JP2005026320A - Magnetic switching material and element - Google Patents

Magnetic switching material and element Download PDF

Info

Publication number
JP2005026320A
JP2005026320A JP2003187851A JP2003187851A JP2005026320A JP 2005026320 A JP2005026320 A JP 2005026320A JP 2003187851 A JP2003187851 A JP 2003187851A JP 2003187851 A JP2003187851 A JP 2003187851A JP 2005026320 A JP2005026320 A JP 2005026320A
Authority
JP
Japan
Prior art keywords
magnetic switching
magnetic
switching element
carbon nanotubes
ionic liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003187851A
Other languages
Japanese (ja)
Other versions
JP4086236B2 (en
Inventor
Atsushi Tokuhiro
淳 徳弘
Kenji Iida
健二 飯田
Takanori Fukushima
孝典 福島
Takuzo Aida
卓三 相田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Japan Science and Technology Agency
Original Assignee
Mitsui Chemicals Inc
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc, Japan Science and Technology Agency filed Critical Mitsui Chemicals Inc
Priority to JP2003187851A priority Critical patent/JP4086236B2/en
Publication of JP2005026320A publication Critical patent/JP2005026320A/en
Application granted granted Critical
Publication of JP4086236B2 publication Critical patent/JP4086236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic switching element which can be applied on an object independently of its shape. <P>SOLUTION: The magnetic switching element is formed of a gel composition containing, at least, carbon nanotubes, preferably ionic liquid, so that the magnetic switching element can be applied onto an object independently of its shape. The above gel composition serves as magnetic switching material which varies in electrical resistance with a change in a magnetic field, and its physical properties are used. The above magnetic switching material is provided between electrodes, and the magnetic switching element is equipped with a magnetic field applying means. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、磁気スイッチング材料およびこれを用いた磁気スイッチング素子に関する。
【0002】
【従来の技術】
カーボンナノチューブは、1991年に飯島澄男氏によって発見されたもので(Nature , 354 , pp.56−58(1991))、直径1〜100nm、長さ1um〜100mmで中空の円筒形の構造を持った炭素だけからなる物質である。その特異的な構造に由来した様々な物性を有するカーボンナノチューブはナノテクノロジーを代表する材料として大きく注目を浴びている。例えば、カーボンナノチューブの導電性を利用したもの(特開2002−075102号、特開2003−034751号等)、電界電子放出性を利用したもの(特開2001−035362号、特開2003−063814号等)、帯電防止材料(特開2002−067209号等)、放熱性を利用したもの(特開平10−168502号等)、機械強度や耐腐食性を向上させたもの(特開2002−097375号等)等、幅広い分野で数多くの検討事例を列挙することができる。ただし、磁場に対する物性を利用した応用検討はほとんどなされていないのが現状である。
【0003】
また、MRヘッドに代表される磁気抵抗効果を利用した磁場センサーでは、通常強磁性を有する金属等を用いて超高真空中で薄膜を積層するといった複雑な構造やプロセスを必要としていた。従って、より簡便なプロセスで製造可能な磁気センサーが望まれていた。
【0004】
【発明が解決しようとする課題】
本発明の目的は、形状を問わず塗布することが可能な磁気センサーもしくはスイッチング素子を提供するものである。それにより複雑なプロセスを必要せず簡便な方法で作製可能となる。
【0005】
【課題を解決するための手段】
本発明者らは、カーボンナノチューブをイオン性液体中に分散させたゲル状組成物において磁場を印加すると電気抵抗値が変化する、いわゆる磁気抵抗効果を見出し本発明に至った。即ち、本発明は、少なくともカーボンナノチューブを含んだ組成物で、磁場により電気抵抗値が変化する磁気抵抗効果を利用した磁気スイッチング材料である。
【0006】
またこの磁気スイッチング材料が電極間に設けられており、さらに磁場により電気抵抗値が変化する磁気スイッチング素子である。
【0007】
本磁気スイッチング材料を基材に塗布することが可能である。これにより複雑なプロセスを必要とせず、簡便な方法で磁気スイッチング素子あるいは磁気センサーを製造することができる。
また基材の形状を選ばないのでスイッチング素子の設計自由度が大きくなる。
【0008】
カーボンナノチューブとイオン性液体からなるゲル状組成物においては、カーボンナノチューブの周りにイオン性液体が溶媒和し分散している。このような系では、分散したカーボンナノチューブ間のイオン性液体部を電子がトンネルすることによるいわゆるホッピング伝導により電気伝導性を有すると推測される。更に、このようなゲル状組成物に磁場を印可すると、分散したカーボンナノチューブそれぞれの磁化ベクトルは外部磁場印加方向に対して平行に配列し、それに伴い電気抵抗値が低下する。即ち、金属中もしくは非金属中に磁性金属微粒子が分散した系と同様な磁気抵抗効果が得られる。
【0009】
一般的に磁気抵抗効果が得られる系を作製するには、多層膜化や微粒子の埋め込みなどが必要となるため、真空蒸着装置やスパッタリング装置などの大型装置が必要となる。しかし本発明では、常温・常圧下でカーボンナノチューブをイオン性液体中に分散させるだけで磁気抵抗効果が得られるゲル状組成物が得られるため、大型装置などを必要とせず低コスト化や大量生産などに有利である。特に、このゲル状組成物は粘性が高くペースト状になっているため、形状を問わず所定の位置に適量だけ塗布することが可能である。つまり、ハンドリング性、加工性が非常に優れているため、本発明の応用用途を広げることができる。
【0010】
また磁気スイッチング材料を電極が形成された基板上に塗布し、かつ磁気スイッチング材料を通って電極間に通電できる構成にすることにより、磁場により電気抵抗がスイッチングする磁気スイッチング素子あるいは磁気センサーが得られる。さらにこれに電磁石など外部磁場を印加する手段を備えてもよい。
【0011】
【発明の実施形態】
本発明において用いられるカーボンナノチューブは、炭素六角網面が円筒状に閉じた単層構造あるいはこれらの円筒構造が入れ子状に配置された多層構造をした材料のことである。単層構造のみから構成されていても多層構造のみから構成されていても良く、単層構造と多層構造が混在していてもかまわない。また部分的にカーボンナノチューブの構造を有している炭素材料も使用できる。チューブ径、長さ、構造等を特に限定するものではないが、単層のようなチューブ径が細く、且つ長いようなアスペクト比が大きいものがより望ましい。
【0012】
本発明において用いられるイオン性液体は、特に限定するものはなく従来知られた各種のイオン性液体を使用することができるが、常温または可及的に常温に近い温度において液体を呈し、安定なものが好ましい。また、下記の一般式(I)〜(IV)で表されるカチオンと陰イオン(X−)よりなるイオン性液体が特に好ましい。
【0013】
【化1】

Figure 2005026320
【0014】
【化2】
Figure 2005026320
【0015】
[NR4−x ・・式(III)
[PR4−x ・・式(IV)
上記の式(I)〜(IV)において、Rは炭素数10以下のアルキル基またはエーテル結合を含み、炭素と酸素の合計数が10以下のアルキル基を表す。式(I)においてR1は炭素数1〜4のアルキル基または水素原子を表し、炭素数1のメチル基がより好ましい。また式(I)において、RとR1は同一ではないことが好ましい。式(III)及び(IV)において、Xは1〜4の整数である。
【0016】
陰イオン(X−)としては、テトラフルオロホウ酸、ヘキサフルオロリン酸、ビス(トリフロロメチルスルホニル)イミド酸、過塩素酸、トリス(トリフロロメチルスルホニル)炭素酸、トリフロロメタンスルホン酸、ジシアンアミド、トリフロロ酢酸、有機カルボン酸、またはハロゲンイオンより選ばれた少なくとも1種である。これらは1種類のみ用いても良いし、複数のイオン性液体を用いても良い。カーボンナノチューブのイオン性液体への添加量は特に制限はないが、イオン性液体に対するカーボンナノチューブの量は重量比で1%程度が好ましい。またカーボンナノチューブの純度が悪くなるほどゲル化しにくくなるため触媒等の不純物が少ないものが好ましく、カーボンナノチューブの純度が70%程度以上のものがより好ましい。
【0017】
また更に、イオン性液体の他に有機材料、無機材料、金属等と組合せても良く、この場合もその重量に特に制限はない。
【0018】
【実施例】
本発明の一実施例を、図を用いて説明する。以下、単層のカーボンナノチューブを用いた場合の配向方法に関して述べるが、多層のカーボンナノチューブやカーボンナノホーンなどを用いることはもちろん可能である。直径約1nm、長さ1umの単層のカーボンナノチューブ(HiPco : Carbon Nanotechnologies社製)とイオン性液体1−ブチル−3−メチルイミダゾリウムヘキサフルオロホスフェート(式(V))(F luka社製)とを重量比でカーボンナノチューブが1wt%となるように混合し、乳鉢に加えて約15分ほど磨り潰すことでカーボンナノチューブ2が分散した黒色ゲル状組成物が得られる。
【0019】
【化3】
Figure 2005026320
【0020】
その模式図を図1に示す。イオン性液体1に単層カーボンナノチューブ2が分散している。
【0021】
このようにして得られた黒色ゲルを、図2に示すような測定用の金端子4が表面に形成されたガラス基板3上に一様に塗布する。前記ガラス基板と垂直となる方向に磁束密度が9Tとなるように磁場をON・OFFを繰り返しながら印加し、4端子法により前記黒色ゲルの電気抵抗値の変化を測定した。図3に示すように、磁場を印加した際に電気抵抗値が低下していることがわかる。このようにしてカーボンナノチューブが分散したゲルの電気抵抗値を磁場によって制御することができるため、磁気センサーやスイッチング素子などへの応用が可能となる。
【0022】
【発明の効果】
本発明によれば、形状を問わず所定の箇所に塗布するだけで、複雑な構造及び製造プロセスを必要とせず、簡便な方法で磁気センサーもしくはスイッチング素子を提供することが可能となる。
【図面の簡単な説明】
【図1】本実施例のカーボンナノチューブが分散した黒色ゲルを説明する図である。
【図2】本実施例の黒色ゲルの電気抵抗値を測定するサンプルを説明する図である。
【図3】本実施例のカーボンナノチューブが分散したゲルの磁気抵抗効果を表す図である。
【符号の説明】
1 イオン性液体
2 単層カーボンナノチューブ
3 ガラス基板
4 金端子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic switching material and a magnetic switching element using the same.
[0002]
[Prior art]
The carbon nanotube was discovered by Sumio Iijima in 1991 (Nature, 354, pp. 56-58 (1991)), and has a hollow cylindrical structure with a diameter of 1 to 100 nm and a length of 1 μm to 100 mm. It is a substance consisting only of carbon. Carbon nanotubes with various physical properties derived from their specific structures are attracting a great deal of attention as materials that represent nanotechnology. For example, those using the conductivity of carbon nanotubes (Japanese Patent Laid-Open No. 2002-075102, Japanese Patent Laid-Open No. 2003-034751 etc.), those using field electron emission properties (Japanese Patent Laid-Open No. 2001-035362, Japanese Patent Laid-Open No. 2003-063814). Etc.), antistatic materials (Japanese Patent Application Laid-Open No. 2002-067209, etc.), materials utilizing heat dissipation (Japanese Patent Application Laid-Open No. 10-168502, etc.), materials with improved mechanical strength and corrosion resistance (Japanese Patent Application Laid-Open No. 2002-097375) Etc.) can be enumerated in a wide range of fields. However, there is almost no application study using physical properties against magnetic fields.
[0003]
Further, a magnetic field sensor using a magnetoresistive effect typified by an MR head usually requires a complicated structure and process such as laminating a thin film in an ultrahigh vacuum using a ferromagnetic metal or the like. Therefore, a magnetic sensor that can be manufactured by a simpler process has been desired.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a magnetic sensor or a switching element that can be applied regardless of the shape. As a result, a simple process is possible without requiring a complicated process.
[0005]
[Means for Solving the Problems]
The present inventors have found a so-called magnetoresistance effect in which the electric resistance value changes when a magnetic field is applied to a gel-like composition in which carbon nanotubes are dispersed in an ionic liquid, and have reached the present invention. That is, the present invention is a magnetic switching material that uses a magnetoresistance effect in which an electrical resistance value changes with a magnetic field, and is a composition containing at least carbon nanotubes.
[0006]
This magnetic switching material is a magnetic switching element in which the electrical resistance value is changed by a magnetic field, provided between the electrodes.
[0007]
The magnetic switching material can be applied to a substrate. Thereby, a magnetic switching element or a magnetic sensor can be manufactured by a simple method without requiring a complicated process.
Moreover, since the shape of the substrate is not selected, the degree of freedom in designing the switching element is increased.
[0008]
In a gel composition composed of carbon nanotubes and an ionic liquid, the ionic liquid is solvated and dispersed around the carbon nanotubes. In such a system, it is presumed to have electric conductivity by so-called hopping conduction by electrons tunneling through an ionic liquid portion between dispersed carbon nanotubes. Furthermore, when a magnetic field is applied to such a gel-like composition, the magnetization vectors of the dispersed carbon nanotubes are arranged in parallel to the external magnetic field application direction, and the electric resistance value is lowered accordingly. That is, a magnetoresistive effect similar to a system in which magnetic metal fine particles are dispersed in a metal or a nonmetal can be obtained.
[0009]
In general, production of a system capable of obtaining a magnetoresistive effect requires formation of a multilayer film or embedding of fine particles, and thus requires a large apparatus such as a vacuum deposition apparatus or a sputtering apparatus. However, in the present invention, a gel-like composition that can obtain a magnetoresistive effect can be obtained simply by dispersing carbon nanotubes in an ionic liquid at room temperature and normal pressure. This is advantageous. In particular, since this gel composition has a high viscosity and is in a paste form, it can be applied in an appropriate amount to a predetermined position regardless of the shape. That is, since handling property and workability are very excellent, the application application of this invention can be expanded.
[0010]
In addition, a magnetic switching element or a magnetic sensor whose electric resistance is switched by a magnetic field can be obtained by applying a magnetic switching material on a substrate on which electrodes are formed and passing between the electrodes through the magnetic switching material. . Furthermore, a means for applying an external magnetic field such as an electromagnet may be provided.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The carbon nanotube used in the present invention is a material having a single-layer structure in which carbon hexagonal mesh surfaces are closed in a cylindrical shape or a multilayer structure in which these cylindrical structures are arranged in a nested manner. It may be composed of only a single layer structure or a multilayer structure, and a single layer structure and a multilayer structure may be mixed. A carbon material partially having a carbon nanotube structure can also be used. The tube diameter, length, structure and the like are not particularly limited, but it is more preferable that the tube diameter is small, such as a single layer, and the aspect ratio is large, such as a long length.
[0012]
The ionic liquid used in the present invention is not particularly limited and various conventionally known ionic liquids can be used. However, the ionic liquid exhibits a liquid at room temperature or as close to room temperature as possible, and is stable. Those are preferred. Moreover, the ionic liquid which consists of a cation represented by the following general formula (I)-(IV) and an anion (X-) is especially preferable.
[0013]
[Chemical 1]
Figure 2005026320
[0014]
[Chemical 2]
Figure 2005026320
[0015]
[NR x H 4-x ] + .. Formula (III)
[PR x H 4-x ] + .. Formula (IV)
In the above formulas (I) to (IV), R represents an alkyl group having 10 or less carbon atoms or an ether bond, and an alkyl group having a total number of carbon and oxygen of 10 or less. In the formula (I), R1 represents an alkyl group having 1 to 4 carbon atoms or a hydrogen atom, and a methyl group having 1 carbon atom is more preferable. In the formula (I), R and R1 are preferably not the same. In the formulas (III) and (IV), X is an integer of 1 to 4.
[0016]
Anions (X-) include tetrafluoroboric acid, hexafluorophosphoric acid, bis (trifluoromethylsulfonyl) imidic acid, perchloric acid, tris (trifluoromethylsulfonyl) carbonic acid, trifluoromethanesulfonic acid, dicyanamide , Trifluoroacetic acid, organic carboxylic acid, or halogen ion. Only one kind of these may be used, or a plurality of ionic liquids may be used. The amount of carbon nanotubes added to the ionic liquid is not particularly limited, but the amount of carbon nanotubes relative to the ionic liquid is preferably about 1% by weight. Moreover, since it becomes difficult to gelatinize, so that the purity of a carbon nanotube becomes worse, the thing with few impurities, such as a catalyst, is preferable, and the thing of about 70% or more of purity of a carbon nanotube is more preferable.
[0017]
Furthermore, in addition to the ionic liquid, an organic material, an inorganic material, a metal, or the like may be combined. In this case, there is no particular limitation on the weight.
[0018]
【Example】
An embodiment of the present invention will be described with reference to the drawings. Hereinafter, although an orientation method in the case of using single-walled carbon nanotubes will be described, it is of course possible to use multi-walled carbon nanotubes or carbon nanohorns. A single-walled carbon nanotube having a diameter of about 1 nm and a length of 1 μm (HiPco: Carbon Nanotechnologies) and an ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (formula (V)) (Fluka) Are mixed so that the carbon nanotubes are 1 wt% by weight, and added to a mortar and ground for about 15 minutes to obtain a black gel composition in which the carbon nanotubes 2 are dispersed.
[0019]
[Chemical 3]
Figure 2005026320
[0020]
The schematic diagram is shown in FIG. Single-walled carbon nanotubes 2 are dispersed in the ionic liquid 1.
[0021]
The black gel thus obtained is uniformly applied on a glass substrate 3 on which a gold terminal 4 for measurement as shown in FIG. 2 is formed. A magnetic field was applied while repeating ON / OFF so that the magnetic flux density was 9T in a direction perpendicular to the glass substrate, and the change in the electric resistance value of the black gel was measured by a four-terminal method. As shown in FIG. 3, it can be seen that the electric resistance value is lowered when a magnetic field is applied. In this way, the electric resistance value of the gel in which the carbon nanotubes are dispersed can be controlled by the magnetic field, so that it can be applied to a magnetic sensor or a switching element.
[0022]
【The invention's effect】
According to the present invention, it is possible to provide a magnetic sensor or a switching element by a simple method without applying a complicated structure and a manufacturing process only by applying to a predetermined place regardless of the shape.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a black gel in which carbon nanotubes of the present example are dispersed.
FIG. 2 is a view for explaining a sample for measuring the electric resistance value of the black gel of this example.
FIG. 3 is a diagram showing the magnetoresistive effect of a gel in which carbon nanotubes of the present example are dispersed.
[Explanation of symbols]
1 Ionic liquid 2 Single-walled carbon nanotube 3 Glass substrate 4 Gold terminal

Claims (3)

少なくともカーボンナノチューブを含んだ組成物で、磁場により前記組成物の電気抵抗値が変化することを特徴とする磁気スイッチング材料。A magnetic switching material comprising a composition containing at least carbon nanotubes, wherein an electric resistance value of the composition is changed by a magnetic field. 前記組成物がイオン性液体を含んでいることを特徴とする請求項1に記載の磁気スイッチング材料。The magnetic switching material according to claim 1, wherein the composition contains an ionic liquid. 請求項1または2に記載の磁気スイッチング材料が電極間に設けられている磁気スイッチング素子。A magnetic switching element, wherein the magnetic switching material according to claim 1 or 2 is provided between electrodes.
JP2003187851A 2003-06-30 2003-06-30 Magnetic switching element Expired - Fee Related JP4086236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003187851A JP4086236B2 (en) 2003-06-30 2003-06-30 Magnetic switching element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003187851A JP4086236B2 (en) 2003-06-30 2003-06-30 Magnetic switching element

Publications (2)

Publication Number Publication Date
JP2005026320A true JP2005026320A (en) 2005-01-27
JP4086236B2 JP4086236B2 (en) 2008-05-14

Family

ID=34186566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003187851A Expired - Fee Related JP4086236B2 (en) 2003-06-30 2003-06-30 Magnetic switching element

Country Status (1)

Country Link
JP (1) JP4086236B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038393A (en) * 2005-07-29 2007-02-15 Lg Phillips Lcd Co Ltd Method for arraying nano-material and method for manufacturing liquid crystal display device using the same
JP2008053566A (en) * 2006-08-25 2008-03-06 Osaka Univ Magnetoresistive element, method for manufacturing the same, and its utilization
JP2010166045A (en) * 2009-01-16 2010-07-29 Qinghua Univ Giant magnetoresistance composite material
TWI419834B (en) * 2011-01-10 2013-12-21 Nat Univ Kaohsiung Semiconductor device having circuit of embedded induced magnetic field used as carbon nanotube switch
DE102012016222A1 (en) 2012-08-01 2014-02-06 Technische Universität Dresden Cylinder-, piston- and valveless, continuously working fluid working machine for e.g. dosing liquid in chemical system during plastic production, has blocking region, where portions of liquids slide from region side to region opposite side

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110983268B (en) * 2019-11-05 2022-03-04 西安科汇电子科技有限公司 Method for regulating and controlling magnetism of metal film by using ionic liquid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038393A (en) * 2005-07-29 2007-02-15 Lg Phillips Lcd Co Ltd Method for arraying nano-material and method for manufacturing liquid crystal display device using the same
JP4594275B2 (en) * 2005-07-29 2010-12-08 エルジー ディスプレイ カンパニー リミテッド Nano material alignment method and method of manufacturing liquid crystal display device using the same
JP2008053566A (en) * 2006-08-25 2008-03-06 Osaka Univ Magnetoresistive element, method for manufacturing the same, and its utilization
JP2010166045A (en) * 2009-01-16 2010-07-29 Qinghua Univ Giant magnetoresistance composite material
US8436092B2 (en) 2009-01-16 2013-05-07 Tsinghua University Giant magnetoresistance composite material containing carbon nanotubes
TWI419834B (en) * 2011-01-10 2013-12-21 Nat Univ Kaohsiung Semiconductor device having circuit of embedded induced magnetic field used as carbon nanotube switch
DE102012016222A1 (en) 2012-08-01 2014-02-06 Technische Universität Dresden Cylinder-, piston- and valveless, continuously working fluid working machine for e.g. dosing liquid in chemical system during plastic production, has blocking region, where portions of liquids slide from region side to region opposite side

Also Published As

Publication number Publication date
JP4086236B2 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
Ural et al. Electric-field-aligned growth of single-walled carbon nanotubes on surfaces
Kim et al. Magnetoresistance of an entangled single-wall carbon-nanotube network
Zhao et al. Spin-coherent transport in ferromagnetically contacted carbon nanotubes
Ramirez et al. Electrical conductivity maps in graphene nanoplatelet/silicon nitride composites using conducting scanning force microscopy
Chen et al. Interplay of wall number and diameter on the electrical conductivity of carbon nanotube thin films
Golberg et al. Nanomaterial engineering and property studies in a transmission electron microscope
Morelos-Gómez et al. Controlling high coercivities of ferromagnetic nanowires encapsulated in carbon nanotubes
Valentini et al. Interaction of methane with carbon nanotube thin films: role of defects and oxygen adsorption
Jensen et al. Hybrid devices from single wall carbon nanotubes epitaxially grown into a semiconductor heterostructure
Zhao et al. Spin-dependent transport in multiwalled carbon nanotubes
JP4086236B2 (en) Magnetic switching element
Baxendale The physics and applications of carbon nanotubes
Li et al. Theoretical studies of the magnetism of the first-row adatom on the ZnO nanotube
Zhang et al. Molecular magnets based on graphenes and carbon nanotubes
Górzny et al. Four-probe electrical characterization of Pt-coated TMV-based nanostructures
Choi et al. High performance field emission and Nottingham effect observed from carbon nanotube yarn
Oku et al. Formation, atomic structures and properties of carbon nanocage materials
JP2004323342A (en) Carbon nanotube orientatation method, and carbon nanotube composition
Aasmundtveit et al. Direct integration of carbon nanotubes in Si microstructures
Niyogi et al. Magnetically assembled multiwalled carbon nanotubes on ferromagnetic contacts
Enad et al. Study the electrical properties of carbon nanotubes/polyaniline nanocomposites
Liu et al. Gas flow directed assembly of carbon nanotubes into horizontal arrays
Chenaud et al. Sensitivity and noise of micro-Hall magnetic sensors based on InGaAs quantum wells
Rytel et al. The influence of diameter of multiwalled carbon nanotubes on mechanical, optical and electrical properties of Langmuir–Schaefer films
Ovsiienko et al. Magnetoresistance of Carbon Nanotubes Filled by Iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees