JP2005024490A - Method and device for detecting displacement of object to be measured - Google Patents

Method and device for detecting displacement of object to be measured Download PDF

Info

Publication number
JP2005024490A
JP2005024490A JP2003270260A JP2003270260A JP2005024490A JP 2005024490 A JP2005024490 A JP 2005024490A JP 2003270260 A JP2003270260 A JP 2003270260A JP 2003270260 A JP2003270260 A JP 2003270260A JP 2005024490 A JP2005024490 A JP 2005024490A
Authority
JP
Japan
Prior art keywords
crystal
displacement
detection
light
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003270260A
Other languages
Japanese (ja)
Other versions
JP4272946B2 (en
JP2005024490A5 (en
Inventor
Takeaki Itsuji
健明 井辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003270260A priority Critical patent/JP4272946B2/en
Publication of JP2005024490A publication Critical patent/JP2005024490A/en
Publication of JP2005024490A5 publication Critical patent/JP2005024490A5/ja
Application granted granted Critical
Publication of JP4272946B2 publication Critical patent/JP4272946B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for detecting displacement of an object to be measured capable of highly sensitive detection in comparatively compact constitution. <P>SOLUTION: The method and device for detecting the displacement detect the displacement of the object to be measured of a cantilever 103 or the like by using an angle change of detection light emitted from the object to be measured, and amplify change accompanying angle change of incident detection light of a propagation angle for an incident face of the detection light incident on the crystal to detect the displacement of the object to be measured by using a deflection element consisting of a crystal periodically changing a refractive index. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、被測定物から来る検出光の角度変化により被測定物の変位を検出する方法、及び装置に関する。 The present invention relates to a method and an apparatus for detecting a displacement of an object to be measured by an angle change of detection light coming from the object to be measured.

近年、導体の電子構造を直接観察できる走査型トンネル顕微鏡(STM)の開発以来、原子間力顕微鏡(AFM)、走査型容量顕微鏡(SCaM)、近接場顕微鏡(SNOM)といった、先端の尖ったプローブを用いてサンプル上を走査することにより、サンプルの様々な情報とその分布を得る顕微鏡装置が次々と開発されている。現在、これらの顕微鏡は、走査型プローブ顕微鏡(SPM)と総称され、原子、分子レベルの解像度を持つ微細構造の観察手段として広く用いられている。   In recent years, since the development of scanning tunneling microscopes (STM) that can directly observe the electronic structure of conductors, probes with sharp tips such as atomic force microscopes (AFM), scanning capacitive microscopes (SCaM), and near-field microscopes (SNOM) Microscope apparatuses that obtain various information and distributions of a sample by scanning the sample with the use of are continuously developed. At present, these microscopes are collectively referred to as scanning probe microscopes (SPM), and are widely used as observation means for fine structures having atomic and molecular resolution.

例えば、AFMは、プローブを有するレバー(カンチレバー)を用いて、プローブ先端とサンプル表面との間に働く原子間力の影響により生じるレバーの微小な撓み量を検出する。この撓みの検出方法の一つとして、カンチレバーの先端にレーザ光を照射し、その反射光の変位を計測する方式(光てこ方式)が知られている。   For example, the AFM uses a lever (cantilever) having a probe to detect a minute amount of bending of the lever caused by an atomic force acting between the probe tip and the sample surface. As one method of detecting this deflection, a method (optical lever method) is known in which laser light is irradiated to the tip of a cantilever and the displacement of the reflected light is measured.

