置され、作動液の流路を開閉する弁部材と、
前記弁部材を離座方向に付勢する座ばねと、
前記固定コアに対向配置され、前記弁座に対し前記弁部材と共に進退可能な可動コアと、
通電によって前記固定コアを励磁させて前記可動コアを前記弁部材の着座方向に前進させるコイルと、
前記コイルへ通電する電流値を制御する電流制御手段と、
前記可動コアに内蔵され、前記可動コアが前記弁部材の着座方向に前進した際、弾性付勢部材の弾性力により前記弁部材を閉弁方向に押動するリリーフ手段と、を含み、
前記電流制御手段は、
前記弾性付勢部材を圧縮して前記固定コアが前記可動コアを吸着させ、前記弁部材を前記弁座に着座させる吸引力を発生させる第1の電流値範囲の電流と、
前記弾性付勢部材を圧縮せず、かつ前記固定コアと前記可動コアとが離間した状態のまま前記弁部材を前記弁座に着座させる吸引力を発生させる第2の電流値範囲の電流と、を前記コイルへ選択的に通電制御し、
前記第1の電流値範囲の電流を前記コイルへ通電することで、前記弾性付勢部材の弾性力により特定される第1のリリーフ圧と、
前記第2の電流値範囲の電流を前記コイルへ通電することで、前記吸引力により可変設定され、かつ第1のリリーフ圧より低い第2のリリーフ圧と、を選択的に設定可能な常開型電磁弁。
A fixed core;
A valve member that is disposed so as to be seated with respect to the valve seat, and that opens and closes the flow path of the hydraulic fluid;
A seat spring for urging the valve member in the separating direction;
A movable core disposed opposite to the fixed core and capable of moving forward and backward with the valve member with respect to the valve seat;
A coil that energizes the fixed core by energization to advance the movable core in the seating direction of the valve member;
Current control means for controlling a current value to be supplied to the coil;
A relief means incorporated in the movable core, and when the movable core advances in the seating direction of the valve member, the relief means pushes the valve member in the valve closing direction by the elastic force of an elastic biasing member;
The current control means includes
A current in a first current value range that compresses the elastic biasing member to cause the stationary core to adsorb the movable core and generate a suction force to seat the valve member on the valve seat;
A current in a second current value range that does not compress the elastic urging member and generates a suction force for seating the valve member on the valve seat while the fixed core and the movable core are separated from each other; Is selectively controlled to energize the coil,
By energizing the coil with a current in the first current value range, the first relief pressure specified by the elastic force of the elastic biasing member,
By energizing the coil with a current in the second current value range, it is variably set by the suction force and can be selectively set to a second relief pressure lower than the first relief pressure. Type solenoid valve.
請求項1記載の常開型電磁弁において、
前記電流制御手段は、前記コイルへ通電する前記第2の電流値範囲の電流の値を可変制御し、前記第2のリリーフ圧を任意の圧力値に可変設定可能な常開型電磁弁。
The normally open solenoid valve according to claim 1,
The current control means is a normally open solenoid valve capable of variably controlling a current value in the second current value range energized to the coil and variably setting the second relief pressure to an arbitrary pressure value.
JP2003272000A 2003-07-08 2003-07-08 Normally-open-type solenoid valve Withdrawn JP2005030515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003272000A JP2005030515A (en) 2003-07-08 2003-07-08 Normally-open-type solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003272000A JP2005030515A (en) 2003-07-08 2003-07-08 Normally-open-type solenoid valve

Publications (1)

Publication Number Publication Date
JP2005030515A true JP2005030515A (en) 2005-02-03

Family

ID=34209693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003272000A Withdrawn JP2005030515A (en) 2003-07-08 2003-07-08 Normally-open-type solenoid valve

Country Status (1)

Country Link
JP (1) JP2005030515A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238119A (en) * 2012-05-11 2013-11-28 Toyota Motor Corp Solenoid valve control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238119A (en) * 2012-05-11 2013-11-28 Toyota Motor Corp Solenoid valve control device

Similar Documents

Publication Publication Date Title
US7396090B2 (en) EHB proportional solenoid valve with stepped gap armature
US6619616B1 (en) Solenoid valve device
JP4209281B2 (en) Normally closed solenoid valve
US6691740B2 (en) Self-holding type solenoid-operated valve
JP2004360750A (en) Solenoid valve
JP4372448B2 (en) Proportional solenoid valve
EP1484538A1 (en) Normally open solenoid valve
JP4552987B2 (en) Normally closed solenoid valve and braking control device
JP2008138757A (en) Damping force adjusting hydraulic shock absorber
CN112747124B (en) Two-stage electromagnetic valve
JP2009085321A (en) Solenoid valve
JP2009174623A (en) Solenoid valve
JP2005030515A (en) Normally-open-type solenoid valve
US20070075283A1 (en) Valve apparatus
JP2009019742A (en) Bleed type valve device
JP4301318B2 (en) Bleed valve device
JP4187254B2 (en) Manufacturing method of normally closed solenoid valve
JP4217647B2 (en) Normally open solenoid valve
JP2003130247A (en) Solenoid valve
JP2005282683A (en) Normally opened solenoid valve
JP2005289216A (en) Normally closed solenoid valve
JP2007131057A (en) Actuator for controlling brake fluid pressure
JP2006103440A (en) Anti-lock brake controlling device of vehicle
JPH10318407A (en) Solenoid valve
JP2009228801A (en) Solenoid valve

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051213

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003