JP2005024029A - Tapered roller bearing - Google Patents

Tapered roller bearing Download PDF

Info

Publication number
JP2005024029A
JP2005024029A JP2003191322A JP2003191322A JP2005024029A JP 2005024029 A JP2005024029 A JP 2005024029A JP 2003191322 A JP2003191322 A JP 2003191322A JP 2003191322 A JP2003191322 A JP 2003191322A JP 2005024029 A JP2005024029 A JP 2005024029A
Authority
JP
Japan
Prior art keywords
roller
roller bearing
groove
tapered roller
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003191322A
Other languages
Japanese (ja)
Other versions
JP4218447B2 (en
Inventor
Ken Yamamoto
建 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003191322A priority Critical patent/JP4218447B2/en
Publication of JP2005024029A publication Critical patent/JP2005024029A/en
Application granted granted Critical
Publication of JP4218447B2 publication Critical patent/JP4218447B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/225Details of the ribs supporting the end of the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • F16C33/36Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
    • F16C33/366Tapered rollers, i.e. rollers generally shaped as truncated cones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Friction Gearing (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tapered rolling bearing capable of preventing metal touch of a flange with a roller even when the operational condition becomes severe and an oil film on a contact part of the flange with the roller is thin. <P>SOLUTION: The tapered rolling bearing A1 comprises an inner ring 30 having a conical raceway surface 30a on an outer circumferential surface, an outer ring 31 having a conical raceway surface 31a on an inner circumferential surface, a plurality of truncated conical rollers 32 disposed turnably between the inner ring 30 and the outer ring 31, and a large flange 33 which is formed on the inner ring 30 and brought into contact with a large diameter end face 32a of the roller 32 to guide the roller 32. A groove 35 is circumferentially formed in at least one surface of the large flange 33 and the roller 32 out of the surfaces on which the large flange 33 is brought into contact with the roller 32. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、トロイダル型無段変速機のパワーローラ軸受等に適用される円すいころ軸受の技術分野に属する。
【0002】
【従来の技術】
円すいころ軸受は、内外輪軌道面およびコロの円すい頂点が軸受中心上の一点で一致するよう設計されているため、コロは内外輪軌道面に対して純転がり運動をすることができる。しかしながら、内外輪の角度が異なるため、コロを円すいの底辺方向に押す力が発生する。そこで、コロ大径面に鍔を接触させ、この力を支持している。この接触部も軌道面と同様、転がり接触であり、間に油膜を形成することで金属同士が直接接触することによる損傷を防止している(特許文献1参照)。
【0003】
【特許文献1】
特開2002−147461号公報。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の円すいころ軸受の鍔とコロの接触部は、軌道面とは異なり、すべりが非常に大きい。通常、軌道面のすべり率(転がり速度に対するすべり速度の比)は1%以下であるが、鍔部は20%程度となる。したがって、軸受に働く荷重が大きくなり、接触部の面圧が高くなった場合や、潤滑油温が高くなり粘度が低下した場合に油膜が薄くなり、直接接触して焼付きなどの損傷を起こすという問題があった。
【0005】
本発明は、上記問題に着目してなされたもので、運転条件が過酷になり鍔とコロとの接触部の油膜が薄くなろうとしても、鍔とコロとの金属接触を防止することができる円すいころ軸受を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本発明では、
外周面に円すい体形状の軌道面を有する内輪と、内周面に円すい体形状の軌道面を有する外輪と、内輪と外輪の間に転動自在に配置された円すい台形状の複数のコロと、内輪または外輪に形成され、コロの大径端面に接触してコロを案内する鍔と、を備えた円すいころ軸受において、
前記鍔と前記コロとが接触する面のうち、鍔とコロの少なくとも一方の面に周方向に溝を設けた。
【0007】
【発明の効果】
本発明の円すいころ軸受にあっては、鍔とコロとが接触する面のうち、鍔とコロの少なくとも一方の面に周方向に溝を設けたため、溝に溜まっている油により鍔とコロとの接触部において油膜の厚みが確保されることで、運転条件が過酷になり鍔とコロとの接触部の油膜が薄くなろうとしても、鍔とコロとの金属接触を防止することができる。
【0008】
【発明の実施の形態】
以下、本発明の円すいころ軸受を実現する実施の形態を、第1実施例〜第4実施例に基づいて説明する。
【0009】
(第1実施例)
まず、構成を説明する。
図1(a)は第1実施例の円すいころ軸受を示す断面図で、図1(b)は内輪の鍔とコロとの接触部を示す図1(a)のB部拡大断面図である。
第1実施例の円すいころ軸受A1は、図1に示すように、外周面に円すい体形状の軌道面30aを有する内輪30と、内周面に円すい体形状の軌道面31aを有する外輪31と、内輪30と外輪31の間に転動自在に配置された円すい台形状の複数のコロ32と、内輪30に形成され、コロ32の大径端面32aに接触してコロ32を案内する大鍔33(鍔)と、を備えている。
【0010】
前記内輪30は、大鍔面33aを有する大鍔33を一体に有すると共に、コロ32の小径端面32bに接触してコロ32を案内する小鍔面34aを有する小鍔34を一体に有する。前記軌道面30aは、前記コロ32の円すい周面32cに接触する。なお、大鍔33は、内輪30と別体に形成し、焼き嵌め等により内輪30と一体化結合しても良い。
【0011】
前記外輪31の軌道面31aは、前記コロ32のコロ軸方向の移動を内輪30側の大鍔面33aと小鍔面34aにより規制しているため、前記コロ32の円すい周面32cのみに接触する。
【0012】
前記コロ32は、球面(曲率半径SR)による大径端面32aと、平面による小径端面32bと、円すい面による円すい周面32cと、を有する。そして、複数のコロ32は、図外の保持器により隣接するコロ32との間隔を保ちながら転動するように設けられる。
【0013】
前記大鍔33の大鍔面33aと前記コロ32の大径端面32aとが接触する面のうち、大鍔33の大鍔面33aに周方向に溝35を設けている。この溝35の1つの溝の幅は、大鍔33とコロ32の接触部が形成するヘルツ接触だ円の幅よりも小さくし、大鍔33とコロ32の間に形成された油膜が薄くなる部分に2本の溝35,35を配置している。2本の溝35,35は、図1(b)に示すように、それぞれ接触だ円の中心位置と端部位置の中間付近に配置している。さらに、前記溝35,35の断面形状を、円弧形状の溝底を持つ形状に設定している。
【0014】
次に、作用を説明する。
【0015】
[鍔とコロとの接触部の油膜必要性]
円すいころ軸受A1に対し荷重が付加された場合、この荷重の一部を、大鍔33に形成された大鍔面33aで支持することになる。このとき、コロ32の大径端面32aと大鍔33の大鍔面32dは相対回転を行うため、両者の接触部にはすべりが発生し、このすべりによる摩擦力が、円すいころ軸受A1の損失トルクとなる。この損失トルクの大きさは、コロ32と大鍔33の接触部の摩擦係数に比例する。よって、コロ32と大鍔33の接触部の摩擦係数を低減するには、大径端面32aと大鍔面32dとの接触部に油膜を確保しておく必要がある。
【0016】
[油膜形成作用]
転がり軸受のように面圧の高い転がり接触部に形成される油膜の形状は、いわゆる、弾性流体潤滑理論(山本・兼田:「トライボロジー」理工学社(1998年発行)113頁−122頁参照)で求められる。
【0017】
図2は溝35が無い従来例における油膜厚さ分布の数値計算結果を示しているが、油の流出部に膜厚低下部が存在するため、馬蹄形状の薄膜部を持つ分布となり、最薄部は馬蹄形状の両翼部に存在する。すなわち、接触だ円の中心と接触だ円の端部との中間位置に最薄部が存在し、表面の粗さが均一であれば、この部分が最も接触しやすい。図3は転がり方向(図4)から油膜厚さ分布を見た図であり、接触だ円の中心と接触だ円の端部との中間位置に最薄部が存在することが明かである。
【0018】
これに対し、第1実施例では、この油膜が最薄となる部分に溝35,35が形成されているため、最薄部の油膜厚さが厚くなり、金属接触を防止することができる。
図4は第1実施例における油膜形状の計算結果であるが、図3の溝無しの場合には、最薄部の油膜厚さ=0.3×10−6であるのに対し、図4の溝有りの場合には、最薄部の油膜厚さ=0.35×10−6となり、最小油膜厚さが厚くなっていることがわかる。
【0019】
次に、効果を説明する。
第1実施例の円すいころ軸受にあっては、下記に列挙する効果を得ることができる。
【0020】
(1) 外周面に円すい体形状の軌道面30aを有する内輪30と、内周面に円すい体形状の軌道面31aを有する外輪31と、内輪30と外輪31の間に転動自在に配置された円すい台形状の複数のコロ32と、内輪30に形成され、コロ32の大径端面32aに接触してコロ32を案内する大鍔33と、を備えた円すいころ軸受A1において、前記大鍔33と前記コロ32とが接触する面のうち、大鍔33とコロ32の少なくとも一方の面に周方向に溝35を設けたため、運転条件が過酷になり大鍔33とコロ32との接触部の油膜が薄くなろうとしても、大鍔33とコロ32との金属接触を防止することができる。
【0021】
(2) 前記大鍔33のコロ32と接触する大鍔面33aに円周方向の溝35を設け、該溝35の幅を、大鍔33とコロ32の接触部が形成するヘルツ接触だ円の幅よりも小さくし、大鍔33とコロ32の間に形成された油膜が薄くなる部分に溝35を配置したため、運転条件が過酷になり油膜が薄くなっても、金属接触をすることがない。また、大鍔33の大鍔面33aに溝35を形成したため、複数のコロ32のそれぞれに溝を形成する場合に比べ、加工が短時間ですむ。
【0022】
(3) 前記溝35を2本設け、それぞれの溝35,35を、接触だ円の中心位置と端部位置の中間付近に配置したため、平均油膜厚さが薄い条件となる位置と溝35,35の位置とが一致し、有効に最小油膜厚さを厚くすることで、確実に金属接触を防止することができる。
【0023】
(4) 前記溝35の断面形状を、円弧形状の溝底を持つ形状に設定したため、形状の急峻な変化による油膜圧力の急上昇を防止することができる。
【0024】
なお、それぞれの溝35,35は、完全に独立している必要はなく、図5の第1実施例の変形例による円すいころ軸受A1’に示すように、2つの円弧凹断面を持つ溝35,35を滑らかに連通する円弧凸断面による連通溝36により連通して連続する溝35,35としてもよい。
【0025】
(第2実施例)
第2実施例の円すいころ軸受A2は、コロと鍔との接触面のうち、コロ側に溝を設けた例である。
【0026】
すなわち、図6に示すように、前記コロ32の大鍔33と接触する大径端面32aに円周方向の2本の溝35,35を設け、該溝35,35の1つの溝幅を、大鍔33とコロ32の接触部が形成するヘルツ接触だ円の幅よりも小さくし、大鍔33とコロ32の間に形成された油膜が薄くなる部分に2本の溝35,35を配置した。なお、他の構成は第1実施例と同様であるので、図示並びに説明を省略する。
【0027】
次に、作用を説明すると、第1実施例は、大鍔33の1個に溝加工を施せばよく簡単であるが、大鍔33は内輪30に一体化されているため、大鍔33の角度や内輪30の形状等によっては工具の干渉などが発生し、加工が困難となる。
【0028】
これに対し、第2実施例の円すいころ軸受A2は、コロ32の大径端面32aであれば加工に際して邪魔になる部分がなく、例えば、大径端面32aの球面加工と同時加工等により、容易に加工することができる。
【0029】
次に、効果を説明する。
第2実施例の円すいころ軸受A2にあっては、第1実施例の(1),(3),(4)の効果に加え、下記の効果を得ることができる。
【0030】
(5) 前記コロ32の大鍔33と接触する大径端面32aに円周方向の溝35,35を設け、該溝35,35の1つの溝幅を、大鍔33とコロ32の接触部が形成するヘルツ接触だ円の幅よりも小さくし、大鍔33とコロ32の間に形成された油膜が薄くなる部分に2本の溝35,35を配置したため、簡単な加工で、運転条件が過酷になっても、大鍔33とコロ32との金属接触を防止することができる。
【0031】
(第3実施例)
第3実施例の円すいころ軸受A3は、溝35を1本設け、その溝35を、接触だ円中心に配置した例である。
【0032】
