JP2005030442A - Fusion-type resin pipe joint structure - Google Patents

Fusion-type resin pipe joint structure Download PDF

Info

Publication number
JP2005030442A
JP2005030442A JP2003193403A JP2003193403A JP2005030442A JP 2005030442 A JP2005030442 A JP 2005030442A JP 2003193403 A JP2003193403 A JP 2003193403A JP 2003193403 A JP2003193403 A JP 2003193403A JP 2005030442 A JP2005030442 A JP 2005030442A
Authority
JP
Japan
Prior art keywords
tube member
fusion
pipe joint
joint structure
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003193403A
Other languages
Japanese (ja)
Other versions
JP2005030442A5 (en
JP3865396B2 (en
Inventor
Kiyoshi Nishio
清志 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2003193403A priority Critical patent/JP3865396B2/en
Publication of JP2005030442A publication Critical patent/JP2005030442A/en
Publication of JP2005030442A5 publication Critical patent/JP2005030442A5/ja
Application granted granted Critical
Publication of JP3865396B2 publication Critical patent/JP3865396B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Branch Pipes, Bends, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fusion-type resin pipe joint structure capable of eliminating the obstruction in improving the purity of the fluid by solving a problem on the accumulation of fluid, securing the safety by sufficiently exerting a tube member retaining function of a tube member even when the mechanical abnormal drawing-out force except for the abnormal pressure and internal pressure of fluid, is added, and simplifying the fusion bonding work of the tube member. <P>SOLUTION: An annular sealing part 30 having a bulging part 31 closely kept into contact with an inlet-side seal part 25 by receiving the fastening action of an union nut 22 to a male screw 26 of a receiving part 24, and a fitting projection part 32 closely kept into contact with an inner depth side seal part 27, is integrally formed by molding a resin on an outer periphery of one end part 21a of the resin tube member 21 inserted into a through passage 23 of a joint body 20. The other end part 21b of the tube member 21 is formed as a fusion part to be butted and fused to an end part of the other resin tube member 38. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は融着型の樹脂製管継手構造に係り、より詳しくは半導体製造や医療・医薬品製造、食品加工、化学工業等の製造工程で取り扱われる高純度液や超純水の配管や流体制御機器等に好適に使用される樹脂製管継手構造に関する。
【0002】
【従来の技術】
この種の樹脂製管継手構造として、たとえば、図11や図12に示すような形態のもの(以下、「第1従来例」という。)が知られている(例えば、特許文献1参照)。その樹脂製管継手構造は、半導体の製造装置等に使用されるクリーンガスの供給路1においてフィルタ2とその二次側配管3とを連結するものである。すなわち、フィルタ2の二次側出口部4に二次側配管3の管端部5を差し込んだうえ、二次側出口部4の口部4aの先端側に固着された継手リング6に螺合させたユニオンナット7を締め付けて、継手リング6の先端テーパ面8に衝合させた食込みリング9を二次側配管3の外周面に圧接又は食い込ませることにより、二次側出口部4と二次側配管3とを食込みリング9によるシール状態で連結している。
また、図13に示すような流体制御機器(以下、「第2従来例」という。)も知られている(例えば、特許文献2参照。)その流体制御機器は、制御機器本体15の入液側と出液側に樹脂製接続口16、17を突設し、各接続口16、17にそれぞれ流路構成用の樹脂製チューブ18、19を突き合せ状態に融着(溶着)Wしたものである。
【0003】
【特許文献1】
特開2001−141143号公報(図1、図3)
【特許文献2】
特開2002−156087号公報(図1、図2)
【0004】
【発明が解決しようとする課題】
しかるに、二次側配管3とは別体に形成される食込みリング9により二次側出口部4と二次側配管3とをシール状態に連結する第1従来例の樹脂製管継手構造では、ユニオンナット7を締め付けることにより食込みリング9を二次側配管3の外周面に圧接又は食い込ませるとはいうものの、そのユニオンナット7の締め付けによる食込みリング9の圧接又は食い込み度合いには限界があって、食込みリング9の内周面と二次側配管3の外周面との間に僅かな隙間が生じやすい。このため、フィルタ2から送られてくる加圧ガスが前記隙間に侵入して抜けにくくガス溜まりとなり、ガスの高純度化を阻害する。また、この樹脂製管継手構造が液体供給配管等に使用される場合は、前記隙間に侵入した液体は抜けにくく液溜まりとなり、液の高純度化を阻害する。
【0005】
また、二次側配管3はフィルタ2の二次側出口部4から抜け出ないようにする必要があり、この抜け止めは食込みリング9の二次側配管3の外周面への圧接又は食い込みでもって行われるが、かかる二次配管3の抜け止め手段では使用条件によっては充分ではない場合がある。すなわち、二次側配管3に加わる通常使用の流体圧力に対する引抜き抵抗は、上記の抜け止め手段でも問題ないが、輸送される流体の温度が通常の使用温度を越えたり、流体の圧力が通常使用の圧力をはるかに越えたりする厳しい使用条件下で異常な流体の圧力が加わった場合や、内圧以外の機械的な引抜き力が異常に加わった場合において、とくに危険な薬品を輸送するときに安全性を確保することが非常に重要な課題である。このため、この樹脂製管継手の使用条件(温度や圧力)を制限する必要があった。
【0006】
また、第1従来例の樹脂製管継手構造においては二次側配管3の引抜き抵抗はユニオンナット7の締め付けによる食込みリング9の二次側配管3の外周面への圧接又は食い込みのみでもってなされているが、これでは初期の施工ミスや経時変化によってユニオンナット7の締付力が弱くなった場合に安全性の問題が生じる。とくに二次側配管3が耐熱、耐薬品性に優れるフッ素樹脂(PFA等)からなる場合摩擦係数が小さく滑り易いため、二次側配管3の強い引抜きに対する抵抗が少なくて抜け出す恐れがある。
【0007】
図13に示す第2従来例の流体制御機器では、制御機器本体15の入液側及び出液側から樹脂製接続口16、17が一体に突設しているので、その接続口16、17に樹脂製チューブ18、19を融着するに際し融着機を用いるにしても制御機本体15が嵩張って融着作業の邪魔になるため融着作業が行い難い。また、樹脂製接続口16、17には、それと同一径の樹脂製チューブ18、19の融着しかできず、異径の樹脂製チューブの融着は不可能であるという不利不便があった。
【0008】
本発明は、このような問題を解決するためになされたもので、その目的とするところは、第1従来例のような二次側配管等を構成するチューブ部材と継手本体との間のシール構造及びチューブ部材の抜止め手段に工夫を凝らすことにより、上記ガスや液の流体溜まり問題を解消することができて流体の高純度化の障害を取り除くことができ、また異常な流体圧力や内圧以外の機械的な異常な引抜き力が加わった場合においてもチューブ部材の抜止め機能を十分に発揮できて安全性を確保でき、使用条件に制約がなくなり、あらゆる条件で使用できるとともに設計の自由度が増す融着型の樹脂製管継手構造を提供することにある。また、本発明の目的は、チューブ部材の融着作業の簡易化を図れ、また異径チューブ部材の融着を可能にする融着型の樹脂製管継手構造を提供することにある。
【0009】
【課題を解決するための手段】
本発明の融着型の樹脂製管継手構造は、貫通路を有し、この貫通路の一端に受口部を設けた継手本体と、この継手本体の貫通路に挿通される樹脂製のチューブ部材と、このチューブ部材の外周に遊嵌され、前記受口部の外周の雄ねじに螺合される雌ねじを有し、かつ一端部に内向きに張り出した環状の内向き鍔部を有するユニオンナットと、を備えている樹脂製管継手構造において、前記受口部の開口端内周に、受口部外方に向けて漸次拡径したテーパ状の入口側シール部を、受口部の前記入口側シール部より内奥に少なくとも1つの内奥側シール部をそれぞれ設けており、前記チューブ部材の一端部の外周に、前記ユニオンナットの前記受口部の雄ねじへの締付けにより前記内向き鍔部による押圧作用を受けて前記入口側シール部に密着状に当接する膨出部と、前記内奥側シール部に密着状に当接する嵌合凸部とを有する環状シール部が一体加工されており、前記チューブ部材の前記受口部より外方へ突出する他端部は、他の樹脂製チューブ部材の端部と突き合せ融着する融着部としていることに特徴を有するものである。
【0010】
この場合において、前記環状シール部と前記チューブ部材は一体に樹脂成形することができる。また、前記環状シール部は切削加工によって前記チューブ部材に一体加工することもできる。また前記環状シール部は前記チューブ部材に溶接することで一体加工することもできる。
また、前記膨出部の外端面は垂直に形成し、この膨出部の垂直な外端面と、この外端面から軸方向外方へ延びるチューブ部材の他端部の外面とが交わる入り隅部に、チューブ部材の他端部の外径より大きく、前記膨出部の外径より小さい外径の厚肉部を付けて、チューブ部材を前記入り隅部を屈曲点として折れ曲がり難くすることができる。
【0011】
前記チューブ部材の一端側の嵌合凸部の内径部からは更にチューブ延長部を軸方向に一体に形成し、前記チューブ延長部が挿通される前記継手本体の貫通路の他端部の内周と、前記チューブ延長部の外周との間には、流体が滞留するのを防止するために、流体の出入り自由な隙間を形成することができる。
また、前記チューブ部材の一端側の嵌合凸部の内径部からは更にチューブ延長部を軸方向に一体に形成し、前記チューブ延長部が挿通される前記継手本体の貫通路の他端部の内周と、前記チューブ延長部の外周との間には、流体が滞留するのを防止するとともにシール性を付与するために、流体の出入り自由な隙間を形成するとともに、前記チューブ延長部の嵌合凸部寄りの外周に、前記貫通路の内周に密着する環状凸部を形成することもできる。この場合、前記環状凸部は複数個、軸線方向に並べて形成してシール効果を高めることができる。また、前記複数個の環状凸部は、貫通路への挿入を容易にするために、大きい環状凸部と、この大きい環状凸部より軸線方向内方に配置する小さい環状凸部により構成することができる。
【0012】
【発明の作用効果】
上記構成の融着型の樹脂製管継手構造によれば、ユニオンナットを締め付けることで継手本体の入口側シール部に密着状に当接する膨出部と、内奥側シール部に密着状に当接する嵌合凸部とを有する環状シール部がチューブ部材の外周一部に一体加工されて、チューブ部材の外周と環状シール部との間に隙間が生じないものとしている。したがって、前述した従来の樹脂製管継手構造のごとき流体溜まり問題は無くなり流体の高純度化の障害を取り除くことができる。
また、異常な流体の圧力や内圧以外の機械的な異常な引抜き力がチューブ部材に加わった場合においても、ユニオンナットの内向き鍔部により押圧されている環状シール部はチューブ部材に一体加工されているので引抜き力に十分に対抗することができ、チューブ部材の引抜き阻止力が高められて安全性を確保でき、使用条件(温度、圧力)に制約がなくなり、あらゆる条件で使用できるとともに設計の自由度を増すことができる。
【0013】
チューブ部材と継手本体とは分離可能であり、この分離状態下でチューブ部材の他端部の融着部に他の樹脂製チューブ部材の端部を突き合せ融着することができるので、その融着に際し融着機を使用する場合も容易に融着作業を行うことができる。また、チューブ部材とは異径の他の樹脂製チューブ部材を融着する場合は、チューブ部材の他端部の径を他の異径の樹脂製チューブ部材の径と同径に形成しておくことにより可能である。
【0014】
【発明の実施の形態】
以下、本発明の好適な実施形態を図面に基づき説明する。
【0015】
図1は一実施形態を示すもので、この実施形態では、図12に示す従来例のものと同様に半導体製造装置等に使用されるクリーンガスの供給路1における樹脂製管継手構造に適用したものであり、上流側部分を構成するフィルタ2とその下流側部分を構成する二次側配管3とを連結する融着型の樹脂製管継手構造である。フィルタ2それ自体は図11に示すフィルタと同じもので、フィルタハウジング10内を、適宜のフィルタ部材11により、図示しない一次側配管から使用目的に応じた加圧ガス(窒素、空気、不活性ガス等)が流入する一次側空間12と、フィルタ部材11を通過した加圧ガス、つまり清浄化処理されたクリーンガスが流出する二次側空間13とに区画してなるものである。
【0016】
すなわち、この実施形態における本発明に係る融着型の樹脂製管継手構造は、フィルタ2の二次側空間13に連通する二次側出口部4の先端側に一体に形成される継手本体20と、二次側配管3を構成するチューブ部材21、及びユニオンナット22とを備えてなる。これら継手本体20、チューブ部材21及びユニオンナット22は耐熱、耐薬品性に優れるフッ素樹脂(例えば、PFA、PTFE、PVDF等)、又はその他の樹脂によって成形される。
【0017】
継手本体20は貫通路23を有し、この貫通路23の一端に受口部24を設け、この受口部24の開口端内周に、受口部外方に向けて漸次拡径したテーパ状の入口側シール部25を設ける。受口部24の外周には雄ねじ26が形成される。受口部24の入口側シール部25より内奥には少なくとも1つの内奥側シール部27を設ける。図示例では、内奥側シール部27が、受口部24の内奥部に受口部方向に向けて漸次縮径したテーパ面27aを外周側に有する断面V形状に形成された環状の第1の内奥側シール部27Aと、該内奥側シール部27Aの内周側に継手本体20の軸線Xと平行に形成された第2の内奥側シール部27Bの2つが設けられている。
【0018】
ユニオンナット22はこれの内周に継手本体20の雄ねじ26に螺合される雌ねじ28を形成し、かつ一端部に環状の内向き鍔部29を内向きに張り出し形成している。
【0019】
チューブ部材21はこれの一端部21aの外周に環状シール部30を一体に樹脂成形している。環状シール部30は継手本体20の入口側シール部25に当接するテーパ面31aを内端側に形成した膨出部31と、この膨出部31のテーパ面31a側に連続して形成され、継手本体20の内奥側シール部27Aのテーパ面27aに当接するテーパ面32aを内端側に形成した嵌合凸部32とを有する形に形成している。
チューブ部材21の他端部21bは、他の樹脂製チューブ部材38の端部と突き合せ融着する融着部とする。チューブ部材21の一端側の嵌合凸部32のテーパ面32aの内径部からは更にチューブ延長部21cを軸方向に一体に形成している。
【0020】
上記構成の融着型の樹脂製管継手構造において、チューブ部材21の他端部21bの融着部には他の樹脂製チューブ部材38の一端部を突き合せ状に融着Wするが、このときは、チューブ部材21を継手本体20の貫通路23に挿通する前に、または既にチューブ部材21が継手本体20に仮挿通されている場合はユニオンナット22を緩めて一旦チューブ部材21を継手本体20から抜き出してから融着Wする。その融着には、例えば、赤外線加熱による融着機を用いる。この場合、チューブ部材21は継手本体20とは分離されているので、融着時に継手本体20が邪魔になることはなく、容易に融着作業することができる。
【0021】
かかる融着接合は、チューブ部材21の一端部21a及びチューブ延長部21cの内径と他の樹脂製チューブ材38の内径とが同一のものに限られず、チューブ部材21の一端部21a及びチューブ延長部21cの内径とは異径の他の樹脂製チューブ部材38を融着することもできる。例えば、図2に示すように、チューブ部材21の一端部21a及びチューブ延長部21cの内径より径小の他の樹脂製チューブ部材38を融着Wする場合は、チューブ部材21の他端部21bの径を他の樹脂製チューブ部材38の径と同径に成形しておけばよい。図3に示すように、チューブ部材21の一端部21a及びチューブ延長部21cの内径より径大の他の樹脂製チューブ部材38を融着Wする場合は、チューブ部材21の他端部21bの径を他の樹脂製チューブ部材38の径と同径に成形しておけばよい。
【0022】
かくして、チューブ部材21の一端部21a及びチューブ延長部21cを継手本体20の受口部24から貫通路23及びフィルタ2の二次側出口部4に挿通したうえ、予めチューブ部材21の外周に遊嵌させてあるユニオンナット22の雌ねじ28を継手本体20の雄ねじ26に螺合させて締め付ける。すると、ユニオンナット22の内向き鍔部29がチューブ部材21の膨出部31の軸線Xに対し垂直な外端面31bに当接して環状シール部30ごとチューブ部材21全体を継手本体20側に強く押圧する。
【0023】
かかるユニオンナット22の締め付けによる強い押圧作用により嵌合凸部32のテーパ面32aが継手本体20の第1の内奥側シール部27Aのテーパ面27aに、また膨出部31のテーパ面31aが継手本体20の入口側シール部25にそれぞれ強い面圧で密着して気密状にシールされ、さらに嵌合凸部32のテーパ面32aが第1の内奥側シール部27Aのテーパ面27aに押し付けられることにより該内奥側シール部27Aが縮径変形を加えられ、この縮径変形により第2の内奥側シール部27Bがチューブ部材21のチューブ延長部21cの外周面に密着状に当接してシールされる。したがって、フィルタ2の二次側出口部4からチューブ部材21へ流出する流体が継手本体20の貫通路23とチューブ部材21の外周との間から外部へ漏れるのを確実に防止できる。
【0024】
このようにフィルタ2の二次側出口部4とチューブ部材21とをシール状態に連結する融着型の樹脂製管継手構造によれば、ユニオンナット22の締め付けにより継手本体20の入口側シール部25及び内奥側シール部27に密着状に当接する環状シール部30はチューブ部材21の外周に一体成形されていて該チューブ部材21との間に隙間を形成するようなことがないので、前述した従来の樹脂製管継手構造のごとき流体溜まり問題を解消することができて流体の高純度化に寄与することができる。
【0025】
また、そのようにチューブ部材21に一体成形されユニオンナット22の内向き鍔部29により押圧されている環状シール部30は、異常な流体の圧力や内圧以外の機械的な異常な引抜き力がチューブ部材21に加わった場合においてもその引抜き力に十分に対抗することができ、チューブ部材21の引抜き抵抗を上げることができ、常温流体の時は勿論のこと、高温、高圧流体の使用条件でも使用できる。
【0026】
上記チューブ部材21の環状シール部30において、図1に示すように、膨出部31の外端面31bは軸線Xに対し垂直に形成してあると、ユニオンナット22の内向き鍔部29の内面と面接触させることができるため、ユニオンナット22の締め付けに伴い内向き鍔部29により膨出部31を安定確実に押圧させることができるとともに、その押圧状態を堅持できて有利である。しかし、チューブ部材21が膨出部31の垂直な外端面31bと、この外端面31bから軸方向外方へ延びる他端部21bの外面とが交わる入り隅部を屈曲点として折れ曲がりやすくなり、この折れ曲がりにより膨出部31の外端面31bがユニオンナット22の内向き鍔部29の内面から離れやすくなるというデメリットがある。そこで、膨出部31の垂直な外端面31bと他端部21bの外面とが交わる入り隅部には他端部21bの外径より大きく、膨出部31の外径より小さい外径の厚肉部33を付けておくことが好ましい。このように厚肉部33を付けておくと、チューブ部材21が前記入り隅部を屈曲点として折れ曲がるのをできる限り抑えることができる。したがって、チューブ部材21の折れ曲がりにより膨出部31の外端面31bがユニオンナット22の内向き鍔部29の内面から離れるような不具合がなくなり、常時ユニオンナット22の内向き鍔部29を膨出部31の外端面31bに対し押圧接当させた状態を確実に維持できることになる。
【0027】
また、ユニオンナット22の内向き鍔部29と膨出部31の垂直な外端面31bとの当接係合状態をより確実に保持するためには、ユニオンナット22の内向き鍔部29の内面と膨出部31の外端面31bの間において、膨出部31の外端面31bに凸部34を設ける一方、内向き鍔部29の内面に該凸部34が係合する凹部35を設けておくことが好ましい。
【0028】
(チューブ部材の嵌合凸部と継手本体の内奥側シール部の変形例)
チューブ部材21の嵌合凸部32と継手本体20の内奥側シール部27とは上記実施形態以外に、図4に示すような実施形態を採用することもできる。
すなわち、図4に示すように、継手本体20の内奥側シール部27において、継手本体20の受口部24の内奥に受口部方向に向けて漸次拡径したテーパ状に形成された第1の内奥側シール部36Aと、この第1の内奥側シール部36Aを先端に形成する環状突部37の内周面に形成された第2の内奥側シール部36Bと、環状突部37の外周面側に軸線Xと平行な環状溝よりなる第3の内奥側シール部36Cが形成される。一方、チューブ部材21の嵌合凸部32において、チューブ部材21の膨出部31のテーパ面31a側に、第1の内奥側シール部36Aに当接するテーパ面をもつ第1の嵌合凸部32Aと、この嵌合凸部32Aより径方向外方で且つ軸線方向内方へ向かって平行に突出され、第3の内奥側シール部36Cに圧入することで径方向の面圧を発生させる円筒形状の第2の嵌合凸部32Bとが形成される。この場合において、第2の嵌合凸部32Bが第3の内奥側シール部36Cに圧入することにより環状突部37が縮径変形を加えられ、この縮径変形により第2の内奥側シール部36Bがチューブ部材21のチューブ延長部21cの外周面に密着状に当接してシールされる。
【0029】
そのほかに、第3の内奥側シール部36Cに対し第2の嵌合凸部32Bの外周面のみを密着させてシール部を構成するものであってもよい。また、第1の嵌合凸部32Aはテーパ面をもつ形に形成するに代えて、図5に示すごとく軸線Xに対し垂直な面をもつ形に形成し、環状突部37はそれに対応する断面角形状に形成するものであってもよい。
【0030】
(継手本体の貫通路とチューブ部材の変形例)
図6に示すように、継手本体20の貫通路23の他端部23bの内周及びフィルタ2の二次側出口部4の内周と、これらに挿通されるチューブ延長部21cの外周との間に、ガス等流体が滞留することのないように、貫通路23の他端部23bの内径及び二次側出口部4の内径はチューブ延長部21cの外径よりも大きく形成して、流体の出入りが自由な隙間40を形成する。これによれば、流体が隙間40に浸入しても流出し易いため、流体の滞留を防ぐことができる。
【0031】
また、同じような目的で、図7に示すように、継手本体20の貫通路23の内径及びフィルタ2の二次側出口部4の内径を、チューブ延長部21cの外径よりも大きく形成して、貫通路23及び二次側出口部4の内周と、チューブ延長部21cの外周との間に、ガス等流体の出入りが自由な隙間40を形成するとともに、チューブ延長部21cの嵌合凸部32寄りの外周に、貫通路23の内周に密着する1個もしくは2個以上の環状凸部41を形成する。
【0032】
これによれば、流体が隙間40に浸入しても流出し易いため、流体の滞留を防止できるとともに、チューブ延長部21cが隙間40に浸入する流体圧により縮径変形するようなことがあっても、環状凸部41により貫通路23の内周とチューブ延長部21cの外周との間のシール性を確保できる。
【0033】
この場合、図示例のように、環状凸部41が複数個、軸線方向に並べて形成されていると二重シールされることでシール効果が高められる。また、複数個の環状凸部41は全て同じ大きさに形成するもよいが、図示例のように大きい環状凸部41aと、この大きい環状凸部41aより軸線方向内方に配置する小さい環状凸部41bにより構成しておくと、チューブ延長部21cを継手本体20に受口部24から貫通路23内に挿入する時、先に大きい方の環状凸部41aを挿入し、これに続いて小さい方の環状凸部41bを挿入することができ、これにより挿入操作が容易に行える。
【0034】
(チューブ部材の更に他の変形例)
上記実施形態のチューブ部材21ではチューブ延長部21cを一体成形しているが、これに代えて、図8、図9に示すようにチューブ部材21はチューブ延長部21cを持たない形状に成形するものであってもよい。この場合、図8の実施形態では内奥側シール部27がテーパ面27aを有する内奥側シール部27Aのみで構成され、図9の実施形態では内奥側シール部27が内奥側シール部36A及び36Cで構成される。但し、これらの場合はチューブ部材21の一端部21aの内周面と継手本体20の貫通路23の内周面とが面一になるように設定される。
【0035】
(チューブ部材の成形加工例)
図10に示すように、環状シール部30を左右対称に持つ1対のチューブ部材21を成形し、成形後、そのチューブ部材21の中央部Cを切断することにより2つの所要形状のチューブ部材21を得ることができる。
【0036】
(チューブ部材と環状シール部の一体加工手段の変形例)
チューブ部材21の一端部21aの外周に環状シール部30を一体加工する手段としては、チューブ部材21と環状シール部30とを一体に樹脂成形するに代えて、切削加工によりチューブ部材21の一端部21aの外周に環状シール部30を一体加工すること、あるいは環状シール部30をチューブ部材21とは別体に成形し、この環状シール部30をチューブ部材21の外周に溶接することは任意である。
【0037】
(継手本体の変形例)
本発明の樹脂製管継手構造の継手本体20としては、各図示例のように貫通路23を軸線X方向に形成するソケット形状のものに限られず、そのほかに貫通路を直交状に形成するT形状、エルボ形状、あるいは貫通路を交差状に形成する十字形状のものにも適用でき、またフィルタ2以外の、例えば、流量計、圧力計等の流体制御機器などに一体に突出形成される樹脂製管継手、またはそれら流体制御機器等と別体の樹脂製管継手にも同様に適用できる。
【図面の簡単な説明】
【図1】本発明の一実施形態の樹脂製管継手構造の半欠截断面図である。
【図2】チューブ部材に異径のチューブ部材を融着した実施形態を図1に相応して示す半欠截断面図である。
【図3】チューブ部材に異径のチューブ部材を融着した他の実施形態を図1に相応して示す半欠截断面図である。
【図4】チューブ部材の嵌合凸部と継手本体の内奥側シール部の変形例を図1に相応して示す半欠截断面図である。
【図5】チューブ部材の嵌合凸部の変形例を図1に相応して示す半欠截断面図である。
【図6】継手本体の貫通路とチューブ部材の変形例を図1に相応して示す半欠截断面図である。
【図7】継手本体の貫通路とチューブ部材の更に他の変形例を図1に相応して示す半欠截断面図である。
【図8】チューブ部材の更に他の変形例を図1に相応して示す半欠截断面図である。
【図9】チューブ部材の更に又、他の変形例を図1に相応して示す半欠截断面図である。
【図10】チューブ部材の成形加工例を示す断面図である。
【図11】従来例の樹脂製管継手構造の断面図である。
【図12】他の従来例の樹脂製管継手構造の断面図である。
【図13】更に他の従来例の樹脂製管継手構造の断面図である。
【符号の説明】
20 継手本体
21 チューブ部材
21a チューブ部材の一端部
21b チューブ部材の他端部
21c チューブ延長部
22 ユニオンナット
23 貫通路
24 受口部
25 入口側シール部
26 雄ねじ
27 内奥側シール部
28 雌ねじ
29 内向き鍔部
30 環状シール部
31 膨出部
32 嵌合凸部
33 厚肉部
38 他の樹脂製チューブ部材
40 隙間
41 環状凸部
41a 大きい環状凸部
41b 小さい環状凸部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fusion-type resin pipe joint structure, and more specifically, piping and fluid control of high-purity liquid and ultrapure water handled in manufacturing processes such as semiconductor manufacturing, medical / pharmaceutical manufacturing, food processing, and chemical industry. The present invention relates to a resin pipe joint structure that is suitably used for equipment and the like.
[0002]
[Prior art]
As this type of resin pipe joint structure, for example, a structure as shown in FIGS. 11 and 12 (hereinafter referred to as “first conventional example”) is known (see, for example, Patent Document 1). The resin pipe joint structure connects the filter 2 and its secondary side pipe 3 in a clean gas supply path 1 used in a semiconductor manufacturing apparatus or the like. That is, the pipe end portion 5 of the secondary side pipe 3 is inserted into the secondary side outlet portion 4 of the filter 2, and then screwed into the joint ring 6 fixed to the distal end side of the mouth portion 4 a of the secondary side outlet portion 4. By tightening the union nut 7 that has been tightened and pressing the bite ring 9 abutted against the tapered surface 8 of the joint ring 6 against the outer peripheral surface of the secondary side pipe 3, The secondary pipe 3 is connected in a sealed state with a biting ring 9.
A fluid control device (hereinafter referred to as “second conventional example”) as shown in FIG. 13 is also known (see, for example, Patent Document 2). Resin connection ports 16 and 17 are provided on the liquid discharge side and the liquid discharge side, and resin tubes 18 and 19 for flow path construction are welded (welded) W to the connection ports 16 and 17 respectively. It is.
[0003]
[Patent Document 1]
JP 2001-141143 A (FIGS. 1 and 3)
[Patent Document 2]
Japanese Patent Laid-Open No. 2002-156087 (FIGS. 1 and 2)
[0004]
[Problems to be solved by the invention]
However, in the resin pipe joint structure of the first conventional example in which the secondary side outlet portion 4 and the secondary side pipe 3 are connected in a sealed state by the biting ring 9 formed separately from the secondary side pipe 3, Although the biting ring 9 is pressed or bited into the outer peripheral surface of the secondary pipe 3 by tightening the union nut 7, there is a limit to the degree of pressure contact or biting of the biting ring 9 by tightening the union nut 7. A slight gap tends to occur between the inner peripheral surface of the biting ring 9 and the outer peripheral surface of the secondary side pipe 3. For this reason, the pressurized gas sent from the filter 2 enters the gap and becomes difficult to escape, resulting in a gas pool, which hinders gas purification. Further, when this resin pipe joint structure is used for a liquid supply pipe or the like, the liquid that has entered the gap is unlikely to come out and becomes a liquid pool, which hinders high purity of the liquid.
[0005]
Further, it is necessary to prevent the secondary side pipe 3 from coming out of the secondary side outlet portion 4 of the filter 2, and this retaining is achieved by press-contacting or biting into the outer peripheral surface of the secondary side pipe 3 of the biting ring 9. Although it is performed, the means for preventing the secondary pipe 3 from being detached may not be sufficient depending on the use conditions. That is, the pull-out resistance against the normally used fluid pressure applied to the secondary side pipe 3 is not a problem even with the above-described retaining means, but the temperature of the fluid to be transported exceeds the normal use temperature, or the fluid pressure is normally used. Safe when transporting dangerous chemicals, especially when abnormal fluid pressure is applied under severe operating conditions that far exceed the pressure of the product, or when mechanical pull-out force other than internal pressure is abnormally applied Ensuring sex is a very important issue. For this reason, it was necessary to limit the use conditions (temperature and pressure) of this resin pipe joint.
[0006]
Further, in the resin pipe joint structure of the first conventional example, the pull-out resistance of the secondary side pipe 3 is made only by pressing or biting into the outer peripheral surface of the secondary side pipe 3 of the biting ring 9 by tightening the union nut 7. However, this causes a safety problem when the tightening force of the union nut 7 becomes weak due to an initial construction error or a change over time. In particular, when the secondary side pipe 3 is made of a fluororesin (PFA or the like) that is excellent in heat resistance and chemical resistance, the friction coefficient is small and slippery.
[0007]
In the fluid control device of the second conventional example shown in FIG. 13, since the resin connection ports 16 and 17 project integrally from the liquid input side and the liquid discharge side of the control device main body 15, the connection ports 16 and 17 are provided. Even if a fusing machine is used for fusing the resin tubes 18 and 19, the controller body 15 is bulky and obstructs the fusing work, so that it is difficult to carry out the fusing work. In addition, the resin connection ports 16 and 17 have the disadvantage that only the resin tubes 18 and 19 having the same diameter can be fused, and the resin tubes having different diameters cannot be fused.
[0008]
The present invention has been made in order to solve such a problem, and its object is to provide a seal between a tube member and a joint body constituting a secondary side pipe or the like as in the first conventional example. By devising the structure and the tube member retaining means, it is possible to eliminate the above-mentioned problems of gas and liquid pooling and to eliminate obstacles to high purity of the fluid, as well as abnormal fluid pressure and internal pressure. Even when a mechanical abnormal pulling force other than the above is applied, the tube member's retaining function can be fully exerted to ensure safety, there are no restrictions on the use conditions, and it can be used in all conditions and the design freedom An object of the present invention is to provide a fusion-type resin pipe joint structure in which the number of welds increases. Another object of the present invention is to provide a fusion-type resin pipe joint structure that can simplify the fusion work of tube members and enables fusion of different-diameter tube members.
[0009]
[Means for Solving the Problems]
The fusion-type resin pipe joint structure of the present invention has a through-passage, a joint main body provided with a receiving portion at one end of the through-passage, and a resin tube inserted into the through-passage of the joint main body A union nut having a member, a female screw that is loosely fitted to the outer periphery of the tube member, and is screwed to a male screw on the outer periphery of the receiving portion, and an annular inward flange portion projecting inwardly at one end portion In the resin pipe joint structure comprising: a tapered inlet-side seal portion that gradually increases in diameter toward the outside of the receiving portion on the inner periphery of the opening end of the receiving portion; At least one inner back side seal portion is provided inward from the inlet side seal portion, and the inward flange is fastened to the outer periphery of one end portion of the tube member by tightening the male nut of the receiving portion of the union nut. In close contact with the inlet side seal part An annular seal portion having a bulging portion that comes into contact and a fitting convex portion that comes into close contact with the inner back side seal portion is integrally processed, and protrudes outward from the receiving portion of the tube member. The other end portion is characterized in that it is a fusion portion that is abutted and fused with an end portion of another resin tube member.
[0010]
In this case, the annular seal portion and the tube member can be integrally molded with resin. Moreover, the said annular seal part can also be integrally processed by the said tube member by cutting. Moreover, the said annular seal part can also be integrally processed by welding to the said tube member.
In addition, the outer end surface of the bulging portion is formed vertically, and the corner portion where the vertical outer end surface of the bulging portion intersects the outer surface of the other end portion of the tube member extending axially outward from the outer end surface. A thick wall portion having an outer diameter larger than the outer diameter of the other end portion of the tube member and smaller than the outer diameter of the bulging portion may be attached to the tube member so that the tube member is difficult to be bent with the entering corner portion as a bending point. .
[0011]
A tube extension is integrally formed in the axial direction from the inner diameter portion of the fitting convex portion on one end side of the tube member, and the inner circumference of the other end of the through-passage of the joint body through which the tube extension is inserted In order to prevent the fluid from staying between the outer periphery of the tube extension portion, it is possible to form a clearance where the fluid can freely enter and exit.
Further, a tube extension is integrally formed in the axial direction from the inner diameter portion of the fitting convex portion on one end side of the tube member, and the other end of the through-passage of the joint body through which the tube extension is inserted. Between the inner periphery and the outer periphery of the tube extension, in order to prevent the fluid from staying and to provide a sealing property, a clearance for allowing the fluid to enter and exit is formed, and the tube extension is fitted. An annular convex portion that is in close contact with the inner periphery of the through-passage may be formed on the outer periphery near the joint convex portion. In this case, a plurality of the annular protrusions can be formed side by side in the axial direction to enhance the sealing effect. In addition, the plurality of annular protrusions are configured by a large annular protrusion and a small annular protrusion disposed inward in the axial direction from the large annular protrusion in order to facilitate insertion into the through passage. Can do.
[0012]
[Effects of the invention]
According to the fusion-type resin pipe joint structure having the above-described structure, the union nut is tightened so that the bulging part that comes into close contact with the inlet side seal part of the joint body and the inner back side seal part are in close contact with each other. An annular seal portion having a fitting convex portion that comes into contact is integrally processed on a part of the outer periphery of the tube member so that no gap is generated between the outer periphery of the tube member and the annular seal portion. Therefore, there is no fluid pool problem as in the conventional resin pipe joint structure described above, and the obstacle to high purity of the fluid can be removed.
In addition, even when an abnormal mechanical pressure other than abnormal fluid pressure or internal pressure is applied to the tube member, the annular seal portion pressed by the inward flange of the union nut is integrally processed on the tube member. Therefore, it can sufficiently counter the pulling force, and the tube member's pulling-out prevention force is enhanced to ensure safety, and there are no restrictions on the use conditions (temperature, pressure), and it can be used in all conditions and is designed. The degree of freedom can be increased.
[0013]
The tube member and the joint body can be separated, and the end of another resin tube member can be abutted and fused to the fused part of the other end of the tube member in this separated state. Even when a fusing machine is used for wearing, the fusing operation can be easily performed. In addition, when fusing another resin tube member having a different diameter from the tube member, the diameter of the other end of the tube member is formed to be the same as the diameter of the other resin tube member having a different diameter. Is possible.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention will be described below with reference to the drawings.
[0015]
FIG. 1 shows an embodiment. In this embodiment, the present invention is applied to a resin pipe joint structure in a supply path 1 of a clean gas used in a semiconductor manufacturing apparatus or the like as in the conventional example shown in FIG. This is a fusion-type resin pipe joint structure that connects the filter 2 constituting the upstream portion and the secondary pipe 3 constituting the downstream portion thereof. The filter 2 itself is the same as the filter shown in FIG. 11, and a pressurized gas (nitrogen, air, inert gas) corresponding to the purpose of use is provided in the filter housing 10 from a primary side pipe (not shown) by an appropriate filter member 11. Etc.) and a secondary side space 13 from which the pressurized gas that has passed through the filter member 11, that is, the cleaned clean gas, flows out.
[0016]
That is, the fusion-type resin pipe joint structure according to the present invention in this embodiment is a joint body 20 integrally formed at the distal end side of the secondary side outlet portion 4 communicating with the secondary side space 13 of the filter 2. And the tube member 21 and the union nut 22 which comprise the secondary side piping 3 are provided. The joint body 20, the tube member 21, and the union nut 22 are formed of a fluororesin (for example, PFA, PTFE, PVDF, etc.) excellent in heat resistance and chemical resistance, or other resins.
[0017]
The joint body 20 has a through-passage 23, a receiving portion 24 is provided at one end of the through-passage 23, and a taper that gradually increases in diameter toward the outside of the receiving portion on the inner periphery of the opening end of the receiving portion 24. A shaped inlet-side seal portion 25 is provided. A male screw 26 is formed on the outer periphery of the receiving portion 24. At least one inner back side seal portion 27 is provided inward from the inlet side seal portion 25 of the receiving port 24. In the illustrated example, the inner back side seal portion 27 has an annular first shape formed in a V-shaped cross section having a tapered surface 27a gradually decreasing in the inner back portion of the receiving portion 24 toward the receiving portion. Two inner back seal portions 27A and a second inner back seal portion 27B formed in parallel with the axis X of the joint body 20 are provided on the inner peripheral side of the inner back seal portion 27A. .
[0018]
The union nut 22 is formed with a female screw 28 screwed to the male screw 26 of the joint body 20 on the inner periphery thereof, and an annular inward flange portion 29 is formed inwardly at one end portion.
[0019]
The tube member 21 is formed by integrally molding an annular seal portion 30 on the outer periphery of one end portion 21a thereof. The annular seal portion 30 is formed continuously on the bulging portion 31 formed on the inner end side with a tapered surface 31a contacting the inlet-side seal portion 25 of the joint body 20, and on the tapered surface 31a side of the bulging portion 31. A tapered surface 32a that contacts the tapered surface 27a of the inner back side seal portion 27A of the joint body 20 is formed to have a fitting convex portion 32 formed on the inner end side.
The other end portion 21 b of the tube member 21 is a fusion portion that is butt-fused with an end portion of another resin tube member 38. A tube extension portion 21c is integrally formed in the axial direction from the inner diameter portion of the tapered surface 32a of the fitting convex portion 32 on one end side of the tube member 21.
[0020]
In the fusion-type resin pipe joint structure having the above-described configuration, one end part of another resin-made tube member 38 is fused in a butted manner to the fusion part of the other end part 21b of the tube member 21. When the tube member 21 is inserted through the through-passage 23 of the joint body 20 or when the tube member 21 has already been temporarily inserted into the joint body 20, the union nut 22 is loosened and the tube member 21 is temporarily attached. After extracting from 20, fusion W is performed. For the fusion, for example, a fusion machine using infrared heating is used. In this case, since the tube member 21 is separated from the joint body 20, the joint body 20 does not get in the way at the time of fusion and can be easily fused.
[0021]
Such fusion bonding is not limited to the case where the inner diameter of the one end portion 21a and the tube extension portion 21c of the tube member 21 and the inner diameter of the other resin tube material 38 are the same, but the one end portion 21a and the tube extension portion of the tube member 21. Another resin tube member 38 having a different diameter from the inner diameter of 21c can be fused. For example, as shown in FIG. 2, when the other resin tube member 38 having a diameter smaller than the inner diameter of the one end 21a and the tube extension 21c of the tube member 21 is fused W, the other end 21b of the tube member 21 is used. May be formed to have the same diameter as that of the other resin tube member 38. As shown in FIG. 3, when the other resin tube member 38 having a diameter larger than the inner diameter of the one end 21 a and the tube extension 21 c of the tube member 21 is fused W, the diameter of the other end 21 b of the tube member 21. May be formed to have the same diameter as that of the other resin tube member 38.
[0022]
Thus, the one end portion 21 a and the tube extension portion 21 c of the tube member 21 are inserted from the receiving portion 24 of the joint body 20 into the through-passage 23 and the secondary side outlet portion 4 of the filter 2, and are then allowed to play around the outer periphery of the tube member 21 in advance. The fitted female screw 28 of the union nut 22 is screwed into the male screw 26 of the joint body 20 and tightened. Then, the inward flange portion 29 of the union nut 22 abuts on the outer end surface 31b perpendicular to the axis X of the bulging portion 31 of the tube member 21, and the entire tube member 21 together with the annular seal portion 30 is strongly pressed toward the joint body 20 side. Press.
[0023]
Due to the strong pressing action by tightening the union nut 22, the taper surface 32 a of the fitting convex portion 32 becomes the taper surface 27 a of the first inner back side seal portion 27 A of the joint body 20, and the taper surface 31 a of the bulge portion 31 becomes. The joint main body 20 is tightly sealed with a strong surface pressure and sealed in an airtight manner, and the tapered surface 32a of the fitting convex portion 32 is pressed against the tapered surface 27a of the first inner back side sealing portion 27A. As a result, the inner back side seal portion 27A is reduced in diameter, and the second inner back side seal portion 27B comes into close contact with the outer peripheral surface of the tube extension portion 21c of the tube member 21 due to this diameter reduction deformation. And sealed. Therefore, it is possible to reliably prevent the fluid flowing out from the secondary outlet portion 4 of the filter 2 to the tube member 21 from leaking between the through-passage 23 of the joint body 20 and the outer periphery of the tube member 21 to the outside.
[0024]
Thus, according to the fusion-type resin pipe joint structure that connects the secondary outlet portion 4 of the filter 2 and the tube member 21 in a sealed state, the inlet-side seal portion of the joint body 20 is tightened by tightening the union nut 22. 25 and the inner seal portion 27 that are in close contact with the inner seal portion 27 are integrally formed on the outer periphery of the tube member 21 and do not form a gap with the tube member 21. Thus, it is possible to solve the problem of fluid accumulation such as the conventional resin pipe joint structure, and to contribute to the purification of the fluid.
[0025]
Further, the annular seal portion 30 which is integrally formed with the tube member 21 and pressed by the inward flange portion 29 of the union nut 22 has a mechanical abnormal pulling force other than abnormal fluid pressure and internal pressure. Even when it is applied to the member 21, it can sufficiently resist the pulling force and can increase the pulling resistance of the tube member 21, and can be used not only at normal temperature fluid but also at high temperature and high pressure fluid usage conditions. it can.
[0026]
In the annular seal portion 30 of the tube member 21, as shown in FIG. 1, when the outer end surface 31b of the bulging portion 31 is formed perpendicular to the axis X, the inner surface of the inward flange portion 29 of the union nut 22 Therefore, the bulging portion 31 can be stably and reliably pressed by the inward flange portion 29 as the union nut 22 is tightened, and the pressing state can be secured. However, the tube member 21 is easy to bend at the corner where the tube member 21 intersects the vertical outer end surface 31b of the bulging portion 31 and the outer surface of the other end portion 21b extending axially outward from the outer end surface 31b. There is a demerit that the outer end surface 31b of the bulging portion 31 is easily separated from the inner surface of the inwardly facing flange portion 29 of the union nut 22 by bending. Therefore, at the corner where the perpendicular outer end surface 31b of the bulging portion 31 and the outer surface of the other end portion 21b intersect, the outer diameter is larger than the outer diameter of the other end portion 21b and smaller than the outer diameter of the bulging portion 31. It is preferable to attach the meat portion 33. By attaching the thick portion 33 in this way, it is possible to suppress the tube member 21 from being bent with the entering corner as a bending point as much as possible. Therefore, there is no problem that the outer end surface 31b of the bulging portion 31 is separated from the inner surface of the inward flange portion 29 of the union nut 22 due to the bending of the tube member 21, and the inward flange portion 29 of the union nut 22 is always bulged. Thus, it is possible to reliably maintain the state of being pressed against the outer end surface 31b of 31.
[0027]
Moreover, in order to hold | maintain the contact | abutting engagement state of the inward flange part 29 of the union nut 22 and the perpendicular | vertical outer end surface 31b of the bulging part 31 more reliably, the inner surface of the inward flange part 29 of the union nut 22 is maintained. A convex portion 34 is provided on the outer end surface 31 b of the bulging portion 31, while a concave portion 35 is provided on the inner surface of the inward flange portion 29. It is preferable to keep.
[0028]
(Modification example of fitting convex part of tube member and inner back side seal part of joint body)
In addition to the above-described embodiment, the fitting protrusion 32 of the tube member 21 and the inner back side seal portion 27 of the joint body 20 may employ an embodiment as shown in FIG.
That is, as shown in FIG. 4, the inner back side seal portion 27 of the joint body 20 is formed in a tapered shape that gradually increases in diameter toward the mouth portion in the inner portion of the mouth portion 24 of the joint body 20. A first inner back side seal portion 36A, a second inner back side seal portion 36B formed on the inner peripheral surface of an annular protrusion 37 that forms the first inner back side seal portion 36A at the tip, and an annular shape A third inner back side seal portion 36 </ b> C made of an annular groove parallel to the axis X is formed on the outer peripheral surface side of the protrusion 37. On the other hand, in the fitting convex part 32 of the tube member 21, the 1st fitting convex which has the taper surface which contact | abuts the 1st inner back side seal part 36A in the taper surface 31a side of the bulging part 31 of the tube member 21. 32A and the protrusions 32A project radially outward and inward in the axial direction, and press-fit into the third inner back seal portion 36C to generate radial surface pressure. A cylindrical second fitting convex portion 32B is formed. In this case, when the second fitting convex portion 32B is press-fitted into the third inner back side seal portion 36C, the annular protrusion 37 is deformed by the diameter reduction, and the second inner back side by this diameter reduction deformation. The seal portion 36B is in close contact with the outer peripheral surface of the tube extension portion 21c of the tube member 21 to be sealed.
[0029]
In addition, only the outer peripheral surface of the second fitting convex portion 32B may be brought into close contact with the third inner back side seal portion 36C to constitute the seal portion. Further, instead of forming the first fitting convex portion 32A in a shape having a tapered surface, the first fitting convex portion 32A is formed in a shape having a surface perpendicular to the axis X as shown in FIG. 5, and the annular protrusion 37 corresponds thereto. It may be formed in a square cross section.
[0030]
(Modified example of joint body penetration and tube member)
As shown in FIG. 6, the inner circumference of the other end 23 b of the through-passage 23 of the joint body 20, the inner circumference of the secondary-side outlet portion 4 of the filter 2, and the outer circumference of the tube extension portion 21 c inserted therethrough. The inner diameter of the other end 23b of the through-passage 23 and the inner diameter of the secondary outlet part 4 are formed larger than the outer diameter of the tube extension 21c so that no fluid such as gas stays in between. The gap 40 is formed so that the entry / exit of the material is free. According to this, even if the fluid enters the gap 40, it is easy to flow out, so that the retention of the fluid can be prevented.
[0031]
For the same purpose, as shown in FIG. 7, the inner diameter of the through-passage 23 of the joint body 20 and the inner diameter of the secondary outlet part 4 of the filter 2 are formed larger than the outer diameter of the tube extension part 21c. In addition, a gap 40 is formed between the inner periphery of the through-passage 23 and the secondary-side outlet portion 4 and the outer periphery of the tube extension portion 21c so that a fluid such as a gas can freely enter and exit, and the tube extension portion 21c is fitted. One or more annular convex portions 41 that are in close contact with the inner periphery of the through-passage 23 are formed on the outer periphery near the convex portion 32.
[0032]
According to this, since the fluid easily flows out even if it enters the gap 40, it is possible to prevent the stagnation of the fluid, and the tube extension 21c may be reduced in diameter by the fluid pressure entering the gap 40. Moreover, the sealing performance between the inner periphery of the through-passage 23 and the outer periphery of the tube extension part 21c is securable by the annular convex part 41. FIG.
[0033]
In this case, as in the illustrated example, when a plurality of annular convex portions 41 are formed side by side in the axial direction, the sealing effect is enhanced by double sealing. The plurality of annular projections 41 may all be formed in the same size, but as shown in the example, a large annular projection 41a and a small annular projection arranged inward in the axial direction from the large annular projection 41a. When the tube extension portion 21c is inserted into the joint body 20 from the receiving port portion 24 into the through-passage 23, the larger annular convex portion 41a is inserted first, followed by the small portion. The annular convex portion 41b can be inserted, which facilitates the insertion operation.
[0034]
(Still another modification of the tube member)
In the tube member 21 of the above embodiment, the tube extension portion 21c is integrally formed. Instead, as shown in FIGS. 8 and 9, the tube member 21 is formed into a shape having no tube extension portion 21c. It may be. In this case, in the embodiment of FIG. 8, the inner back side seal portion 27 is configured only by the inner back side seal portion 27A having the tapered surface 27a, and in the embodiment of FIG. 9, the inner back side seal portion 27 is formed by the inner back side seal portion. 36A and 36C. However, in these cases, the inner peripheral surface of the one end portion 21a of the tube member 21 and the inner peripheral surface of the through-passage 23 of the joint body 20 are set to be flush with each other.
[0035]
(Example of tube member forming)
As shown in FIG. 10, a pair of tube members 21 having an annular seal portion 30 left and right symmetrical are formed, and after forming, the center portion C of the tube member 21 is cut to obtain two tube members 21 having required shapes. Can be obtained.
[0036]
(Variation of integrated processing means for tube member and annular seal part)
As means for integrally processing the annular seal portion 30 on the outer periphery of the one end portion 21a of the tube member 21, instead of integrally molding the tube member 21 and the annular seal portion 30 integrally, one end portion of the tube member 21 by cutting is used. It is optional to integrally process the annular seal portion 30 on the outer periphery of 21a, or to form the annular seal portion 30 separately from the tube member 21 and to weld the annular seal portion 30 to the outer periphery of the tube member 21. .
[0037]
(Modification of joint body)
The joint body 20 having the resin pipe joint structure according to the present invention is not limited to the socket shape in which the through passage 23 is formed in the direction of the axis X as shown in the illustrated examples. Resin that can be applied to a shape, elbow shape, or cross shape that forms a through passage in a cross shape, and that protrudes integrally with a fluid control device such as a flow meter or pressure gauge other than the filter 2 The present invention can be similarly applied to pipe joints or resin pipe joints separate from the fluid control devices.
[Brief description of the drawings]
FIG. 1 is a half-broken cross-sectional view of a resin pipe joint structure according to an embodiment of the present invention.
FIG. 2 is a half-broken cross-sectional view corresponding to FIG. 1 showing an embodiment in which tube members having different diameters are fused to the tube member.
FIG. 3 is a half-broken cross-sectional view corresponding to FIG. 1, showing another embodiment in which tube members of different diameters are fused to the tube member.
FIG. 4 is a half-broken cross-sectional view corresponding to FIG. 1 showing a modification of the fitting convex portion of the tube member and the inner back side seal portion of the joint body.
FIG. 5 is a half cutaway cross-sectional view corresponding to FIG. 1 showing a modification of the fitting convex portion of the tube member.
FIG. 6 is a cross-sectional view of a half cutout corresponding to FIG.
FIG. 7 is a half-broken cross-sectional view corresponding to FIG. 1 showing still another modified example of the through-passage of the joint body and the tube member.
FIG. 8 is a half-broken cross-sectional view corresponding to FIG. 1 showing still another modified example of the tube member.
FIG. 9 is a cross-sectional view of a half cutout showing still another modification of the tube member corresponding to FIG.
FIG. 10 is a cross-sectional view showing an example of a tube member forming process.
FIG. 11 is a cross-sectional view of a conventional resin pipe joint structure.
FIG. 12 is a cross-sectional view of another conventional resin pipe joint structure.
FIG. 13 is a sectional view of still another conventional resin pipe joint structure.
[Explanation of symbols]
20 Joint body 21 Tube member 21a One end portion 21b of tube member The other end portion 21c of tube member Tube extension portion 22 Union nut 23 Through passage 24 Receiving portion 25 Inlet side seal portion 26 Male screw 27 Inner back side seal portion 28 Internal screw 29 Inside Orientation flange 30 Annular seal part 31 Swelling part 32 Fitting convex part 33 Thick part 38 Other resin tube member 40 Gap 41 Annular convex part 41a Large annular convex part 41b Small annular convex part

Claims (9)

貫通路を有し、この貫通路の一端に受口部を設けた継手本体と、前記継手本体の貫通路に挿通される樹脂製のチューブ部材と、前記チューブ部材の外周に遊嵌され、前記受口部の外周の雄ねじに螺合される雌ねじを有し、かつ一端部に内向きに張り出した環状の内向き鍔部を有するユニオンナットと、を備えている樹脂製管継手構造において、
前記受口部の開口端内周に、受口部外方に向けて漸次拡径したテーパ状の入口側シール部を、受口部の前記入口側シール部より内奥に少なくとも1つの内奥側シール部をそれぞれ設けており、
前記チューブ部材の一端部の外周に、前記ユニオンナットの前記受口部の雄ねじへの締付けにより前記内向き鍔部による押圧作用を受けて前記入口側シール部に密着状に当接する膨出部と、前記内奥側シール部に密着状に当接する嵌合凸部とを有する環状シール部が一体加工されており、
前記チューブ部材の前記受口部より外方へ突出する他端部は、他の樹脂製チューブ部材の端部と突き合せ融着する融着部としていることを特徴とする、融着型の樹脂製管継手構造。
A joint body having a through-passage and having a receiving portion at one end of the through-passage, a resin tube member inserted through the through-passage of the joint body, and loosely fitted on the outer periphery of the tube member, In a resin pipe joint structure having a female screw that is screwed to a male screw on the outer periphery of the receiving part, and a union nut having an annular inward flange projecting inwardly at one end part,
A tapered inlet-side seal portion that gradually increases in diameter toward the outside of the receiving portion is provided on the inner periphery of the opening end of the receiving portion, and at least one inner depth is provided inward from the inlet-side seal portion of the receiving portion. Each side seal part is provided,
A bulging portion that is pressed against the inlet side seal portion in close contact with the outer periphery of one end portion of the tube member by receiving a pressing action by the inward flange portion by tightening the union nut on the male thread of the receiving portion; The annular seal portion having a fitting convex portion that comes into close contact with the inner back side seal portion is integrally processed,
The other end portion of the tube member that protrudes outward from the receiving portion is a fusion portion that is abutted and fused with an end portion of another resin tube member. Pipe joint structure.
前記環状シール部と前記チューブ部材が一体に樹脂成形されている、請求項1記載の融着型の樹脂製管継手構造。The fusion-type resin pipe joint structure according to claim 1, wherein the annular seal portion and the tube member are integrally molded with resin. 前記環状シール部が切削加工によって前記チューブ部材に一体加工されている、請求項1記載の融着型の樹脂製管継手構造。The fusion-type resin pipe joint structure according to claim 1, wherein the annular seal portion is integrally formed with the tube member by cutting. 前記環状シール部が前記チューブ部材に溶接することで一体加工されている、請求項1記載の融着型の樹脂製管継手構造。The fusion-type resin pipe joint structure according to claim 1, wherein the annular seal portion is integrally processed by welding to the tube member. 前記膨出部の外端面は垂直に形成し、この膨出部の垂直な外端面と、この外端面から軸方向外方へ延びるチューブ部材の他端部の外面とが交わる入り隅部に、チューブ部材の他端部の外径より大きく、前記膨出部の外径より小さい外径の厚肉部を付けている、請求項1ないし4のいずれか1項に記載の融着型の樹脂製管継手構造。The outer end surface of the bulging portion is formed vertically, and a corner portion where the vertical outer end surface of the bulging portion intersects with the outer surface of the other end portion of the tube member extending axially outward from the outer end surface, The fusion-type resin according to any one of claims 1 to 4, wherein a thick-walled portion having an outer diameter larger than an outer diameter of the other end portion of the tube member and smaller than an outer diameter of the bulging portion is attached. Pipe joint structure. 前記チューブ部材の一端側の嵌合凸部の内径部からは更にチューブ延長部を軸方向に一体に形成し、前記チューブ延長部が挿通される前記継手本体の貫通路の他端部の内周と、前記チューブ延長部の外周との間に、流体の出入り自由な隙間が形成されている、請求項1ないし5のいずれか1項に記載の融着型の樹脂製管継手構造。A tube extension is integrally formed in the axial direction from the inner diameter portion of the fitting convex portion on one end side of the tube member, and the inner circumference of the other end of the through-passage of the joint body through which the tube extension is inserted The fusion-type resin pipe joint structure according to any one of claims 1 to 5, wherein a clearance allowing fluid to freely enter and exit is formed between the outer periphery of the tube extension portion. 前記チューブ部材の一端側の嵌合凸部の内径部からは更にチューブ延長部を軸方向に一体に形成し、前記チューブ延長部が挿通される前記継手本体の貫通路の他端部の内周と、前記チューブ延長部の外周との間に、流体の出入り自由な隙間が形成されるとともに、前記チューブ延長部の嵌合凸部寄りの外周に、前記貫通路の内周に密着する環状凸部が形成されている、請求項1ないし5のいずれか1項に記載の融着型の樹脂製管継手構造。A tube extension is integrally formed in the axial direction from the inner diameter portion of the fitting convex portion on one end side of the tube member, and the inner circumference of the other end of the through-passage of the joint body through which the tube extension is inserted Between the outer periphery of the tube extension and the outer periphery of the tube extension, and an annular protrusion that is in close contact with the inner periphery of the through passage on the outer periphery of the tube extension near the fitting protrusion. The fusion-type resin pipe joint structure according to any one of claims 1 to 5, wherein a portion is formed. 前記環状凸部が複数個、軸線方向に並べて形成されている、請求項7記載の融着型の樹脂製管継手構造。The fusion-type resin pipe joint structure according to claim 7, wherein a plurality of the annular convex portions are formed side by side in the axial direction. 前記複数個の環状凸部が大きい環状凸部と、この大きい環状凸部より軸線方向内方に配置する小さい環状凸部とからなる、請求項8記載の融着型の樹脂製管継手構造。The fusion-type resin pipe joint structure according to claim 8, wherein the plurality of annular protrusions include a large annular protrusion and a small annular protrusion disposed inward in the axial direction from the large annular protrusion.
JP2003193403A 2003-07-08 2003-07-08 Fusion type resin pipe joint structure Expired - Lifetime JP3865396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003193403A JP3865396B2 (en) 2003-07-08 2003-07-08 Fusion type resin pipe joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003193403A JP3865396B2 (en) 2003-07-08 2003-07-08 Fusion type resin pipe joint structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005161282A Division JP4227975B2 (en) 2005-06-01 2005-06-01 Fused fluororesin pipe joint structure

Publications (3)

Publication Number Publication Date
JP2005030442A true JP2005030442A (en) 2005-02-03
JP2005030442A5 JP2005030442A5 (en) 2005-10-13
JP3865396B2 JP3865396B2 (en) 2007-01-10

Family

ID=34204875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003193403A Expired - Lifetime JP3865396B2 (en) 2003-07-08 2003-07-08 Fusion type resin pipe joint structure

Country Status (1)

Country Link
JP (1) JP3865396B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021126704A (en) * 2020-02-14 2021-09-02 千住金属工業株式会社 Lead-free and antimony-free solder alloy, solder ball, and solder joint
US11518114B2 (en) 2019-06-07 2022-12-06 Fit-Line, Inc. Method and apparatus to assemble a high purity liquid distribution system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11518114B2 (en) 2019-06-07 2022-12-06 Fit-Line, Inc. Method and apparatus to assemble a high purity liquid distribution system
JP2021126704A (en) * 2020-02-14 2021-09-02 千住金属工業株式会社 Lead-free and antimony-free solder alloy, solder ball, and solder joint

Also Published As

Publication number Publication date
JP3865396B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
US5498036A (en) Dual containment fitting
JP5311795B2 (en) Pipe fitting
KR101887260B1 (en) Inner ring
US6776440B2 (en) Method and structure for preventing slipping-off of a tube in a pipe joint made of resin
JP2003065479A (en) Reusable coupling attached to end part of flexible reinforcing pipe
US20080000533A1 (en) Structure for Connection Between Integrated Panel and Fluid Device
US20070145691A1 (en) Fluid gasket
KR20020069228A (en) Component to component sealing method
US7942165B2 (en) Connection structure between integrated panel and fluid device
TW201641862A (en) Resin pipe joint structure
US20090072536A1 (en) Connection Structure of Stack Panel to Fluid Device
US20100013213A1 (en) Structure for connection between integrated panel and fluid device
JP4227975B2 (en) Fused fluororesin pipe joint structure
JP3865396B2 (en) Fusion type resin pipe joint structure
US20230148383A1 (en) Seal member
JP3865395B2 (en) Resin pipe joint structure
JP3686846B2 (en) Resin pipe joint structure
JP4131716B2 (en) Fluororesin inner ring for pipe joints, pipe joints, and connection methods for pipe joints
JP2920331B2 (en) Pipe fittings
KR101842173B1 (en) Fitting for Tube with Enhanced Seal Structure
JPH0750628Y2 (en) Pipe fitting
JPH1164048A (en) Attaching structure for fluid-measuring sensor
US11846375B2 (en) Push-fitting
JP2006161874A (en) Connection structure of integrated panel with fluid device
JP3585077B2 (en) Degassing device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050601

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061002

R150 Certificate of patent or registration of utility model

Ref document number: 3865396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term