一方、屈折率の異なる物質を波長程度の間隔で周期的に配列した「フォトニック結晶」と呼ばれる新しい人工結晶が提案され、注目を集めている(非特許文献1参照)。この人工結晶は、半導体のバンド構造に類似した、いわゆるフォトニックバンド構造に起因する光の禁制帯(フォトニックバンドギャップ)を有し、さらに見かけ上の屈折率異常に起因する特異な効果を有することから、光学素子としての研究開発が盛んに行われている(特許文献1参照)。このフォトニック結晶材料は、フォトニック結晶に外部から光を入射させた場合に、その光によって誘起される透過波がフォトニックバンドギャップ内に存在し、回折波がフォトニックバンドギャップ外に存在し、伝播方向が大きく変化する回折波のみが伝播する様に構成されている(この現象が上記見かけ上の屈折率異常に関わる)。このような効果をスーパープリズム効果と呼び、スーパープリズム効果とは、フォトニック結晶に光を入射させたとき、わずかな入射角の違いでフォトニック結晶構造中の光のエネルギーの進行方向が大きく変化する現象である(非特許文献2参照)。
E.Yablonovitch,Phys.Rev.Lett.,58(1987)2059-2062 日本物理学会誌第55巻(2000)3月号172-179 特開2000-066002号公報
On the other hand, a new artificial crystal called “photonic crystal” in which substances having different refractive indexes are periodically arranged at intervals of about a wavelength has been proposed and attracted attention (see Non-Patent Document 1). This artificial crystal has a light forbidden band (photonic band gap) due to a so-called photonic band structure similar to the band structure of a semiconductor, and also has a peculiar effect due to an apparent refractive index anomaly. Therefore, research and development as an optical element has been actively performed (see Patent Document 1). In this photonic crystal material, when light is incident on the photonic crystal from the outside, the transmitted wave induced by the light exists in the photonic band gap, and the diffracted wave exists outside the photonic band gap. In this configuration, only the diffracted wave whose propagation direction changes greatly propagates (this phenomenon is related to the apparent refractive index abnormality). This effect is called the super prism effect. When light is incident on the photonic crystal, the direction of light energy in the photonic crystal structure changes greatly with a slight difference in incident angle. (See Non-Patent Document 2).
E. Yablonovich, Phys. Rev. Lett. , 58 (1987) 2059-2062 Journal of the Physical Society of Japan, Volume 55 (2000), March issue 172-279 JP 2000-066002 JP

上述した光てこ方式では、検出感度を上げるためには、例えば、検出光の光路を長くするなどの工夫が必要である。しかし、十分に長い光路を用いる場合、複雑な光学系が必要になり、装置の大型化やコストがかかるという問題点があった。特に、上述したAFMのように、非常に微小な角度変化を光てこ方式で検出しようとする場合に、この問題は顕著になる。   In the optical lever system described above, in order to increase the detection sensitivity, for example, it is necessary to devise measures such as increasing the optical path of the detection light. However, when a sufficiently long optical path is used, a complicated optical system is required, and there is a problem that the apparatus is increased in size and cost. This problem is particularly noticeable when an extremely small angle change is to be detected by the optical lever method as in the AFM described above.

本発明の変位検出方法は、カンチレバーなどの被測定物の変位を、被測定物から来る検出光の角度変化を利用して検出する変位検出方法であって、屈折率が周期的に変化する結晶(典型的には、フォトニック結晶)を用いて、該結晶に入射する検出光の、入射面に対する伝播角度の前記検出光の角度変化に伴う変化を増幅して被測定物の変位を検出することを特徴とする。また、本発明の変位検出装置は、被測定物の変位を、被測定物から来る検出光の角度変化を利用して検出する変位検出装置であって、被測定物から来る検出光が入射する様に配置された屈折率が周期的に変化する結晶と、該結晶からの検出光の角度変化を計測する光検出手段を有することを特徴とする。上記伝播角度は、検出光が入射する結晶の入射面の法線に対して結晶内の伝播光の伝播方向が成す角度である。この基本構成に基づいて、以下のごとき態様が可能である。前記結晶は、結晶中の検出光の伝播角度と、結晶の端面から出射する検出光の出射角度(検出光が出射する結晶の出射面の法線に対して結晶外に出射する検出光の伝播方向が成す角度である)が等しくなるように、その出射面が加工された形態をとり得る。また、結晶は、検出光の角度変化を検出する光検出手段と密着して設け得る。前記被測定物はカンチレバーであったりする。この場合、カンチレバーは、その中を伸びる光導波路を有し、検出光は、該光導波路を伝播して出射させて前記結晶に入射させ得る。さらには、カンチレバーは、その先端に前記光導波路と光学的に結合したマイクロレンズを有し、検出光は、該レンズを通って出射させて前記結晶に入射させ得る。或いは、検出光は、前記カンチレバーの反射面で反射させて前記結晶に入射させてもよい。前記フォトニック結晶は、検出光の波長、偏光状態、この結晶への光の入射角を考慮して、入射面に対する伝播角度がフォトニック結晶の上記屈折率異常のものとなる様に、その屈折率変調構造(周期、屈折率変化態様など)が設計されている。 The displacement detection method of the present invention is a displacement detection method for detecting the displacement of an object to be measured such as a cantilever using a change in the angle of detection light coming from the object to be measured, and a crystal whose refractive index changes periodically. (Typically, a photonic crystal) is used to amplify a change in the propagation angle of the detection light incident on the crystal with respect to the incident surface, and detect the displacement of the object to be measured. It is characterized by that. The displacement detection device of the present invention is a displacement detection device that detects the displacement of the object to be measured by using the change in the angle of the detection light coming from the object to be measured, and the detection light coming from the object to be measured is incident thereon. And a photodetection means for measuring a change in the angle of detection light from the crystal, the refractive index of which is periodically changed. The propagation angle is an angle formed by the propagation direction of the propagation light in the crystal with respect to the normal line of the incident surface of the crystal on which the detection light is incident. The following modes are possible based on this basic configuration. The crystal has a propagation angle of detection light in the crystal and an emission angle of detection light emitted from the end face of the crystal (propagation of detection light emitted outside the crystal with respect to the normal of the exit surface of the crystal from which the detection light is emitted). It is possible to take a form in which the exit surface is processed so that the directions are equal. Further, the crystal can be provided in close contact with a light detection means for detecting a change in the angle of the detection light. The object to be measured may be a cantilever. In this case, the cantilever has an optical waveguide extending through the cantilever, and the detection light can propagate through the optical waveguide and be emitted to be incident on the crystal. Furthermore, the cantilever has a microlens optically coupled to the optical waveguide at its tip, and the detection light can be emitted through the lens and incident on the crystal. Alternatively, the detection light may be reflected by the reflecting surface of the cantilever and incident on the crystal. In consideration of the wavelength of the detection light, the polarization state, and the incident angle of the light to the crystal, the photonic crystal is refracted so that the propagation angle with respect to the incident surface is the above-mentioned refractive index anomaly of the photonic crystal. A rate modulation structure (period, refractive index change mode, etc.) is designed.

本発明の被測定物の変位を検出光の角度変化として検出する変位検出装置ないし方法によれば、検出光の光路中に角度変位を増幅させる素子を導入することによって、従来、高感度検出に必要であった長い光路を用いることなく、高感度な検出が可能になる。また、複雑な光学系が必要なくなり、単純な装置構成になり得る効果がある。また、比較的コンパクトで安価な装置になり得るという効果がある。 According to the displacement detection device or method for detecting the displacement of the object to be measured as the change in the angle of the detection light according to the present invention, by introducing an element that amplifies the angular displacement in the optical path of the detection light, it has been conventionally possible to detect with high sensitivity. High-sensitivity detection is possible without using a long optical path that is necessary. Further, there is an effect that a complicated optical system is not required and a simple apparatus configuration can be obtained. In addition, there is an effect that the device can be relatively compact and inexpensive.

本発明の好適な実施の形態について、図1を用いて説明する。本実施形態では、変位検出装置として、原子間力顕微鏡への適用例を示すが、これに限定されるものではなく、被測定物の変位を検出光の角度変化として検出するものであれば、どのような装置でもよい。 A preferred embodiment of the present invention will be described with reference to FIG. In the present embodiment, as a displacement detection device, an application example to an atomic force microscope is shown, but the present invention is not limited to this, as long as the displacement of the object to be measured is detected as an angle change of detection light. Any device is acceptable.

図1は、本実施形態における変位検出装置の構成を示す図である。本実施形態の検出装置は、偏向素子101、フォトディテクタ102、カンチレバー103、光源104で構成される。特に、カンチレバー103は、レバーの先端に非常に微細なプローブ103aを有している。   FIG. 1 is a diagram illustrating a configuration of a displacement detection device according to the present embodiment. The detection device of this embodiment includes a deflection element 101, a photodetector 102, a cantilever 103, and a light source 104. In particular, the cantilever 103 has a very fine probe 103a at the tip of the lever.

サンプル105とカンチレバー103のプローブ103aの先端が近接すると、サンプル105とプローブ103aの先端との間に存在する物理量(例えば原子間力)によってカンチレバー103が撓む。この撓み量を検出することでサンプル105の形状を観察することが可能になる。撓み量の検出には、偏向素子101、フォトディテクタ102、光源104を用いる。 When the sample 105 and the tip of the probe 103a of the cantilever 103 are close to each other, the cantilever 103 is bent by a physical quantity (for example, atomic force) existing between the sample 105 and the tip of the probe 103a. The shape of the sample 105 can be observed by detecting the amount of bending. The deflection element 101, the photodetector 102, and the light source 104 are used for detecting the amount of deflection.

撓み量の検出方法を述べる。光源104は、検出光として、所望の波長のレーザ光を出射する。この検出光は、カンチレバー103の先端に照射され、その反射光が偏向素子101に入射する。偏向素子101は、フォトニック結晶と呼ばれる素子内部の屈折率が周期的に変化する結晶で構成されている。フォトニック結晶特有の屈折率異常の効果(スーパープリズム効果)により、偏向素子101は、結晶に入射する検出光の伝播角度を増幅するような作用を行う。こうして伝播角度が増幅されることで、カンチレバー103の変位に伴う検出光の角度変位を増幅できることになる。フォトディテクタ102は、4分割フォトダイオードのように、光の入射位置によって出力が変化する素子で構成する。伝播角度が増幅した検出光を、フォトディテクタ102で検出することにより、カンチレバー103の撓み量が微小であっても、大きな角度変位としてカンチレバー103の撓み量を検出することができる。   A method for detecting the amount of deflection will be described. The light source 104 emits laser light having a desired wavelength as detection light. This detection light is applied to the tip of the cantilever 103, and the reflected light enters the deflection element 101. The deflection element 101 is made of a crystal called a photonic crystal whose refractive index inside the element changes periodically. Due to the refractive index anomaly characteristic (super prism effect) peculiar to the photonic crystal, the deflecting element 101 acts to amplify the propagation angle of the detection light incident on the crystal. By amplifying the propagation angle in this way, the angular displacement of the detection light accompanying the displacement of the cantilever 103 can be amplified. The photodetector 102 is composed of an element whose output changes depending on the incident position of light, such as a quadrant photodiode. By detecting the detection light whose propagation angle is amplified by the photodetector 102, even if the amount of bending of the cantilever 103 is very small, the amount of bending of the cantilever 103 can be detected as a large angular displacement.

このように、被測定物の変位を検出光の角度変化として検出する測定系において、検出光の光路に伝播角度を増幅するように光を偏向する素子を導入することで、微小な被測定物の変位も簡単な構成で測定することが可能になる。   In this way, in a measurement system that detects the displacement of the object to be measured as the change in the angle of the detection light, by introducing an element that deflects light so as to amplify the propagation angle in the optical path of the detection light, a minute object to be measured is introduced. It is also possible to measure the displacement of with a simple configuration.

更に具体的な実施例を以下に説明する。
図2に実施例1の構成を示す。図2中、上記のものと同一部に関しては同符号を用いる。本実施例の偏向素子101の出射面は、増幅された検出光の伝播角度と偏向素子101の端面から出射する検出光の出射角度が等しくなるように、加工されている(典型的には、検出光の入射位置をほぼ中心とする球面形状である)。そのため、偏向素子101によって、伝播角度が増幅された検出光は、増幅された角度を保持したまま、フォトディテクタ102に入射することができる。
Further specific examples will be described below.
FIG. 2 shows the configuration of the first embodiment. In FIG. 2, the same reference numerals are used for the same parts as those described above. The exit surface of the deflection element 101 of this embodiment is processed so that the propagation angle of the amplified detection light and the exit angle of the detection light exiting from the end surface of the deflection element 101 are equal (typically, It has a spherical shape with the detection light incident position at the center. Therefore, the detection light whose propagation angle is amplified by the deflecting element 101 can be incident on the photodetector 102 while maintaining the amplified angle.

フォトディテクタ102としては、4分割フォトニックダイオードを用いる。光源104としては、波長660nmのレーザを用いる。そして、偏向素子101はこのレーザ光の帯域において、屈折率異常(スーパープリズム効果)が起きるように、結晶構造が制御されている。 A quadrant photonic diode is used as the photodetector 102. As the light source 104, a laser having a wavelength of 660 nm is used. Then, the crystal structure of the deflecting element 101 is controlled so that a refractive index abnormality (super prism effect) occurs in this laser light band.

これらの素子を用いてサンプル105上をカンチレバー103で走査することにより、カンチレバー103の微小な変位も精度良く簡単な構成で観察することが可能になる。 By scanning the sample 105 with the cantilever 103 using these elements, a minute displacement of the cantilever 103 can be observed with high accuracy and a simple configuration.

図3に実施例2の構成を示す。図中、上記のものと同一部に関しては同符号を用いる。本実施例の偏向素子101は、フォトディテクタ102の光検出面と密着している。そのため、偏向素子101によって伝播角度が増幅された検出光は、増幅された角度を保持したまま、フォトディテクタ102に直接入射される。 FIG. 3 shows the configuration of the second embodiment. In the figure, the same reference numerals are used for the same parts as those described above. The deflection element 101 of this embodiment is in close contact with the light detection surface of the photodetector 102. Therefore, the detection light whose propagation angle is amplified by the deflecting element 101 is directly incident on the photodetector 102 while maintaining the amplified angle.

ここでも、フォトディテクタ102としては、4分割フォトニックダイオードを用いる。光源104としては、波長660nmのレーザを用いる。そして勿論、偏向素子101はこのレーザ光の帯域において、屈折率異常(スーパープリズム効果)が起きるように、結晶構造が制御されている。   Again, a quadrant photonic diode is used as the photodetector 102. As the light source 104, a laser having a wavelength of 660 nm is used. And of course, the crystal structure of the deflecting element 101 is controlled so that the refractive index abnormality (super prism effect) occurs in the laser light band.

これらの素子を用いても、サンプル105上をカンチレバー103で走査することにより、カンチレバー103の微小な変位も精度良く簡単な構成で観察することが可能になる。 Even if these elements are used, by scanning the sample 105 with the cantilever 103, a minute displacement of the cantilever 103 can be accurately observed with a simple configuration.

図4に実施例3の構成を示す。図中、上記のものと同一部に関しては同符号を用いる。本実施例のカンチレバー103は、内部に光導波路を有している。この導波路部は、カンチレバー103の外部にある導波路402と結合しており、光源104の光をカンチレバー103内部に導波させる。さらに、カンチレバー103先端の端面にはマイクロレンズ403が密着されており、導波されてきた光を集光させて外部に出力する。   FIG. 4 shows the configuration of the third embodiment. In the figure, the same reference numerals are used for the same parts as those described above. The cantilever 103 of the present embodiment has an optical waveguide inside. This waveguide section is coupled to a waveguide 402 outside the cantilever 103, and guides light from the light source 104 into the cantilever 103. Further, a microlens 403 is in close contact with the end face of the cantilever 103, and the guided light is condensed and output to the outside.

本実施例の偏向素子101の出射面は、増幅された検出光の伝播角度と偏向素子101の端面から出射する検出光の出射角度が等しくなるように、加工されている。そのため、偏向素子101によって伝播角度が増幅された検出光は、増幅された角度を保持したまま、フォトディテクタ102に入射することができる。   The exit surface of the deflection element 101 of this embodiment is processed so that the propagation angle of the amplified detection light and the exit angle of the detection light exiting from the end face of the deflection element 101 are equal. Therefore, the detection light whose propagation angle is amplified by the deflecting element 101 can be incident on the photodetector 102 while maintaining the amplified angle.

ここでも、フォトディテクタ102としては、4分割フォトニックダイオードを用いる。光源104としては、波長660nmのレーザを用いる。勿論、偏向素子101はこのレーザ光の帯域において、屈折率異常(スーパープリズム効果)が起きるように、結晶構造が制御されている。   Again, a quadrant photonic diode is used as the photodetector 102. As the light source 104, a laser having a wavelength of 660 nm is used. Of course, the crystal structure of the deflecting element 101 is controlled so that the refractive index abnormality (super prism effect) occurs in this laser light band.

本実施例では、光源104からの検出光はカンチレバー103先端のマイクロレンズ403から出射して、偏向素子101に入射する。したがって、カンチレバー103の変位に伴ってマイクロレンズ403からの出射方向が変位し、この変位が偏向素子101で増幅されることになる。これらの素子を用いても、サンプル105上をカンチレバー103で走査することにより、カンチレバー103の微小な変位も精度良く簡単な構成で観察することが可能になる。 In this embodiment, the detection light from the light source 104 is emitted from the microlens 403 at the tip of the cantilever 103 and enters the deflection element 101. Therefore, the emission direction from the microlens 403 is displaced with the displacement of the cantilever 103, and this displacement is amplified by the deflection element 101. Even if these elements are used, by scanning the sample 105 with the cantilever 103, a minute displacement of the cantilever 103 can be accurately observed with a simple configuration.

図5に実施例4の構成を示す。図中、上記のものと同一部に関しては同符号を用いる。本実施例のカンチレバー103も、実施例3のものと同じである。本実施例の偏向素子101は、フォトディテクタ102の光検出面と密着している。そのため、偏向素子101によって伝播角度が増幅された検出光は、増幅された角度を保持したまま、フォトディテクタ102に直接入射される。   FIG. 5 shows the configuration of the fourth embodiment. In the figure, the same reference numerals are used for the same parts as those described above. The cantilever 103 of the present embodiment is the same as that of the third embodiment. The deflection element 101 of this embodiment is in close contact with the light detection surface of the photodetector 102. Therefore, the detection light whose propagation angle is amplified by the deflecting element 101 is directly incident on the photodetector 102 while maintaining the amplified angle.

ここでも、フォトディテクタ102としては、4分割フォトニックダイオードを用いる。光源104としては、波長660nmのレーザを用いる。勿論、偏向素子101はこのレーザ光の帯域において、屈折率異常(スーパープリズム効果)が起きるように、結晶構造が制御されている。   Again, a quadrant photonic diode is used as the photodetector 102. As the light source 104, a laser having a wavelength of 660 nm is used. Of course, the crystal structure of the deflecting element 101 is controlled so that the refractive index abnormality (super prism effect) occurs in this laser light band.

これらの素子を用いても、サンプル105上をカンチレバー103で走査することにより、カンチレバー103の微小な変位も精度良く簡単な構成で観察することが可能になる。 Even if these elements are used, by scanning the sample 105 with the cantilever 103, a minute displacement of the cantilever 103 can be accurately observed with a simple configuration.

本発明の実施の形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施例1を説明する図である。It is a figure explaining Example 1 of the present invention. 本発明の実施例2を説明する図である。It is a figure explaining Example 2 of this invention. 本発明の実施例3を説明する図である。It is a figure explaining Example 3 of this invention. 本発明の実施例4を説明する図である。It is a figure explaining Example 4 of this invention.

符号の説明Explanation of symbols

101 偏向素子
102 フォトディテクタ
103 カンチレバー
103a プローブ
104 光源
105 サンプル
402 導波路
403 レンズ
101 deflection element
102 Photo detector
103 Cantilever
103a probe
104 Light source
105 samples
402 waveguide
403 lens

Claims (9)

被測定物の変位を、被測定物から来る検出光の角度変化を利用して検出する変位検出方法であって、屈折率が周期的に変化する結晶を用いて、該結晶に入射する検出光の、入射面に対する伝播角度の前記検出光の角度変化に伴う変化を増幅して被測定物の変位を検出することを特徴とする変位検出方法。 A displacement detection method for detecting a displacement of an object to be measured using an angular change of detection light coming from the object to be measured, using a crystal whose refractive index changes periodically, and detecting light incident on the crystal A displacement detection method for detecting a displacement of an object to be measured by amplifying a change of the propagation angle with respect to an incident surface accompanying an angle change of the detection light. 前記結晶は、該結晶中の検出光の伝播角度と、該結晶の端面から出射する検出光の出射角度が等しくなるように、その出射面を加工する請求項1に記載の変位検出方法。 The displacement detection method according to claim 1, wherein the crystal is processed so that a propagation angle of detection light in the crystal is equal to an emission angle of detection light emitted from an end face of the crystal. 前記結晶は、検出光の角度変化を検出する光検出手段と密着して設ける請求項1に記載の変位検出方法。 The displacement detection method according to claim 1, wherein the crystal is provided in close contact with a light detection unit that detects a change in angle of detection light. 前記結晶はフォトニック結晶である請求項1乃至3のいずれかに記載の変位検出方法。 The displacement detection method according to claim 1, wherein the crystal is a photonic crystal. 被測定物の変位を、被測定物から来る検出光の角度変化を利用して検出する変位検出装置であって、被測定物から来る検出光が入射する様に配置された屈折率が周期的に変化する結晶と、該結晶からの検出光の角度変化を計測する光検出手段を有することを特徴とする変位検出装置。 A displacement detection device that detects the displacement of an object to be measured using the change in angle of the detection light coming from the object to be measured, and the refractive index arranged so that the detection light coming from the object to be measured is periodic A displacement detection device comprising: a crystal that changes to a light angle; and a light detection means that measures an angle change of detection light from the crystal. 前記結晶は、該結晶に入射する検出光の、入射面に対する伝播角度の前記検出光の角度変化に伴う変化を増幅する様に構成されている請求項5に記載の変位検出装置。 The displacement detection device according to claim 5, wherein the crystal is configured to amplify a change in a propagation angle of the detection light incident on the crystal with respect to an incident surface accompanying an angle change of the detection light. 前記結晶は、該結晶中の検出光の伝播角度と、該結晶の端面から出射する検出光の出射角度が等しくなるように、その出射面が加工されている請求項5または6に記載の変位検出装置。 The displacement according to claim 5 or 6, wherein an exit surface of the crystal is processed so that a propagation angle of detection light in the crystal is equal to an emission angle of detection light emitted from an end face of the crystal. Detection device. 前記結晶は、検出光の角度変化を検出する光検出手段と密着して設けられている請求項5または6に記載の変位検出装置。 The displacement detection device according to claim 5, wherein the crystal is provided in close contact with a light detection unit that detects an angle change of the detection light. 前記結晶はフォトニック結晶である請求項5乃至8のいずれかに記載の変位検出装置。 The displacement detection device according to claim 5, wherein the crystal is a photonic crystal.
JP2003270260A 2003-07-02 2003-07-02 Device for detecting displacement of measured object Expired - Fee Related JP4272946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003270260A JP4272946B2 (en) 2003-07-02 2003-07-02 Device for detecting displacement of measured object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003270260A JP4272946B2 (en) 2003-07-02 2003-07-02 Device for detecting displacement of measured object

Publications (3)

Publication Number Publication Date
JP2005024490A true JP2005024490A (en) 2005-01-27
JP2005024490A5 JP2005024490A5 (en) 2006-08-17
JP4272946B2 JP4272946B2 (en) 2009-06-03

Family

ID=34190265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003270260A Expired - Fee Related JP4272946B2 (en) 2003-07-02 2003-07-02 Device for detecting displacement of measured object

Country Status (1)

Country Link
JP (1) JP4272946B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525663A (en) * 2007-04-19 2010-07-22 グーグル インコーポレイテッド Method and apparatus for managing telephone calls

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105091771A (en) * 2015-05-25 2015-11-25 合肥工业大学 Apparatus for measuring micro-deformation of connecting rod based on displacement amplification principle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525663A (en) * 2007-04-19 2010-07-22 グーグル インコーポレイテッド Method and apparatus for managing telephone calls

Also Published As

Publication number Publication date
JP4272946B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
JP5384331B2 (en) Sensors based on surface plasmon resonance
JP4489804B2 (en) Homodyne laser interferometer probe and displacement measurement system using the same
JPH0921698A (en) Optical sensor
US6239426B1 (en) Scanning probe and scanning probe microscope
US7586084B2 (en) Optical fiber probe, optical detection device, and optical detection method
US6642517B1 (en) Method and apparatus for atomic force microscopy
Nordström et al. Integrated optical readout for miniaturization of cantilever-based sensor system
Bruland et al. Thermal tuning of a fiber-optic interferometer for maximum sensitivity
KR20030095049A (en) A concave ended interferometric Optical Fiber Sensor for Displacement measurement of Cantilever Probe of Atomic Force Microscope
JP4009197B2 (en) Scanning near-field optical microscope
EP0415838B1 (en) Microscopic method and &#34;near-field&#34; reflection microscope
JP4553240B2 (en) Photodetection device and photodetection method
JPH1144693A (en) Method and apparatus for measurement of position of probe chip in near-field optical microscope and control device therefor
EP0652414B1 (en) Scanning near-field optic/atomic force microscope
JP4272946B2 (en) Device for detecting displacement of measured object
WO2005003737A1 (en) Photo-detection device and method
Tiribilli et al. Fibre‐top atomic force microscope probe with optical near‐field detection capabilities
JP2006098386A (en) Method of sensing scattered light, polarization modulator, and scanning probe microscope
JPH0954101A (en) Scanning near field optical microscope
JP2007322159A (en) Optical fiber probe, photodetector, and photodetection method
US20070012873A1 (en) Scanning-type probe microscope
Wen et al. A novel optical fiber reflective read out microcantilever biosensor
JP2004257775A (en) Method and device for measuring indentation depth of spherical indenter
JPH1194859A (en) Scanning near-field optical microscope utilizing optical resonator
CN113884466A (en) Surface refractive index imaging sensor based on weak measurement and measurement method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees