JP2005029627A - Method for producing powdered cellulose - Google Patents

Method for producing powdered cellulose Download PDF

Info

Publication number
JP2005029627A
JP2005029627A JP2003193998A JP2003193998A JP2005029627A JP 2005029627 A JP2005029627 A JP 2005029627A JP 2003193998 A JP2003193998 A JP 2003193998A JP 2003193998 A JP2003193998 A JP 2003193998A JP 2005029627 A JP2005029627 A JP 2005029627A
Authority
JP
Japan
Prior art keywords
ozone
cellulose
acid
acid hydrolysis
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003193998A
Other languages
Japanese (ja)
Inventor
Koji Hosokawa
幸司 細川
Hitoshi Ito
等 伊藤
Tatsuaki Iwaki
達明 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Chemicals Co Ltd
Original Assignee
Nippon Paper Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Chemicals Co Ltd filed Critical Nippon Paper Chemicals Co Ltd
Priority to JP2003193998A priority Critical patent/JP2005029627A/en
Publication of JP2005029627A publication Critical patent/JP2005029627A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an industrially advantageous method enabling mass production by remarkably accelerating acid hydrolysis reaction in the step of hydrolyzing a pulp cellulose with a mineral acid to prepare a powdered cellulose. <P>SOLUTION: In the step of producing the powdered cellulose by acid-hydrolyzing the pulp cellulose with the mineral acid, before or simultaneously with the acid hydrolysis reaction, the pulp cellulose is treated with ozone generated from an ozone generator or an ozone exhaust gas discharged from a pulp bleaching stage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
【従来の技術】
従来、粉末状セルロースは、増粘性、乳化安定性、保水性、吸油性、保形性等の特徴を有することから、食品添加剤、錠剤賦形剤、分散剤、保形剤、保水剤、濾過助剤、充填剤、塗料・接着剤用添加剤等として、食品、医薬品、化粧品、建材、窯業、ゴム・プラスチック等の幅広い分野で使用されている。
【0002】
一般に、粉末状セルロースを得る方法としては、化学的処理と機械的処理による方法が知られている。化学的処理としてはセルロース原料に硫酸または塩酸等の鉱酸を作用させ加水分解反応を行い、粉末状セルロースを得る方法が公知であり、例えば120〜160℃という高温下、20〜45分間希酸で酸加水分解し、粉末状セルロースを得る方法(特許文献1参照)、2.5規定の塩酸で約15分間酸加水分解し、粉末状セルロースを得る方法(特許文献2参照)、各種濃度の塩酸水溶液で高温処理し、粉末状セルロースを得る方法(特許文献3参照)等がある。酸加水分解法で得られる粉末状セルロースの特徴としては、嵩密度が大きく、コンパクトで粉体流動性に優れ、また、酸濃度を適宜コントロールすることで、粉末状セルロースの重合度および嵩密度を容易に調節できる等の利点を有している。しかしながら、その製造方法は、通常、原料パルプスラリー調製工程、酸加水分解反応工程、中和工程、洗浄工程、脱液工程、乾燥工程、粉砕工程、分級工程を経ることから、製造コストに課題があった。よって、製造コスト削減案として、特に酸加水分解反応工程,中和工程における鉱酸、アルカリ等の薬品コストの低減、酸加水分解反応工程の簡素化に伴う生産性向上、酸加水分解反応工程における収率アップ等が望まれていた。
【0003】
また、機械的処理としては公知の分級および/または粉砕技術が利用されている。機械的処理では原料のロスが殆ど無いために高収率であること、薬品コストが生じないこと等の利点を有している。しかしながら、機械的処理ではセルロースの持つ靭性のために微粉砕が困難であること、また、嵩密度の調節が困難であり、場合によれば機械的処理によってセルロース繊維が毛羽立ち、嵩密度が低下し、粉体流動性が劣るという問題があった。これら課題の改善策として、ボールミルでセルロースおよび/またはエーテル基を有するその誘導体を微粉砕する方法(特許文献4参照)、前処理としてボールミルまたはペレット圧縮成形機にて硬化または脆化を行った後に、ジェットミルまたはピンディスクミルまたは衝撃ミルで粉砕し、微粉化を行う方法(特許文献5参照)が知られている。しかしながら、上記の方法ではボールミルのような媒体ミルを使用するため、媒体成分の混入が懸念されていた。
【0004】
一方、昨今の製紙業界に対する環境規制が強まるに従い、パルプ漂白工程においては漂白剤に塩素を使用しないECF漂白が主流となりつつあり、オゾン漂白が導入され始めて来ている。そのような中、水膨潤状態にある晒セルロース系繊維をオゾン含有ガスで処理した後、加熱処理およびフラッフ化を行うフラッフ化セルロース系繊維の製造法(特許文献6参照)、パルプを酸性環境において十分な量の活性酸素で加水分解する色明度の高い微結晶セルロースの製造方法(特許文献7)等がオゾンを活用した漂白処理以外の例として知られている。しかしながら、前者に関してはフラッフ化の前処理としての活用であり、粉末状セルロースとはかけ離れた形態であること、また後者に関しては加水分解条件が不明確であることおよび微結晶セルロースを製造するためにオゾン等の活性酸素を大量に使用することから、製造コストに課題が残るものであった。
【特許文献1】
米国特許第3,954,727号明細書の請求の範囲
【特許文献2】
米国特許第3,141,875号明細書の請求の範囲
【特許文献3】
特開昭53−127553号公報の特許請求の範囲
【特許文献4】
特開昭51−83655号公報の特許請求の範囲
【特許文献5】
特開昭57−92001号公報の特許請求の範囲
【特許文献6】
特開平8−667号公報の特許請求の範囲
【特許文献7】
特表2003−504427号公報の特許請求の範囲
【0005】
【発明が解決しようとする課題】
本発明は、上記のような従来技術の問題を解決するために創案されたものであり、粉末状セルロースを簡単な操作で、しかも大量に生産し得る工業的に有利な製造方法を提供するためになされたものである。
【0006】
【課題を解決するための手段】
本発明者等は、上記課題を解決するために鋭意検討を重ねた結果、パルプセルロースの酸加水分解の前処理としてオゾン処理を施すこと、若しくは酸加水分解反応時にオゾン処理を併用して行うことで、酸加水分解反応が著しく促進することを見出し、この知見に基づいて本発明をなすに至った。なお、上記反応の詳細は不明ではあるが、本発明者等は、酸加水分解の前、若しくは酸加水分解時にオゾン処理を併用することで、水中にてオゾンが分解する際に生じたヒドロキシラジカル(HO・)およびパーヒドロキシラジカル(HOO・)がセルロースを攻撃することにより、セルロースの酸加水分解反応が促進するものと考えている。
【0007】
【発明の実施の形態】
本発明におけるパルプセルロースは、晒または未晒木材パルプ、晒または未晒非木材パルプ、粗または精製リンター、爆砕パルプ、脱インキパルプ、古紙パルプ、ホヤセルロースおよび酢酸菌等の微生物によって生産されるセルロース等、木粉、ヤシガラ粉末、クルミ粉末等のリグノセルロース等の天然セルロース系材料、または上記セルロース系材料を銅アンモニア溶液、モルホリン誘導体等の何らかの溶媒に溶解し、改めて紡糸された再生セルロース等を用いることが出来る。
【0008】
本発明におけるオゾンガスは、空気あるいは酸素を原料としてオゾン発生装置で公知の方法で発生させることが出来るが、このオゾンガスを本発明で使用出来るし、パルプのオゾン漂白段において、このオゾンガスで漂白した後に排出されるオゾン排ガスも使用可能である。更に、この両者の混合物も本発明のオゾンガスとして使用することも可能である。なお、オゾン漂白工程で排出されるオゾン排ガスは、通常、自然環境や作業環境などを配慮して、オゾン分解装置を経由して残留オゾンを酸素へ分解した後、大気へ放出されることから、オゾン排ガスの活用は低コスト化および省エネルギー化という観点からも非常に有用である。また、オゾンガス中のオゾン濃度は0.1〜20%(オゾン重量/ガス容積)の範囲である。オゾンガス濃度が0.1%未満の場合には、添加するオゾンガスの容積が大きくなり過ぎ、設備的な課題があるだけでなく、オゾン処理における反応効率が低下するために好ましくない。一方、オゾン濃度は高いほど好ましいが、オゾン濃度が20%を超えるオゾンガスを発生出来る実用的な装置は現存しない。
【0009】
本発明における鉱酸は、硫酸、亜硫酸、塩酸、硝酸、リン酸などが例示され、中でも硫酸、塩酸が好適である。
【0010】
第一の発明である、水湿潤状態(含水量200〜3000重量部)においてパルプセルロース100重量部に対し、予め0.1〜5.0重量部のオゾンで前処理した後、鉱酸にて酸加水分解を行うことを特徴とする粉末状セルロースの製造方法について説明する。本発明は、通常の酸加水分解法である原料パルプスラリー調製工程、酸加水分解反応工程、中和・洗浄・脱液工程、乾燥工程、粉砕工程、分級工程において、酸加水分解反応工程の前にオゾンによる前処理工程を経るのが特徴である。同工程は、水湿潤状態(含水量200〜3000重量部)においてパルプセルロース100重量部に対し、オゾン01.〜5.0重量部添加し、反応温度10〜100℃、反応時間30秒間〜60分間反応させるものである。オゾン添加量が0.1重量部未満である場合、酸加水分解反応の促進効果が見られず好ましくなく、また、5.0重量部を超えた場合はセルロースの著しい解裂が進行するだけでなく、大幅なコストアップに繋がるため好ましくない。なお、好ましくは、オゾン添加量0.3〜4.0重量部、更に好ましくは0.5〜3.0重量部である。また、オゾンは反応温度が高いほど有効であるが、本発明は水系であることから10〜100℃、好ましくは20〜100℃、更に好ましくは30〜95℃である。なお、反応時間に関してはオゾンの反応速度は速いことから、30秒間〜60分間、好ましくは5分間〜60分間、更に好ましくは10分間〜50分間である。
【0011】
第二の発明である、パルプセルロース100重量部に対し、鉱酸にて酸加水分解を行う際、0.1〜5.0重量部のオゾンを併用することを特徴とする粉末状セルロースの製造方法について説明する。本発明は、通常の酸加水分解法である原料パルプスラリー調製工程、酸加水分解反応工程、中和・洗浄・脱液工程、乾燥工程、粉砕工程、分級工程において、酸加水分解反応工程にてオゾンを併用し反応を行うことが特徴である。パルプセルロースの酸加水分解反応は公知の反応条件で実施可能であり、具体的には、パルプ濃度3〜10固形分重量%、酸濃度5〜30重量%、反応温度80〜100℃、反応時間30分間〜3時間である。上記の酸加水分解反応を行う際、オゾンを0.1〜5.0重量部添加することで、酸加水分解反応を著しく促進させることが可能である。ただし、オゾン添加量が0.1重量部未満である場合、酸加水分解反応の促進効果が見られず、また、5.0重量部を超えた場合はセルロースの著しい解裂が進行するだけでなく、大幅なコストアップに繋がるため好ましくない。なお、好ましくは、オゾン添加量0.3〜4.0重量部、更に好ましくは0.5〜3.0重量部である。
【0012】
酸加水分解前にオゾン処理を行うこと、若しくは酸加水分解と同時にオゾン処理を行うことでパルプセルロースの酸加水分解反応が促進される機構の詳細は不明ではあるが、本発明者等は次のように考えている。オゾンは水中では下記の直接分解反応を起こし、HO・およびHOO・を生成する。生成したHO・およびHOO・はセルロースを攻撃することにより、セルロース鎖の酸化および一部解裂が生じ、それに伴いセルロースの酸加水分解反応が促進するものと推測する。なお、HO・およびHOO・の生成量を増加させるために、過酸化水素等の過酸化物の添加、紫外線照射等を行っても差し支えない。

Figure 2005029627
【0013】
本発明である粉末状セルロースの製造方法は、100メッシュの篩に対する不通過割合が20重量%以下、かつ嵩密度が0.10g/ml以上であることを特徴とする粉末セルロースに対するものであることが好ましい。100メッシュの篩に対する不通過割合が20重量%を超えると、粉末状セルロースに占める繊維形態の長いものの割合が増すことから、それらが絡み合いやすくなり、粉体流動性が著しく悪化する。また、嵩密度が0.10g/ml未満の場合では、粉体流動性が悪化するだけでなく、一定容積の容器に充填できる粉末状セルロースの重量が減少し、輸送費が割高になってしまうという問題が生じる。なお、100メッシュの篩に対する不通過割合が20重量%を超えるもの、または嵩密度が0.10g/ml未満のものは、機械的処理によって簡便かつ安価に製造可能であることから、上記のような課題を抱える同品を化学的処理で製造するメリットは小さいことから、好ましくない。
【0014】
【実施例】
以下、本発明を実施例により詳述するが、本発明はこれによって限定されるものではない。なお、配合量を示す「部」および「%」は、すべて「固形分重量部」および「固形分重量%」を示した。
【0015】
[実施例1]
晒木材パルプシート(LBKP、日本製紙(株)製)100部、水1800部からなるパルプスラリーに対し、PSA酸素を原料とするAT型オゾン発生装置(オゾニア社・クロリンエンジニアズ社製)で発生した濃度7.0%のオゾンガス43部を添加し、反応温度30℃、反応時間30分間、オゾン処理反応を行った。なお、上記反応は攪拌速度250±50rpmに調節された攪拌機付きセパラブルフラスコ内で行い、かつオゾンの添加量はオゾンガスの吹き込み量を調節して行った。オゾン処理終了後、更に硫酸200部を添加、同条件で攪拌しながら、95℃まで昇温し、同温度にて45分間酸加水分解反応を行った。酸加水分解反応終了後、ブフナー漏斗に濾紙(No2、アドバンテック製)を敷き固液分離を行った。その後、約90℃の熱水3000部と苛性ソーダにより、中和・洗浄・脱液後、酸加水分解パルプを回収した。同品を送風乾燥機にて乾燥(60℃、12時間)後、スクリーンφ0.5mmをセットした粉砕機(サンプルミル、ホソカワミクロン製)で機械的に粉砕し、製品を得た。なお、得られた製品は収率94.1%、平均重合度436、100メッシュ不通過割合0%、嵩密度0.31g/mlであった。
【0016】
[実施例2]
晒木材パルプシート(LBKP、日本製紙(株)製)100部、水1800部からなるパルプスラリーに対し、硫酸200部およびPSA酸素を原料とするAT型オゾン発生装置(オゾニア社・クロリンエンジニアズ社製)で発生した濃度7.0%のオゾンガス43部を添加し、95℃まで昇温し、同温度にて45分間酸加水分解反応を行った。なお、上記反応は攪拌速度250±50rpmに調節された攪拌機付きセパラブルフラスコ内で行い、かつオゾンの添加量はオゾンガスの吹き込み量を調節して行った。酸加水分解反応終了後、ブフナー漏斗に濾紙(No2、アドバンテック製)を敷き固液分離を行った。その後、約90℃の熱水3000部と苛性ソーダにより、中和・洗浄・脱液後、酸加水分解パルプを回収した。同品を送風乾燥機にて乾燥(60℃、12時間)後、スクリーンφ0.5mmをセットした粉砕機(サンプルミル、ホソカワミクロン製)で機械的に粉砕し、製品を得た。なお、得られた製品は収率93.4%、平均重合度413、100メッシュ不通過割合0%、嵩密度0.33g/mlであった。
【0017】
[実施例3]
硫酸添加量が150部である以外は、実施例2に従い、酸加水分解反応を行った。なお、得られた製品は収率94.7%、平均重合度597、100メッシュ不通過割合0.9%、嵩密度0.26g/mlであった。
【0018】
[実施例4]
実施例2のオゾンガスを、AT型オゾン発生装置(オゾニア社・クロリンエンジニアズ社製)で発生した濃度7.0%のオゾンガスでパルプを中濃度オゾン漂白した後に排出されるオゾン排ガス(ガス組成は表1に記載)1204部に代えた以外は実施例2に従い、酸加水分解反応を行った。なお、得られた製品は収率93.8%、平均重合度427、100メッシュ不通過割合0%、嵩密度0.32g/mlであった。
【0019】
【表1】
Figure 2005029627
【0020】
[実施例5]
AT型オゾン発生装置(オゾニア社・クロリンエンジニアズ社製)で発生した濃度7.0%のオゾンガスの添加量を21部に代えた以外は実施例2に従い、酸加水分解反応を行った。なお、得られた製品は収率94.2%、平均重合度450、100メッシュ不通過割合0.3%、嵩密度0.31g/mlであった。
【0021】
[実施例6]
AT型オゾン発生装置(オゾニア社・クロリンエンジニアズ社製)で発生した濃度7.0%のオゾンガスの添加量を57部、硫酸添加量150部に代えた以外は実施例2に従い、酸加水分解反応を行った。なお、得られた製品は収率94.1%、平均重合度564、100メッシュ不通過割合0.3%、嵩密度0.28g/mlであった。
【0022】
[比較例1]
オゾン処理を行わない以外は、実施例2に従い、酸加水分解反応を行った。なお、得られた製品は収率92.1%、平均重合度612、100メッシュ不通過割合1.2%、嵩密度0.27g/mlであった。
【0023】
[比較例2]
硫酸添加量が285部、かつオゾン処理を行わない以外は、実施例2に従い、酸加水分解反応を行った。なお、得られた製品は収率81.6%、平均重合度391、100メッシュ不通過割合0%、嵩密度0.34g/mlであった。
【0024】
[比較例3]
硫酸添加量が0重量部である以外は、実施例2に従い、酸加水分解反応を行った。なお、得られた製品は収率96.3%、平均重合度479、100メッシュ不通過割合99.2%の綿状物であり、嵩密度は測定出来なかった。
【0025】
[比較例4]
AT型オゾン発生装置(オゾニア社・クロリンエンジニアズ社製)で発生した濃度7.0%のオゾンガスの添加量を1部に代えた以外は実施例2に従い、酸加水分解反応を行った。なお、得られた製品は収率92.5%、平均重合度601、100メッシュ不通過割合0.9%、嵩密度0.27g/mlであった。
【0026】
[比較例5]
AT型オゾン発生装置(オゾニア社・クロリンエンジニアズ社製)で発生した濃度7.0%のオゾンガスの添加量を100部に代えた以外は実施例2に従い、酸加水分解反応を行った。なお、得られた製品は収率88.5%、平均重合度311、100メッシュ不通過割合0%、嵩密度0.31g/mlであった。
【0027】
<平均重合度>
第13改正日本薬局方解説書、結晶セルロース確認試験(3)記載の銅エチレンジアミンを用いた粘度測定法によって平均重合度を求めた。即ち、この値が小さくなるほど、酸加水分解反応が進行し低分子化したことを意味する。
<100メッシュ不通過割合>
JIS Z 8815に準拠し、ロータップ型篩振とう機(株式会社岩田工業製)および100メッシュ篩(東京スクリーン株式会社製、目開き150μm)を用いて、100メッシュ篩上の残存試料の重量を測定し、100メッシュ不通過割合を算出した。即ち、この値が小さくなるほど、粉末状セルロースに占める繊維形態の長いものの割合が少ないことを意味する。
<嵩密度>
パウダテスタ(PT−N型、ホソカワミクロン株式会社製)を用いて測定し、Pack Densityの値を嵩密度とした。即ち、この値が大きくなるほど、酸加水分解反応が進行しコンパクトになることを意味する。
【0028】
【表2】
Figure 2005029627
【0029】
【発明の効果】
パルプセルロースを鉱酸により酸加水分解し粉末状セルロースを製造する工程において、酸加水分解反応前、若しくは同時にオゾン発生装置で発生したオゾンガスまたはパルプ漂白段から排出されるオゾン排ガスを用いて処理することで酸加水分解反応を著しく促進することが出来る。[0001]
BACKGROUND OF THE INVENTION
[Prior art]
Conventionally, powdered cellulose has characteristics such as thickening, emulsion stability, water retention, oil absorption, shape retention, etc., so food additives, tablet excipients, dispersants, shape retention agents, water retention agents, It is used in a wide range of fields such as food aids, pharmaceuticals, cosmetics, building materials, ceramics, rubber and plastics as filter aids, fillers, paint and adhesive additives.
[0002]
In general, as a method for obtaining powdered cellulose, a chemical treatment method and a mechanical treatment method are known. As a chemical treatment, a method of obtaining a cellulose powder by reacting a cellulose raw material with a mineral acid such as sulfuric acid or hydrochloric acid to obtain a powdery cellulose, for example, a dilute acid at a high temperature of 120 to 160 ° C. for 20 to 45 minutes. The method of acid-hydrolyzing to obtain powdered cellulose (see Patent Document 1), the method of acid hydrolysis with 2.5 N hydrochloric acid for about 15 minutes to obtain powdered cellulose (see Patent Document 2), various concentrations There is a method of obtaining powdered cellulose by high-temperature treatment with an aqueous hydrochloric acid solution (see Patent Document 3). The characteristics of the powdered cellulose obtained by the acid hydrolysis method are large in bulk density, compact and excellent in powder flowability, and the degree of polymerization and bulk density of the powdered cellulose can be controlled by appropriately controlling the acid concentration. It has the advantage that it can be easily adjusted. However, the production method usually involves a raw pulp slurry preparation process, an acid hydrolysis reaction process, a neutralization process, a washing process, a liquid removal process, a drying process, a pulverization process, and a classification process, and thus there is a problem in production cost. there were. Therefore, as a manufacturing cost reduction plan, especially in the acid hydrolysis reaction step and neutralization step, the chemical cost of mineral acid, alkali, etc. is reduced, the productivity improvement accompanying simplification of the acid hydrolysis reaction step, the acid hydrolysis reaction step An increase in yield has been desired.
[0003]
As the mechanical treatment, a known classification and / or pulverization technique is used. Mechanical processing has advantages such as high yield and no chemical cost because there is almost no loss of raw materials. However, mechanical processing makes it difficult to finely pulverize due to the toughness of cellulose, and it is difficult to adjust the bulk density. In some cases, the cellulose fibers become fluffed and the bulk density decreases due to mechanical processing. There was a problem that the powder fluidity was inferior. As a remedy for these problems, a method of pulverizing cellulose and / or its derivative having an ether group with a ball mill (see Patent Document 4), and after curing or embrittlement with a ball mill or a pellet compression molding machine as pretreatment There is known a method of pulverizing and pulverizing with a jet mill, a pin disc mill or an impact mill (see Patent Document 5). However, since a medium mill such as a ball mill is used in the above method, there is a concern about mixing of medium components.
[0004]
On the other hand, as the environmental regulations for the paper industry are getting stronger, ECF bleaching without using chlorine as a bleaching agent is becoming mainstream in the pulp bleaching process, and ozone bleaching has begun to be introduced. Under such circumstances, after the bleached cellulosic fiber in a water-swollen state is treated with an ozone-containing gas, a method for producing a fluffed cellulosic fiber in which heat treatment and fluffing are performed (see Patent Document 6), pulp in an acidic environment A method for producing microcrystalline cellulose having high lightness that is hydrolyzed with a sufficient amount of active oxygen (Patent Document 7) is known as an example other than bleaching treatment utilizing ozone. However, the former is used as a pretreatment for fluffing, and it is in a form far from powdered cellulose, the hydrolysis conditions are unclear for the latter, and to produce microcrystalline cellulose. Since a large amount of active oxygen such as ozone is used, a problem remains in the manufacturing cost.
[Patent Document 1]
Claims of US Pat. No. 3,954,727 [Patent Document 2]
Claims of US Pat. No. 3,141,875 [Patent Document 3]
Claims of JP-A-53-127553 [Patent Document 4]
Claims of Japanese Patent Application Laid-Open No. 51-83655 [Patent Document 5]
Claims of JP-A-57-92001 [Patent Document 6]
Claims of JP-A-8-667 [Patent Document 7]
Claims of JP-T-2003-504427
[Problems to be solved by the invention]
The present invention was devised to solve the problems of the prior art as described above, and provides an industrially advantageous production method capable of producing powdery cellulose in a simple operation and in large quantities. It was made.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have performed ozone treatment as a pretreatment for acid hydrolysis of pulp cellulose, or combined with ozone treatment during acid hydrolysis reaction. Thus, the inventors have found that the acid hydrolysis reaction is remarkably accelerated, and have come to make the present invention based on this finding. Although the details of the above reaction are unclear, the present inventors have used a hydroxy radical generated when ozone is decomposed in water by using ozone treatment before acid hydrolysis or at the time of acid hydrolysis. It is considered that the acid hydrolysis reaction of cellulose is promoted by attacking cellulose by (HO.) And perhydroxy radical (HOO.).
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The pulp cellulose in the present invention is cellulose produced by microorganisms such as bleached or unbleached wood pulp, bleached or unbleached non-wood pulp, crude or refined linter, explosive pulp, deinked pulp, waste paper pulp, squirt cellulose, and acetic acid bacteria. Natural cellulose materials such as lignocellulose, such as wood powder, coconut powder, walnut powder, etc., or regenerated cellulose that is spun again after dissolving the above cellulose material in some solvent such as copper ammonia solution, morpholine derivative, etc. I can do it.
[0008]
The ozone gas in the present invention can be generated by a known method in an ozone generator using air or oxygen as a raw material, but this ozone gas can be used in the present invention, and after bleaching with this ozone gas in the ozone bleaching stage of pulp. The exhausted ozone exhaust gas can also be used. Furthermore, a mixture of both can also be used as the ozone gas of the present invention. In addition, the ozone exhaust gas discharged in the ozone bleaching process is usually released into the atmosphere after decomposing residual ozone into oxygen via an ozone decomposition device in consideration of the natural environment and working environment, Utilization of ozone exhaust gas is very useful from the viewpoint of cost reduction and energy saving. The ozone concentration in the ozone gas is in the range of 0.1 to 20% (ozone weight / gas volume). When the ozone gas concentration is less than 0.1%, the volume of the ozone gas to be added becomes too large, which is not preferable because there are not only problems with equipment but also the reaction efficiency in ozone treatment decreases. On the other hand, the higher the ozone concentration, the better, but there is no practical apparatus that can generate ozone gas with an ozone concentration exceeding 20%.
[0009]
Examples of the mineral acid in the present invention include sulfuric acid, sulfurous acid, hydrochloric acid, nitric acid, phosphoric acid and the like, and sulfuric acid and hydrochloric acid are particularly preferable.
[0010]
After pre-treating with 0.1 to 5.0 parts by weight of ozone in advance to 100 parts by weight of pulp cellulose in a water-wet state (water content 200 to 3000 parts by weight), which is the first invention, with mineral acid A method for producing powdered cellulose characterized by performing acid hydrolysis will be described. The present invention is an ordinary acid hydrolysis method in the raw material pulp slurry preparation step, acid hydrolysis reaction step, neutralization / washing / liquid removal step, drying step, pulverization step, classification step, before the acid hydrolysis reaction step. It is characterized by a pretreatment step using ozone. This step is performed by adding ozone 01. to 100 parts by weight of pulp cellulose in a wet state of water (water content 200 to 3000 parts by weight). ˜5.0 parts by weight is added, and the reaction temperature is 10 to 100 ° C., and the reaction time is 30 seconds to 60 minutes. If the amount of ozone added is less than 0.1 parts by weight, the effect of promoting the acid hydrolysis reaction is not preferred, and if it exceeds 5.0 parts by weight, only significant cleavage of the cellulose proceeds. This is not preferable because it leads to a significant cost increase. In addition, Preferably, ozone addition amount is 0.3-4.0 weight part, More preferably, it is 0.5-3.0 weight part. In addition, ozone is more effective as the reaction temperature is higher, but the present invention is aqueous, so the temperature is 10 to 100 ° C, preferably 20 to 100 ° C, and more preferably 30 to 95 ° C. Regarding the reaction time, since the reaction rate of ozone is fast, it is 30 seconds to 60 minutes, preferably 5 minutes to 60 minutes, and more preferably 10 minutes to 50 minutes.
[0011]
Production of powdery cellulose, wherein 0.1 to 5.0 parts by weight of ozone is used in combination with 100% by weight of pulp cellulose, which is the second invention, when acid hydrolysis is performed with a mineral acid. A method will be described. In the acid hydrolysis reaction step, the present invention is a raw acid pulp slurry preparation step, an acid hydrolysis reaction step, a neutralization / washing / liquid removal step, a drying step, a pulverization step, and a classification step, which are ordinary acid hydrolysis methods. The reaction is characterized by the combined use of ozone. The acid hydrolysis reaction of pulp cellulose can be carried out under known reaction conditions. Specifically, the pulp concentration is 3 to 10% by weight, the acid concentration is 5 to 30% by weight, the reaction temperature is 80 to 100 ° C., the reaction time. 30 minutes to 3 hours. When performing said acid hydrolysis reaction, it is possible to accelerate | stimulate an acid hydrolysis reaction remarkably by adding 0.1-5.0 weight part of ozone. However, when the amount of ozone added is less than 0.1 parts by weight, the effect of promoting acid hydrolysis reaction is not observed, and when the amount exceeds 5.0 parts by weight, only significant cleavage of cellulose proceeds. This is not preferable because it leads to a significant cost increase. In addition, Preferably, ozone addition amount is 0.3-4.0 weight part, More preferably, it is 0.5-3.0 weight part.
[0012]
Although the details of the mechanism by which the acid hydrolysis reaction of pulp cellulose is promoted by performing ozone treatment before acid hydrolysis, or by performing ozone treatment simultaneously with acid hydrolysis, the present inventors I think so. Ozone undergoes the following direct decomposition reaction in water to produce HO. And HOO. It is presumed that the generated HO. And HOO. Attack the cellulose, thereby causing oxidation and partial cleavage of the cellulose chain, which accelerates the acid hydrolysis reaction of cellulose. In order to increase the amount of HO · and HOO · produced, it is possible to add a peroxide such as hydrogen peroxide or to irradiate ultraviolet rays.
Figure 2005029627
[0013]
The method for producing powdered cellulose according to the present invention is for powdered cellulose characterized in that the non-passing rate with respect to a 100 mesh sieve is 20% by weight or less and the bulk density is 0.10 g / ml or more. Is preferred. When the non-passing ratio with respect to the 100 mesh sieve exceeds 20% by weight, the ratio of the long fiber form in the powdered cellulose increases, so that they are easily entangled, and the powder fluidity is remarkably deteriorated. In addition, when the bulk density is less than 0.10 g / ml, not only the powder flowability is deteriorated, but also the weight of the powdery cellulose that can be filled in a fixed volume container is reduced, and the transportation cost is increased. The problem arises. A non-passing rate of more than 20% by weight with respect to a 100 mesh sieve or a bulk density of less than 0.10 g / ml can be easily and inexpensively manufactured by mechanical treatment. This is not preferable because the merit of manufacturing the same product with various problems by chemical treatment is small.
[0014]
【Example】
Hereinafter, although an example explains the present invention in full detail, the present invention is not limited by this. “Parts” and “%” indicating the blending amounts all indicate “parts by weight of solids” and “% by weight of solids”.
[0015]
[Example 1]
Generated by AT type ozone generator (Ozonia and Chlorine Engineers) using PSA oxygen as raw material for pulp slurry consisting of 100 parts of bleached wood pulp sheet (LBKP, Nippon Paper Industries Co., Ltd.) and 1800 parts of water 43 parts of ozone gas having a concentration of 7.0% was added, and an ozone treatment reaction was carried out at a reaction temperature of 30 ° C. for a reaction time of 30 minutes. The above reaction was carried out in a separable flask with a stirrer adjusted to a stirring speed of 250 ± 50 rpm, and the amount of ozone added was adjusted by adjusting the amount of ozone gas blown. After completion of the ozone treatment, 200 parts of sulfuric acid was further added, the temperature was raised to 95 ° C. while stirring under the same conditions, and an acid hydrolysis reaction was performed at the same temperature for 45 minutes. After completion of the acid hydrolysis reaction, filter paper (No. 2, manufactured by Advantech) was spread on a Buchner funnel to perform solid-liquid separation. Thereafter, the acid-hydrolyzed pulp was recovered after neutralization, washing and drainage with 3000 parts of hot water at about 90 ° C. and caustic soda. The product was dried with a blow dryer (60 ° C., 12 hours) and then mechanically pulverized with a pulverizer (sample mill, manufactured by Hosokawa Micron) with a screen φ of 0.5 mm to obtain a product. The obtained product had a yield of 94.1%, an average degree of polymerization of 436, a 100-mesh non-passage rate of 0%, and a bulk density of 0.31 g / ml.
[0016]
[Example 2]
AT type ozone generator (Ozonia and Chlorine Engineers) using 200 parts of sulfuric acid and PSA oxygen as a raw material for pulp slurry consisting of 100 parts of bleached wood pulp sheet (LBKP, Nippon Paper Industries Co., Ltd.) and 1800 parts of water 43 parts of ozone gas having a concentration of 7.0% generated in the above was added, the temperature was raised to 95 ° C., and an acid hydrolysis reaction was performed at the same temperature for 45 minutes. The above reaction was carried out in a separable flask with a stirrer adjusted to a stirring speed of 250 ± 50 rpm, and the amount of ozone added was adjusted by adjusting the amount of ozone gas blown. After completion of the acid hydrolysis reaction, filter paper (No. 2, manufactured by Advantech) was spread on a Buchner funnel to perform solid-liquid separation. Thereafter, the acid-hydrolyzed pulp was recovered after neutralization, washing and drainage with 3000 parts of hot water at about 90 ° C. and caustic soda. The product was dried with a blow dryer (60 ° C., 12 hours) and then mechanically pulverized with a pulverizer (sample mill, manufactured by Hosokawa Micron) with a screen φ of 0.5 mm to obtain a product. The obtained product had a yield of 93.4%, an average degree of polymerization of 413, a 100 mesh non-passage rate of 0%, and a bulk density of 0.33 g / ml.
[0017]
[Example 3]
An acid hydrolysis reaction was performed according to Example 2 except that the amount of sulfuric acid added was 150 parts. The obtained product had a yield of 94.7%, an average degree of polymerization of 597, a 100-mesh non-passage ratio of 0.9%, and a bulk density of 0.26 g / ml.
[0018]
[Example 4]
Ozone exhaust gas discharged from the ozone gas of Example 2 after bleaching the medium concentration ozone pulp with 7.0% ozone gas generated by AT type ozone generator (Ozonia and Chlorine Engineers) (Listed in Table 1) An acid hydrolysis reaction was carried out according to Example 2 except that 1204 parts were used. The obtained product had a yield of 93.8%, an average degree of polymerization of 427, a 100-mesh non-passage rate of 0%, and a bulk density of 0.32 g / ml.
[0019]
[Table 1]
Figure 2005029627
[0020]
[Example 5]
An acid hydrolysis reaction was carried out according to Example 2, except that the amount of 7.0% ozone gas generated by an AT type ozone generator (Ozonia and Chlorine Engineers) was changed to 21 parts. The obtained product had a yield of 94.2%, an average degree of polymerization of 450, a 100 mesh non-passage rate of 0.3%, and a bulk density of 0.31 g / ml.
[0021]
[Example 6]
Acid hydrolysis according to Example 2 except that the amount of 7.0% ozone gas generated by an AT type ozone generator (Ozonia and Chlorine Engineers) was changed to 57 parts and sulfuric acid added to 150 parts. Reaction was performed. The obtained product had a yield of 94.1%, an average degree of polymerization of 564, a 100 mesh non-passage rate of 0.3%, and a bulk density of 0.28 g / ml.
[0022]
[Comparative Example 1]
An acid hydrolysis reaction was performed according to Example 2 except that the ozone treatment was not performed. The obtained product had a yield of 92.1%, an average degree of polymerization of 612, a 100-mesh non-passage ratio of 1.2%, and a bulk density of 0.27 g / ml.
[0023]
[Comparative Example 2]
An acid hydrolysis reaction was performed according to Example 2 except that the amount of sulfuric acid added was 285 parts and no ozone treatment was performed. The obtained product had a yield of 81.6%, an average degree of polymerization of 391, a 100 mesh non-passage rate of 0%, and a bulk density of 0.34 g / ml.
[0024]
[Comparative Example 3]
An acid hydrolysis reaction was performed according to Example 2 except that the amount of sulfuric acid added was 0 parts by weight. The obtained product was a cotton-like product having a yield of 96.3%, an average degree of polymerization of 479, and a 100-mesh non-passage ratio of 99.2%, and the bulk density could not be measured.
[0025]
[Comparative Example 4]
An acid hydrolysis reaction was performed according to Example 2 except that the amount of ozone gas with a concentration of 7.0% generated by an AT type ozone generator (manufactured by Ozonia and Chlorine Engineers) was changed to 1 part. The product obtained had a yield of 92.5%, an average degree of polymerization of 601, a 100 mesh non-passage ratio of 0.9%, and a bulk density of 0.27 g / ml.
[0026]
[Comparative Example 5]
An acid hydrolysis reaction was carried out according to Example 2 except that the amount of the ozone gas with a concentration of 7.0% generated by an AT type ozone generator (manufactured by Ozonia and Chlorine Engineers) was changed to 100 parts. The obtained product had a yield of 88.5%, an average degree of polymerization of 311, a 100 mesh non-passage rate of 0%, and a bulk density of 0.31 g / ml.
[0027]
<Average polymerization degree>
Average polymerization degree was calculated | required by the viscosity measuring method using the copper ethylenediamine of the 13th revision Japanese Pharmacopoeia commentary, a crystalline cellulose confirmation test (3) description. In other words, the smaller this value is, the more acid hydrolysis reaction proceeds and the lower the molecular weight.
<100 mesh non-passing rate>
Based on JIS Z 8815, the weight of the remaining sample on the 100 mesh sieve is measured using a low-tap sieve shaker (manufactured by Iwata Kogyo Co., Ltd.) and a 100 mesh sieve (manufactured by Tokyo Screen Co., Ltd., 150 μm openings). The 100 mesh non-passing rate was calculated. That is, the smaller this value is, the smaller the proportion of the long fiber form in the powdery cellulose.
<Bulk density>
Measurement was made using a powder tester (PT-N type, manufactured by Hosokawa Micron Corporation), and the value of Pack Density was defined as bulk density. That is, the larger this value is, the more the acid hydrolysis reaction proceeds and the more compact it is.
[0028]
[Table 2]
Figure 2005029627
[0029]
【The invention's effect】
In the process of producing cellulose powder by acid hydrolysis of pulp cellulose with mineral acid, treatment with ozone gas generated by ozone generator or ozone exhaust gas discharged from pulp bleaching stage before or simultaneously with acid hydrolysis reaction Can significantly accelerate the acid hydrolysis reaction.

Claims (4)

水湿潤状態(含水量200〜3000重量部)においてパルプセルロース100重量部に対し、予め0.1〜5.0重量部のオゾンで前処理した後、鉱酸にて酸加水分解を行うことを特徴とする粉末状セルロースの製造方法。In a water wet state (water content 200 to 3000 parts by weight), 100 parts by weight of pulp cellulose is pretreated with 0.1 to 5.0 parts by weight of ozone in advance, and then acid hydrolysis is performed with a mineral acid. A method for producing powdered cellulose. パルプセルロース100重量部に対し、鉱酸にて酸加水分解を行う際、0.1〜5.0重量部のオゾンを添加することを特徴とする粉末状セルロースの製造方法。A method for producing powdery cellulose, comprising adding 0.1 to 5.0 parts by weight of ozone when 100 parts by weight of pulp cellulose is subjected to acid hydrolysis with a mineral acid. 該オゾンが、パルプ漂白工程のオゾン漂白段から排出されるオゾン排ガスであることを特徴とする請求項1〜2記載の粉末状セルロースの製造方法。The method for producing powdery cellulose according to claim 1 or 2, wherein the ozone is ozone exhaust gas discharged from an ozone bleaching stage of a pulp bleaching process. 該粉末状セルロースが100メッシュの篩に対する不通過割合が20重量%以下、かつ嵩密度が0.10g/ml以上であることを特徴とする請求項1〜3記載の粉末状セルロースの製造方法。The method for producing powdery cellulose according to claims 1 to 3, wherein the powdery cellulose has a non-passing ratio with respect to a 100 mesh sieve of 20% by weight or less and a bulk density of 0.10 g / ml or more.
JP2003193998A 2003-07-09 2003-07-09 Method for producing powdered cellulose Pending JP2005029627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003193998A JP2005029627A (en) 2003-07-09 2003-07-09 Method for producing powdered cellulose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003193998A JP2005029627A (en) 2003-07-09 2003-07-09 Method for producing powdered cellulose

Publications (1)

Publication Number Publication Date
JP2005029627A true JP2005029627A (en) 2005-02-03

Family

ID=34205279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003193998A Pending JP2005029627A (en) 2003-07-09 2003-07-09 Method for producing powdered cellulose

Country Status (1)

Country Link
JP (1) JP2005029627A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122720A1 (en) * 2006-04-21 2007-11-01 Kazuhiro Niisawa Method of metal recovery
JP2010215720A (en) * 2009-03-13 2010-09-30 Bridgestone Corp Rubber composition and tire using the rubber composition
JP2012193353A (en) * 2011-02-28 2012-10-11 National Institute Of Advanced Industrial Science & Technology Method for manufacturing fine fibrous cellulose
JP2013139540A (en) * 2011-12-08 2013-07-18 Nippon Paper Industries Co Ltd Powdered cellulose
WO2015037424A1 (en) 2013-09-12 2015-03-19 三菱瓦斯化学株式会社 Method for producing cellulose

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122720A1 (en) * 2006-04-21 2007-11-01 Kazuhiro Niisawa Method of metal recovery
JP2010215720A (en) * 2009-03-13 2010-09-30 Bridgestone Corp Rubber composition and tire using the rubber composition
JP2012193353A (en) * 2011-02-28 2012-10-11 National Institute Of Advanced Industrial Science & Technology Method for manufacturing fine fibrous cellulose
JP2013139540A (en) * 2011-12-08 2013-07-18 Nippon Paper Industries Co Ltd Powdered cellulose
WO2015037424A1 (en) 2013-09-12 2015-03-19 三菱瓦斯化学株式会社 Method for producing cellulose

Similar Documents

Publication Publication Date Title
JP6228707B1 (en) Acid-type carboxymethylated cellulose nanofiber and method for producing the same
EP3640264B1 (en) Production method for cellulose nanofibers
JP6872396B2 (en) Cellulose nanofiber dispersion liquid and its manufacturing method
JP6267078B2 (en) Method for producing water-soluble cellulose ether having low polymerization degree and method for producing film coating composition containing the same
JP5426209B2 (en) Method for removing organic oxidation catalyst remaining in oxidized pulp
WO2018047749A1 (en) Method for producing inorganic carbonate
CN107602709A (en) A kind of carboxymethyl nano cellulose material cleans preparation method
WO2018110627A1 (en) Method for manufacturing dry solid of chemically modified pulp
JP2005029627A (en) Method for producing powdered cellulose
JP2010235669A (en) Method for removing organic oxidation catalyst remaining in oxidized pulp
JP6015232B2 (en) Method for producing oxidized cellulose and cellulose nanofiber
JP2021523963A (en) Methods for Producing Cellulose Carbamate
JP5404131B2 (en) Method for producing cellulose nanofiber
JP2006241374A (en) Process for producing carboxymethyl cellulose salt
JP6862385B2 (en) Method for Producing Hydroxypropyl Methyl Cellulose
JP2016183232A (en) Powdered cellulose
JP7477326B2 (en) Dry solid of hydrophobized anion-modified cellulose or defibrated product thereof, dispersion of hydrophobized anion-modified cellulose nanofiber, and method for producing the same
JP2006348138A (en) Method for producing sodium carboxymethylcellulose
CN113544330B (en) Fibrillated chemically modified cellulose fibers
CN100506849C (en) Method for the production of cellulose carbamate in an inert organic reaction medium
JP2020152803A (en) Viscous composition
JP7436282B2 (en) Method for producing anion-modified cellulose nanofibers
JP6762125B2 (en) Manufacturing method of deinked pulp
JP7432390B2 (en) Hydrophobized anion-modified cellulose nanofiber dispersion and method for producing the same, and dry solid of hydrophobized anion-modified cellulose and method for producing the same
JP2020165059A (en) Soluble pulp sheet