すなわち、図7に示すように、前記溝35を1本だけ大鍔面33aに設け、その溝35を、接触だ円中心に配置した。なお、他の構成は第1実施例と同様であるので、図示並びに説明を省略する。
【0033】
次に、作用を説明すると、図8(a),(b)、並びに、弾性流体潤滑(山本・兼田:トライボロジー理工学社(1998年発行)122頁参照)に記載されているように、コロ32転がり速度が高くなると油膜厚さ分布が変化し、低速時の最薄部は接触だ円の中心と端部の中間付近に2箇所存在するのに対し図8(a)、高速時の最薄部は中央部に移動する図8(b)。第3実施例は、このような運転条件において金属接触を防止できる。
【0034】
次に、効果を説明する。
第3実施例の円すいころ軸受A3にあっては、第1実施例の(1),(2),(4)の効果に加え、下記の効果を得ることができる。
【0035】
(6) 前記溝35を1本だけ大鍔面33aに設け、その溝35を、接触だ円の中心位置に配置したため、平均油膜厚さが厚い高速運転条件において、金属接触を防止することができる。
【0036】
(第4実施例)
第4実施例の円すいころ軸受A4は、トロイダル型無段変速機のパワーローラ軸受として適用した例である。
【0037】
まず、構成を説明する。
図9は第4実施例の円すいころ軸受A4が適用されたトロイダル型無段変速機の変速機構を示す概略図であり、エンジンからの回転駆動力は、図外のトルクコンバータおよび前後進切換え機構を介して入力軸1に入力される。
【0038】
前記入力軸1と同軸上にトルク伝達軸2が配置され、該トルク伝達軸2の両端部位置には、第1入力ディスク3と第2入力ディスク4を、軸方向移動可能にスプライン結合している。
【0039】
前記第1入力ディスク3の背面と入力軸1との間には、入力トルクに応じて軸方向推力を発生するローディングカム機構5を介装している。
【0040】
前記第2入力ディスク4の背面とトルク伝達軸2の端部に螺合されたナット6との間には、両入力ディスク3,4にプリロードを付与する皿バネ7を介装している。
【0041】
前記両入力ディスク3,4の中間位置には、トルク伝達軸2に遊装した出力ディスク8を配置している。この出力ディスク8は、2つの出力ディスクの背面を互いに合わせて一体結合したもので、出力ディスク8の外周部には出力ギア9を形成している。
【0042】
前記第1入力ディスク3の出力ディスク8側対向面と、前記第2入力ディスク4の出力ディスク8側対向面と、前記出力ディスク8の両入力ディスク3,4に対向する対向面には、それぞれトロイド状溝3a,4a,8a,8bを形成している。
【0043】
前記トロイド状溝3a,8aとの間には、左右2個の第1パワーローラ10,10を油膜せん断力により動力の受け渡しを可能に挟持している。同様に、トロイド状溝4a,8bとの間には、左右2個の第2パワーローラ11,11を油膜せん断力により動力の受け渡しを可能に挟持している。
【0044】
そして、第1入力ディスク3と出力ディスク8と第1パワーローラ10,10により第1トロイダル変速部12を構成し、第2入力ディスク4と出力ディスク8と第2パワーローラ11,11により第2トロイダル変速部13を構成している。
【0045】
上記変速機構において、各パワーローラ10,10,11,11は、後述する作動により変速比に応じた傾転角が得られるようにそれぞれ傾転され、両入力ディスク3,4の入力回転を無段階(連続的)に変速して出力ディスク8に伝達する。
【0046】
図10は第4実施例の円すいころ軸受A4が適用されたトロイダル型無段変速機の変速制御系を示す概略図で、第1パワーローラ10,10は、トラニオン14,14の一端に支持されていて、パワーローラ回転軸15,15を中心として回転自在である。このトラニオン14,14の他端部には、トラニオン14,14を軸方向に移動させて各パワーローラ10,10を傾転させる油圧アクチュエータとしてのサーボピストン16,16を設けている。なお、第2パワーローラ11,11も同様に、トラニオンの一端に支持されていて、トラニオンを軸方向に移動させて各パワーローラ11,11を傾転させる油圧アクチュエータとしてのサーボピストンを設けている。そして、4個のトラニオンは、これらが同期して動くように図外の同期ワイヤにより連結されている。
【0047】
前記サーボピストン16,16を作動制御する油圧制御系として、ピストン16a,16aにより画成されるハイ側油室16b,16bに接続されるハイ側油路17と、ロー側油室16c,16cに接続されるロー側油路18と、ハイ側油路17を接続するポート19aとロー側油路18を接続するポート19bを有する変速制御弁19とが設けられている。
【0048】
前記変速制御弁19のライン圧ポート19cには、図外のオイルポンプ及びリリーフ弁を有する油圧源からのライン圧が供給される。
【0049】
前記変速制御弁19の変速スプール19dは、トラニオン14,14の軸方向及び傾転方向を検知し、変速制御弁19にフィードバックするレバー20及びプリセスカム21と連動すると共に、ステップモータ22により軸方向に変位するように駆動される。
【0050】
前記ステップモータ22を駆動制御する電子制御系として、CVTコントロールユニット23が設けられ、このCVTコントロールユニット23には、スロットル開度センサ24、エンジン回転センサ25、入力ディスク回転センサ26、出力軸回転センサ(車速センサ)27、インヒビタースイッチ28、油温センサ29等からの入力情報が取り込まれる。
【0051】
図11は第4実施例の円すいころ軸受A4が適用されたパワーローラ10を示す断面図である。なお、パワーローラ11についても同じ構造である。
【0052】
前記パワーローラ10は、第1入力ディスク3の動力を油膜せん断力によって出力ディスク8に伝達する内輪30と、トラニオン14に対し揺動可能もしくはスライド可能に支持された外輪31と、該外輪31に対して内輪30を回転自在に支持するスラスト軸受としての円すいころ軸受A4と、前記外輪31のパワーローラシャフト部31bに内輪30を回転可能に支持するラジアル軸受37と、を有して構成している。
【0053】
前記円すいころ軸受A4は、外輪対向面に円すい体形状の軌道面30aを有する内輪30と、内輪対向面に円すい体形状の軌道面31aを有する外輪31と、内輪30と外輪31の間に転動自在に配置された円すい台形状の複数のコロ32と、外輪31に形成され、コロ32の大径端面32aに接触してコロ32を案内する大鍔33と、コロ32の小径端面32bに接触してコロ32を案内する小鍔34と、を備えている。そして、図6に示す第2実施例と同様に、前記大鍔33と前記コロ32とが接触する面のうち、コロ32の大径端面32aに周方向に2本の溝35を設けている。
【0054】
次に、作用を説明する。
【0055】
トロイダル型無段変速機の変速比制御時においては、入出力ディスク3,8との接触により内輪30から円すいころ軸受A4に対し大きなスラスト荷重が付加される。このスラスト荷重により、コロ32にはラジアル分力が発生し、このラジアル荷重を大鍔33の大鍔面33aで支持することになる。このとき、コロ32の大径端面32aと大鍔33の大鍔面32dは相対回転を行うため、両者の接触部にはすべりが発生し、このすべりによる摩擦力が、円すいころ軸受A4の損失トルクMとなり、この損失トルクMの大きさは、下記の(1)式で与えられる。
M=eμFcosβ (1)
e:鍔当たり高さ
μ:摩擦係数
F:スラスト荷重
β:コロの円すい半頂角
よって、(1)式から明らかなように、摩擦係数μを小さくするほど損失トルクMが低減する。この摩擦係数μを低減するには、大径端面32aと大鍔面32dとの接触部に油膜を形成させる必要がある。特に、トロイダル型無段変速機では、大トルク伝達時にスラスト荷重Fが大きくなるため、損失トルクMを低減することが重要な課題となる。
【0056】
よって、大きなラジアル分力を受けるパワーローラ10の場合、損失トルクMを低減させるには、コロ32の大径端面32aと大鍔33の大鍔面32dとの接触部の油膜を確保し、摩擦係数μを小さくする必要がある。
【0057】
これに対し、第4実施例の円すいころ軸受A4では、油膜が最薄となる部分に溝35,35が形成されているため、第1実施例と同様に、最薄部の油膜厚さが厚くなり、大鍔33とコロ32との接触部での金属接触を防止することができ、その結果、損失トルクMが低下する。
【0058】
次に、効果を説明する。
第4実施例の円すいころ軸受A4にあっては、第1実施例の(1),(3),(4)および第2実施例の(5)の効果に加え、下記の効果を得ることができる。
【0059】
(7) 入力ディスク3と、出力ディスク8と、これら入出力ディスク3,8の対向面にそれぞれ形成されたトロイド状溝3a,8aに挟持される複数のパワーローラ10と、該パワーローラ10を傾転可能に支持するトラニオン14と、を備え、前記パワーローラ10は、第1入力ディスク3の動力を油膜せん断力によって出力ディスク8に伝達する内輪30と、トラニオン14に対し揺動可能もしくはスライド可能に支持された外輪31と、該外輪31に対して内輪30を回転自在に支持するパワーローラ軸受と、を有して構成されるトロイダル型無段変速機において、前記パワーローラ軸受として円すいころ軸受A4を適用したため、コロ32の大径端面32aと大鍔33の大鍔面32dとの接触部の油膜を確保し、摩擦係数μを小さくして、損失トルクMを小さくすることができる。
【0060】
以上、本発明の円すいころ軸受を第1実施例〜第4実施例に基づき説明してきたが、具体的な構成については、これらの実施例に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
【0061】
例えば、第4実施例では、円すいコロ軸受をトロイダル型無段変速機のパワーローラ軸受として適用した例を示したが、トロイダル型無段変速機以外の円すいコロ軸受が採用される様々な回転機器類に適用することができる。
【0062】
第1実施例〜第4実施例では、大鍔の大鍔面とコロの大径端面のうち、一方の面のみに溝を設ける例を示したが、例えば、一方の面に2本の溝を設け、他方の面に1本の溝を設け、コロの転がり速度が低速から高速まで油膜確保できるようにする等、油膜の確保に有効であれば、大鍔の大鍔面とコロの大径端面の両方に溝を設けるようにしても良い。
【0063】
第1実施例〜第4実施例では、溝の数が1本と2本の例を示したが、微細な溝を3本以上設けるようにしても良い。
【図面の簡単な説明】
【図1】第1実施例の円すいころ軸受を示す断面図および鍔とコロの接触部拡大断面図である。
【図2】溝の無い円すいころ軸受の鍔とコロの接触部における膜厚分布図である。
【図3】溝の無い円すいころ軸受の鍔とコロの接触部における転がり方向から視た膜厚分布図である。
【図4】第1実施例の円すいころ軸受の鍔とコロの接触部における転がり方向から視た膜厚分布図である。
【図5】第1実施例の変形例の円すいころ軸受における鍔とコロの接触部拡大断面図である。
【図6】第2実施例の円すいころ軸受における鍔とコロの接触部拡大断面図である。
【図7】第3実施例の円すいころ軸受における鍔とコロの接触部拡大断面図である。
【図8】第3実施例の円すいころ軸受の鍔とコロの接触部における転がり速度が低速時の膜厚分布図と転がり速度が高速時の膜厚分布図である。
【図9】第4実施例の円すいころ軸受が適用されたトロイダル型無段変速機の変速機構を示す概略図である。
【図10】第4実施例の円すいころ軸受が適用されたトロイダル型無段変速機の変速制御系を示す概略図である。
【図11】第4実施例の円すいころ軸受が適用されたパワーローラを示す断面図である。
【符号の説明】
A1,A2,A3,A4 円すいころ軸受
30 内輪
30a 軌道面
31 外輪
31a 軌道面
32 コロ
32a 大径端面
32b 小径端面
32c 円すい周面
33 大鍔(鍔)
33a 大鍔面
34 小鍔
34a 小鍔面
35 溝
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of tapered roller bearings applied to power roller bearings and the like of toroidal type continuously variable transmissions.
[0002]
[Prior art]
Since the tapered roller bearing is designed so that the inner and outer ring raceway surfaces and the conical apex of the roller coincide with each other at one point on the bearing center, the roller can perform pure rolling motion with respect to the inner and outer ring raceway surfaces. However, since the angles of the inner and outer rings are different, a force is generated that pushes the roller toward the bottom of the cone. Therefore, the heel is brought into contact with the large diameter surface of the roller to support this force. Like the raceway surface, this contact portion is also in rolling contact, and an oil film is formed therebetween to prevent damage caused by direct contact between metals (see Patent Document 1).
[0003]
[Patent Document 1]
JP 2002-147461 A.
[0004]
[Problems to be solved by the invention]
However, unlike the raceway surface, the contact portion between the flange and the roller of the conventional tapered roller bearing is very slippery. Normally, the slip ratio of the raceway surface (ratio of the sliding speed to the rolling speed) is 1% or less, but the heel part is about 20%. Therefore, when the load acting on the bearing increases and the contact surface pressure increases, or when the lubricating oil temperature rises and the viscosity decreases, the oil film becomes thinner, causing direct contact and damage such as seizure. There was a problem.
[0005]
The present invention has been made paying attention to the above problem, and even if the operating condition becomes severe and the oil film at the contact portion between the heel and the roller tends to become thin, metal contact between the heel and the roller can be prevented. An object of the present invention is to provide a tapered roller bearing.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention,
An inner ring having a conical track surface on the outer peripheral surface, an outer ring having a conical track surface on the inner peripheral surface, and a plurality of truncated cone-shaped rollers disposed between the inner ring and the outer ring so as to be capable of rolling. In the tapered roller bearing provided with the flange formed on the inner ring or the outer ring and contacting the large-diameter end surface of the roller to guide the roller,
A groove is provided in a circumferential direction on at least one surface of the flange and the roller among the surfaces where the flange and the roller contact.
[0007]
【The invention's effect】
In the tapered roller bearing of the present invention, a groove is provided in the circumferential direction on at least one surface of the flange and the roller among the surfaces where the flange and the roller are in contact with each other. By ensuring the thickness of the oil film at the contact portion, even if the operating condition becomes severe and the oil film at the contact portion between the heel and the roller tends to be thin, metal contact between the heel and the roller can be prevented.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments for realizing the tapered roller bearing of the present invention will be described based on first to fourth examples.
[0009]
(First embodiment)
First, the configuration will be described.
FIG. 1A is a cross-sectional view showing a tapered roller bearing of the first embodiment, and FIG. 1B is an enlarged cross-sectional view of a portion B in FIG. 1A showing a contact portion between a collar and a roller of an inner ring. .
As shown in FIG. 1, the tapered roller bearing A1 of the first embodiment includes an inner ring 30 having a conical raceway surface 30a on the outer peripheral surface, and an outer ring 31 having a conical raceway surface 31a on the inner peripheral surface. A plurality of cone-shaped trapezoidal rollers 32 disposed between the inner ring 30 and the outer ring 31 so as to be freely rollable, and a large bowl formed on the inner ring 30 to contact the large-diameter end surface 32a of the roller 32 and guide the roller 32. 33 (鍔).
[0010]
The inner ring 30 integrally includes a large collar 33 having a large collar surface 33 a and a small collar 34 having a small collar surface 34 a that contacts the small diameter end surface 32 b of the roller 32 and guides the roller 32. The track surface 30 a contacts the conical circumferential surface 32 c of the roller 32. The large collar 33 may be formed separately from the inner ring 30 and integrally coupled to the inner ring 30 by shrink fitting or the like.
[0011]
The raceway surface 31a of the outer ring 31 is in contact with only the conical circumferential surface 32c of the roller 32 because the movement of the roller 32 in the roller axis direction is restricted by the large collar surface 33a and the small collar surface 34a on the inner ring 30 side. To do.
[0012]
The roller 32 has a large-diameter end surface 32a formed by a spherical surface (curvature radius SR), a small-diameter end surface 32b formed by a flat surface, and a conical circumferential surface 32c formed by a conical surface. The plurality of rollers 32 are provided so as to roll while maintaining a distance from the adjacent rollers 32 by a retainer (not shown).
[0013]
Of the surfaces where the large flange surface 33a of the large flange 33 and the large diameter end surface 32a of the roller 32 are in contact, a groove 35 is provided on the large flange surface 33a of the large flange 33 in the circumferential direction. The width of one groove of the groove 35 is made smaller than the width of the Hertz contact ellipse formed by the contact portion between the large collar 33 and the roller 32, and the oil film formed between the large collar 33 and the roller 32 becomes thin. Two grooves 35, 35 are arranged in the portion. As shown in FIG. 1B, the two grooves 35 and 35 are arranged in the vicinity of the middle between the center position and the end position of the contact ellipse, respectively. Further, the cross-sectional shape of the grooves 35, 35 is set to a shape having an arc-shaped groove bottom.
[0014]
Next, the operation will be described.
[0015]
[Necessity of oil film at the contact part between roller and roller]
When a load is applied to the tapered roller bearing A <b> 1, a part of this load is supported by the large flange surface 33 a formed on the large flange 33. At this time, since the large-diameter end surface 32a of the roller 32 and the large collar surface 32d of the large collar 33 rotate relative to each other, slip occurs at the contact portion between them, and the frictional force due to this slip is a loss of the tapered roller bearing A1. Torque. The magnitude of this loss torque is proportional to the friction coefficient of the contact portion between the roller 32 and the large collar 33. Therefore, in order to reduce the friction coefficient of the contact portion between the roller 32 and the large flange 33, it is necessary to secure an oil film at the contact portion between the large diameter end surface 32a and the large flange surface 32d.
[0016]
[Oil film forming action]
The shape of the oil film formed at the rolling contact portion with a high surface pressure, such as a rolling bearing, is the so-called elastohydrodynamic lubrication theory (see Yamamoto / Kaneda: “Tribology” Science and Engineering Co., Ltd. (1998)) pages 113-122). Is required.
[0017]
FIG. 2 shows the numerical calculation result of the oil film thickness distribution in the conventional example without the groove 35. However, since there is a film thickness reduction part in the oil outflow part, the distribution has a horseshoe-shaped thin film part, and the thinnest The part exists on both wings of horseshoe shape. That is, if the thinnest part exists at an intermediate position between the center of the contact ellipse and the end of the contact ellipse and the surface has a uniform roughness, this part is most likely to come into contact. FIG. 3 is a view of the oil film thickness distribution as seen from the rolling direction (FIG. 4), and it is clear that the thinnest part exists at an intermediate position between the center of the contact ellipse and the end of the contact ellipse.
[0018]
On the other hand, in the first embodiment, since the grooves 35 and 35 are formed in the thinnest part of the oil film, the oil film thickness of the thinnest part is increased, and metal contact can be prevented.
FIG. 4 shows the calculation result of the oil film shape in the first embodiment. In the case of no groove in FIG. 3, the oil film thickness of the thinnest part is 0.3 × 10 −6 , whereas FIG. When there is a groove, the oil film thickness of the thinnest part = 0.35 × 10 −6 , indicating that the minimum oil film thickness is increased.
[0019]
Next, the effect will be described.
In the tapered roller bearing of the first embodiment, the effects listed below can be obtained.
[0020]
(1) An inner ring 30 having a conical raceway surface 30 a on the outer peripheral surface, an outer ring 31 having a conical raceway surface 31 a on the inner peripheral surface, and an inner ring 30 and an outer ring 31 are disposed so as to be able to roll. In the tapered roller bearing A1 provided with a plurality of cone-shaped trapezoidal rollers 32 and a large flange 33 that is formed on the inner ring 30 and guides the rollers 32 in contact with the large-diameter end surface 32a of the roller 32, the large flange Since the groove 35 is provided in the circumferential direction on at least one surface of the large cage 33 and the roller 32 among the surfaces where the roller 33 and the roller 32 are in contact with each other, the operating condition becomes severe and the contact portion between the large cage 33 and the roller 32 Even if the oil film becomes thinner, the metal contact between the large cage 33 and the roller 32 can be prevented.
[0021]
(2) A circumferential groove 35 is provided on the large flange surface 33 a that contacts the roller 32 of the large flange 33, and the width of the groove 35 is a Hertzian contact ellipse formed by the contact portion between the large flange 33 and the roller 32. Since the groove 35 is disposed in a portion where the oil film formed between the large cage 33 and the roller 32 becomes thin, even if the operating condition becomes severe and the oil film becomes thin, metal contact can be made. Absent. In addition, since the grooves 35 are formed on the large flange surface 33a of the large flange 33, the processing can be completed in a shorter time than when grooves are formed on each of the plurality of rollers 32.
[0022]
(3) Since the two grooves 35 are provided and the grooves 35 and 35 are arranged near the middle between the center position and the end position of the contact ellipse, the position where the average oil film thickness is small and the grooves 35 and 35 By matching the position of 35 and effectively increasing the minimum oil film thickness, metal contact can be reliably prevented.
[0023]
(4) Since the cross-sectional shape of the groove 35 is set to a shape having an arc-shaped groove bottom, it is possible to prevent the oil film pressure from rapidly increasing due to a sharp change in shape.
[0024]
Note that the grooves 35 and 35 do not have to be completely independent, and as shown in a tapered roller bearing A1 ′ according to a modification of the first embodiment in FIG. , 35 may be formed as continuous grooves 35, 35 by a communication groove 36 having an arc convex cross section that smoothly communicates.
[0025]
(Second embodiment)
The tapered roller bearing A2 of the second embodiment is an example in which a groove is provided on the roller side of the contact surface between the roller and the flange.
[0026]
That is, as shown in FIG. 6, two grooves 35, 35 in the circumferential direction are provided on the large-diameter end surface 32 a that contacts the large flange 33 of the roller 32, and one groove width of the grooves 35, 35 is set as follows. Two grooves 35, 35 are arranged in a portion where the oil film formed between the large collar 33 and the roller 32 becomes thinner than the width of the Hertz contact ellipse formed by the contact area between the large collar 33 and the roller 32. did. Since other configurations are the same as those of the first embodiment, illustration and description thereof are omitted.
[0027]
Next, the operation will be described. The first embodiment is simple if a groove is formed on one of the large collars 33, but the large collar 33 is integrated with the inner ring 30. Depending on the angle, the shape of the inner ring 30, etc., interference of the tool may occur, making machining difficult.
[0028]
On the other hand, the tapered roller bearing A2 of the second embodiment has no hindrance in processing if the large-diameter end surface 32a of the roller 32 is used. Can be processed.
[0029]
Next, the effect will be described.
In the tapered roller bearing A2 of the second embodiment, the following effects can be obtained in addition to the effects (1), (3), and (4) of the first embodiment.
[0030]
(5) Circumferential grooves 35 and 35 are provided on the large-diameter end surface 32 a that contacts the large flange 33 of the roller 32, and one groove width of the grooves 35 and 35 is set as a contact portion between the large flange 33 and the roller 32. Since the two grooves 35 and 35 are arranged in the portion where the oil film formed between the large collar 33 and the roller 32 becomes thin, the operating condition is reduced by simple processing. Even if it becomes severe, the metal contact between the large cage 33 and the roller 32 can be prevented.
[0031]
(Third embodiment)
The tapered roller bearing A3 of the third embodiment is an example in which one groove 35 is provided and the groove 35 is arranged at the center of the contact ellipse.
[0032]
That is, as shown in FIG. 7, only one groove 35 is provided on the large collar surface 33a, and the groove 35 is arranged at the center of the contact ellipse. Since other configurations are the same as those of the first embodiment, illustration and description thereof are omitted.
[0033]
Next, the operation will be described. As described in FIGS. 8 (a) and 8 (b) and elastohydrodynamic lubrication (see Yamamoto / Kaneda: Tribology Science and Engineering Co., Ltd. (1998), page 122), 32 When the rolling speed increases, the oil film thickness distribution changes, and the thinnest part at low speed exists in the middle of the center and end of the contact ellipse, whereas FIG. The thin part moves to the center part (b) in FIG. The third embodiment can prevent metal contact under such operating conditions.
[0034]
Next, the effect will be described.
In the tapered roller bearing A3 of the third embodiment, the following effects can be obtained in addition to the effects (1), (2), and (4) of the first embodiment.
[0035]
(6) Since only one groove 35 is provided on the large flange surface 33a and the groove 35 is disposed at the center of the contact ellipse, it is possible to prevent metal contact under high speed operation conditions in which the average oil film thickness is large. it can.
[0036]
(Fourth embodiment)
The tapered roller bearing A4 of the fourth embodiment is an example applied as a power roller bearing of a toroidal type continuously variable transmission.
[0037]
First, the configuration will be described.
FIG. 9 is a schematic view showing a speed change mechanism of a toroidal type continuously variable transmission to which the tapered roller bearing A4 of the fourth embodiment is applied, and the rotational driving force from the engine includes a torque converter and a forward / reverse switching mechanism which are not shown. Is input to the input shaft 1.
[0038]
A torque transmission shaft 2 is arranged coaxially with the input shaft 1, and a first input disk 3 and a second input disk 4 are spline-coupled at both end positions of the torque transmission shaft 2 so as to be axially movable. Yes.
[0039]
Between the back surface of the first input disk 3 and the input shaft 1, a loading cam mechanism 5 that generates axial thrust according to the input torque is interposed.
[0040]
Between the back surface of the second input disk 4 and the nut 6 screwed into the end of the torque transmission shaft 2, a disc spring 7 for applying preload to both the input disks 3 and 4 is interposed.
[0041]
An output disk 8 mounted on the torque transmission shaft 2 is disposed at an intermediate position between the input disks 3 and 4. The output disk 8 is formed by integrally joining the back surfaces of two output disks together, and an output gear 9 is formed on the outer periphery of the output disk 8.
[0042]
The output disk 8 facing surface of the first input disk 3, the output disk 8 facing surface of the second input disk 4, and the facing surface of the output disk 8 facing both the input disks 3 and 4, respectively, Toroidal grooves 3a, 4a, 8a and 8b are formed.
[0043]
Between the toroidal grooves 3a and 8a, two left and right first power rollers 10 and 10 are sandwiched by oil film shearing force so as to be able to deliver power. Similarly, two left and right second power rollers 11 and 11 are sandwiched between the toroidal grooves 4a and 8b so that power can be transferred by oil film shearing force.
[0044]
The first input disk 3, the output disk 8, and the first power rollers 10, 10 constitute a first toroidal transmission unit 12, and the second input disk 4, the output disk 8, and the second power rollers 11, 11 form a second A toroidal transmission unit 13 is configured.
[0045]
In the above speed change mechanism, each of the power rollers 10, 10, 11, and 11 is tilted so as to obtain a tilt angle corresponding to the speed ratio by an operation described later, and the input rotation of both the input disks 3 and 4 is not performed. The speed is changed in stages (continuously) and transmitted to the output disk 8.
[0046]
FIG. 10 is a schematic view showing a shift control system of a toroidal type continuously variable transmission to which the tapered roller bearing A4 of the fourth embodiment is applied. The first power rollers 10, 10 are supported on one end of the trunnions 14, 14. The power roller rotation shafts 15 and 15 are rotatable about the center. Servo pistons 16 and 16 serving as hydraulic actuators that tilt the power rollers 10 and 10 by moving the trunnions 14 and 14 in the axial direction are provided at the other ends of the trunnions 14 and 14. Similarly, the second power rollers 11 and 11 are supported by one end of the trunnion, and a servo piston is provided as a hydraulic actuator that tilts each power roller 11 and 11 by moving the trunnion in the axial direction. . The four trunnions are connected by a synchronization wire (not shown) so that they move in synchronization.
[0047]
As a hydraulic control system for controlling the operation of the servo pistons 16 and 16, a high-side oil passage 17 connected to high-side oil chambers 16b and 16b defined by the pistons 16a and 16a and low-side oil chambers 16c and 16c are provided. A low-side oil passage 18 to be connected, a port 19 a for connecting the high-side oil passage 17, and a transmission control valve 19 having a port 19 b for connecting the low-side oil passage 18 are provided.
[0048]
The line pressure port 19c of the shift control valve 19 is supplied with a line pressure from a hydraulic source having an oil pump and a relief valve (not shown).
[0049]
The speed change spool 19d of the speed change control valve 19 detects the axial direction and the tilt direction of the trunnions 14 and 14, and is linked to the lever 20 and the recess cam 21 that feed back to the speed change control valve 19, and is moved in the axial direction by the step motor 22. Driven to displace.
[0050]
A CVT control unit 23 is provided as an electronic control system for driving and controlling the step motor 22, and the CVT control unit 23 includes a throttle opening sensor 24, an engine rotation sensor 25, an input disk rotation sensor 26, and an output shaft rotation sensor. Input information from (vehicle speed sensor) 27, inhibitor switch 28, oil temperature sensor 29, and the like is taken in.
[0051]
FIG. 11 is a sectional view showing a power roller 10 to which the tapered roller bearing A4 of the fourth embodiment is applied. The power roller 11 has the same structure.
[0052]
The power roller 10 includes an inner ring 30 that transmits the power of the first input disk 3 to the output disk 8 by oil film shearing force, an outer ring 31 that is swingably or slidably supported by the trunnion 14, and the outer ring 31. A tapered roller bearing A4 as a thrust bearing that rotatably supports the inner ring 30 and a radial bearing 37 that rotatably supports the inner ring 30 on the power roller shaft portion 31b of the outer ring 31 are configured. Yes.
[0053]
The tapered roller bearing A4 is formed between an inner ring 30 having a conical raceway surface 30a on an outer ring facing surface, an outer ring 31 having a conical raceway surface 31a on an inner ring facing surface, and between the inner ring 30 and the outer ring 31. A plurality of cone-shaped trapezoidal rollers 32 that are movably arranged, a large collar 33 that is formed on the outer ring 31 and that contacts the large-diameter end surface 32a of the roller 32 to guide the roller 32, and a small-diameter end surface 32b of the roller 32 And a gavel 34 for guiding the roller 32 in contact therewith. As in the second embodiment shown in FIG. 6, two grooves 35 are provided in the circumferential direction on the large-diameter end surface 32 a of the roller 32 among the surfaces where the large collar 33 and the roller 32 are in contact. .
[0054]
Next, the operation will be described.
[0055]
During the gear ratio control of the toroidal-type continuously variable transmission, a large thrust load is applied from the inner ring 30 to the tapered roller bearing A4 due to contact with the input / output disks 3 and 8. Due to this thrust load, a radial component force is generated in the roller 32, and this radial load is supported by the large flange surface 33 a of the large flange 33. At this time, since the large-diameter end surface 32a of the roller 32 and the large collar surface 32d of the large collar 33 rotate relative to each other, slip occurs at the contact portion between them, and the frictional force due to this slip is a loss of the tapered roller bearing A4. Torque M, and the magnitude of the loss torque M is given by the following equation (1).
M = eμFcosβ (1)
e: Height per hook μ: Friction coefficient F: Thrust load β: Conical half apex angle of the roller As apparent from the equation (1), the loss torque M decreases as the friction coefficient μ decreases. In order to reduce the coefficient of friction μ, it is necessary to form an oil film at the contact portion between the large diameter end surface 32a and the large collar surface 32d. In particular, in the toroidal type continuously variable transmission, since the thrust load F becomes large when a large torque is transmitted, it is an important issue to reduce the loss torque M.
[0056]
Therefore, in the case of the power roller 10 that receives a large radial component force, in order to reduce the loss torque M, an oil film is secured at the contact portion between the large diameter end surface 32a of the roller 32 and the large collar surface 32d of the large collar 33, and the friction is reduced. It is necessary to reduce the coefficient μ.
[0057]
On the other hand, in the tapered roller bearing A4 of the fourth embodiment, since the grooves 35 and 35 are formed in the portion where the oil film becomes the thinnest, the oil film thickness of the thinnest portion is the same as in the first embodiment. It becomes thick and can prevent the metal contact in the contact part of the large collar 33 and the roller 32, As a result, the loss torque M falls.
[0058]
Next, the effect will be described.
In the tapered roller bearing A4 of the fourth embodiment, in addition to the effects of (1), (3), (4) of the first embodiment and (5) of the second embodiment, the following effects can be obtained. Can do.
[0059]
(7) The input disk 3, the output disk 8, a plurality of power rollers 10 sandwiched between toroidal grooves 3a and 8a formed on the opposing surfaces of the input / output disks 3 and 8, respectively, and the power roller 10 A trunnion 14 that is supported so as to be tiltable, and the power roller 10 is capable of swinging or sliding relative to the trunnion 14 and an inner ring 30 that transmits the power of the first input disk 3 to the output disk 8 by an oil film shearing force. In a toroidal-type continuously variable transmission that includes an outer ring 31 that is supported and a power roller bearing that rotatably supports the inner ring 30 with respect to the outer ring 31, a tapered roller is used as the power roller bearing. Since the bearing A4 is applied, an oil film is secured at the contact portion between the large-diameter end surface 32a of the roller 32 and the large flange surface 32d of the large flange 33, and the friction coefficient μ is reduced. Te, it is possible to reduce the loss torque M.
[0060]
Although the tapered roller bearing of the present invention has been described based on the first to fourth embodiments, the specific configuration is not limited to these embodiments, and each claim in the claims Design changes and additions are permitted without departing from the spirit of the invention according to the paragraph.
[0061]
For example, in the fourth embodiment, an example in which a tapered roller bearing is applied as a power roller bearing of a toroidal-type continuously variable transmission is shown. However, various rotating devices in which a tapered roller bearing other than the toroidal-type continuously variable transmission is adopted. Can be applied to
[0062]
In the first to fourth embodiments, the example in which the groove is provided only on one surface of the large corrugated surface of the large coral and the large-diameter end surface of the roller is illustrated. For example, two grooves are provided on one surface. If it is effective for securing an oil film, such as providing a groove on the other surface and ensuring that the roller rolling speed can be secured from low to high, You may make it provide a groove | channel on both radial end surfaces.
[0063]
In the first to fourth embodiments, the number of grooves is one and two. However, three or more fine grooves may be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a tapered roller bearing of a first embodiment and an enlarged cross-sectional view of a contact portion between a collar and a roller.
FIG. 2 is a film thickness distribution diagram at a contact portion between a collar and a roller of a tapered roller bearing without a groove.
FIG. 3 is a film thickness distribution diagram viewed from the rolling direction at the contact portion between the flange and the roller of the tapered roller bearing without a groove.
FIG. 4 is a film thickness distribution diagram viewed from the rolling direction at the contact portion between the flange and the roller of the tapered roller bearing of the first embodiment.
FIG. 5 is an enlarged cross-sectional view of a contact portion between a flange and a roller in a tapered roller bearing according to a modification of the first embodiment.
FIG. 6 is an enlarged cross-sectional view of a contact portion between a collar and a roller in a tapered roller bearing according to a second embodiment.
FIG. 7 is an enlarged cross-sectional view of a contact portion between a collar and a roller in a tapered roller bearing according to a third embodiment.
FIG. 8 is a film thickness distribution chart when the rolling speed is low and a film thickness distribution chart when the rolling speed is high in the contact portion between the flange and the roller of the tapered roller bearing of the third embodiment.
FIG. 9 is a schematic view showing a transmission mechanism of a toroidal continuously variable transmission to which a tapered roller bearing according to a fourth embodiment is applied.
FIG. 10 is a schematic diagram showing a shift control system of a toroidal type continuously variable transmission to which a tapered roller bearing according to a fourth embodiment is applied.
FIG. 11 is a sectional view showing a power roller to which a tapered roller bearing according to a fourth embodiment is applied.
[Explanation of symbols]
A1, A2, A3, A4 Tapered roller bearing 30 Inner ring 30a Raceway surface 31 Outer ring 31a Raceway surface 32 Roller 32a Large diameter end surface 32b Small diameter end surface 32c Conical peripheral surface 33
33a Large surface 34 Small surface 34a Small surface 35 Groove

Claims (7)

外周面に円すい体形状の軌道面を有する内輪と、内周面に円すい体形状の軌道面を有する外輪と、内輪と外輪の間に転動自在に配置された円すい台形状の複数のコロと、内輪または外輪に形成され、コロの大径端面に接触してコロを案内する鍔と、を備えた円すいころ軸受において、
前記鍔と前記コロとが接触する面のうち、鍔とコロの少なくとも一方の面に周方向に溝を設けたことを特徴とする円すいころ軸受。
An inner ring having a conical track surface on the outer peripheral surface, an outer ring having a conical track surface on the inner peripheral surface, and a plurality of truncated cone-shaped rollers disposed between the inner ring and the outer ring so as to roll freely. In the tapered roller bearing provided with the flange formed on the inner ring or the outer ring and contacting the large-diameter end surface of the roller to guide the roller,
A tapered roller bearing, wherein a groove is provided in a circumferential direction on at least one surface of the flange and the roller among the surfaces where the flange and the roller are in contact with each other.
請求項1に記載された円すいころ軸受において、
前記鍔のコロと接触する面に円周方向の溝を設け、該溝の幅を、鍔とコロの接触部が形成するヘルツ接触だ円の幅よりも小さくし、鍔とコロの間に形成された油膜が薄くなる部分に溝を配置したことを特徴とする円すいころ軸受。
The tapered roller bearing according to claim 1,
A groove in the circumferential direction is provided on the surface that contacts the roller of the heel, and the width of the groove is made smaller than the width of the Hertzian contact ellipse formed by the contact portion of the heel and roller, and formed between the roller and the roller. A tapered roller bearing in which a groove is arranged in a portion where the formed oil film becomes thin.
請求項1に記載された円すいころ軸受において、
前記コロの鍔と接触する面に円周方向の溝を設け、該溝の幅を、鍔とコロの接触部が形成するヘルツ接触だ円の幅よりも小さくし、鍔とコロの間に形成された油膜が薄くなる部分に溝を配置したことを特徴とする円すいころ軸受。
The tapered roller bearing according to claim 1,
A groove in the circumferential direction is provided on the surface of the roller that contacts the collar, and the width of the groove is smaller than the width of the Hertzian contact ellipse formed by the contact portion between the collar and the roller, and is formed between the collar and the roller. A tapered roller bearing in which a groove is arranged in a portion where the formed oil film becomes thin.
請求項1ないし請求項3の何れか1項に記載された円すいころ軸受において、
前記溝を2本設け、それぞれの溝を、接触だ円の中心位置と端部位置の中間付近に配置したことを特徴とする円すいころ軸受。
In the tapered roller bearing according to any one of claims 1 to 3,
A tapered roller bearing characterized in that two grooves are provided, and each groove is arranged in the vicinity of the middle between the center position and the end position of the contact ellipse.
請求項1ないし請求項3の何れか1項に記載された円すいころ軸受において、
前記溝を1本設け、その溝を、接触だ円の中心位置に配置したことを特徴とする円すいころ軸受。
In the tapered roller bearing according to any one of claims 1 to 3,
A tapered roller bearing, wherein one groove is provided, and the groove is arranged at the center of the contact ellipse.
請求項1ないし請求項5の何れか1項に記載された円すいころ軸受において、
前記溝の断面形状を、円弧形状の溝底を持つ形状に設定したことを特徴とする円すいころ軸受。
In the tapered roller bearing according to any one of claims 1 to 5,
A tapered roller bearing characterized in that the cross-sectional shape of the groove is set to a shape having an arc-shaped groove bottom.
請求項1ないし請求項6の何れか1項に記載された円すいころ軸受において、
入力ディスクと、出力ディスクと、これら入出力ディスクの対向面にそれぞれ形成されたトロイド状溝に挟持される複数のパワーローラと、該パワーローラを傾転可能に支持するトラニオンと、を備え、
前記パワーローラは、入力ディスクの動力を油膜せん断力によって出力ディスクに伝達する内輪と、トラニオンに支持された外輪と、該外輪に対して内輪を回転自在に支持するパワーローラ軸受と、を有して構成されるトロイダル型無段変速機において、前記パワーローラ軸受として適用したことを特徴とする円すいころ軸受。
The tapered roller bearing according to any one of claims 1 to 6,
An input disk, an output disk, a plurality of power rollers sandwiched between toroidal grooves formed on the opposing surfaces of these input / output disks, and a trunnion that supports the power rollers in a tiltable manner,
The power roller has an inner ring that transmits the power of the input disk to the output disk by an oil film shearing force, an outer ring supported by a trunnion, and a power roller bearing that rotatably supports the inner ring with respect to the outer ring. A tapered roller bearing characterized by being applied as the power roller bearing in a toroidal-type continuously variable transmission configured as described above.
JP2003191322A 2003-07-03 2003-07-03 Tapered roller bearing Expired - Fee Related JP4218447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003191322A JP4218447B2 (en) 2003-07-03 2003-07-03 Tapered roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003191322A JP4218447B2 (en) 2003-07-03 2003-07-03 Tapered roller bearing

Publications (2)

Publication Number Publication Date
JP2005024029A true JP2005024029A (en) 2005-01-27
JP4218447B2 JP4218447B2 (en) 2009-02-04

Family

ID=34188973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003191322A Expired - Fee Related JP4218447B2 (en) 2003-07-03 2003-07-03 Tapered roller bearing

Country Status (1)

Country Link
JP (1) JP4218447B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316837A (en) * 2005-05-11 2006-11-24 Ntn Corp Tapered roller bearing and rolling stock axle supporting structure
JP2006349014A (en) * 2005-06-15 2006-12-28 Ntn Corp Tapered roller bearing
DE102006052043A1 (en) * 2006-11-04 2008-05-08 Ab Skf Raceway element and tapered roller bearing with the raceway element
DE102006052045A1 (en) * 2006-11-04 2008-05-08 Ab Skf Tapered roller bearing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316837A (en) * 2005-05-11 2006-11-24 Ntn Corp Tapered roller bearing and rolling stock axle supporting structure
JP2006349014A (en) * 2005-06-15 2006-12-28 Ntn Corp Tapered roller bearing
JP4484771B2 (en) * 2005-06-15 2010-06-16 Ntn株式会社 Tapered roller bearing design method
DE102006052043A1 (en) * 2006-11-04 2008-05-08 Ab Skf Raceway element and tapered roller bearing with the raceway element
DE102006052045A1 (en) * 2006-11-04 2008-05-08 Ab Skf Tapered roller bearing

Also Published As

Publication number Publication date
JP4218447B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
JPH0672656B2 (en) Loading cam device for toroidal continuously variable transmission
JP4218447B2 (en) Tapered roller bearing
JP3752587B2 (en) Toroidal continuously variable transmission
JP3791172B2 (en) Synchronous cable for toroidal continuously variable transmission
JP4026801B2 (en) Toroidal continuously variable transmission
JP3656490B2 (en) Toroidal continuously variable transmission
JP2003166610A (en) Toroidal continuously variable transmission
JP3769651B2 (en) Toroidal continuously variable transmission
JP3726758B2 (en) Toroidal continuously variable transmission
JP5857473B2 (en) Toroidal continuously variable transmission
JP4055562B2 (en) Toroidal continuously variable transmission
JP4103561B2 (en) Toroidal continuously variable transmission
JP3698060B2 (en) Toroidal continuously variable transmission
JP6729105B2 (en) Toroidal type continuously variable transmission
JP4432483B2 (en) Toroidal continuously variable transmission
JP2003166613A (en) Toroidal continuously variable transmission
JP2005003119A (en) Toroidal type continuously variable transmission
JP2006017240A (en) Toroidal-type stepless transmission
JP6582564B2 (en) Toroidal continuously variable transmission
JP2005172065A (en) Traction driven continuously variable transmission
JP3843598B2 (en) Toroidal continuously variable transmission
JP2011112109A (en) Toroidal continuously variable transmission
JP6413377B2 (en) Toroidal continuously variable transmission
JP5534307B2 (en) Toroidal continuously variable transmission
JP2015075185A (en) Single cavity type toroidal type continuously variable transmission

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081103

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees