JP2005023833A - Temperature-difference power generation device - Google Patents

Temperature-difference power generation device Download PDF

Info

Publication number
JP2005023833A
JP2005023833A JP2003189807A JP2003189807A JP2005023833A JP 2005023833 A JP2005023833 A JP 2005023833A JP 2003189807 A JP2003189807 A JP 2003189807A JP 2003189807 A JP2003189807 A JP 2003189807A JP 2005023833 A JP2005023833 A JP 2005023833A
Authority
JP
Japan
Prior art keywords
working fluid
hydrogen
hydrogen storage
temperature difference
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003189807A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Tsuji
信義 辻
Hiroshi Arase
央 荒瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Techno Bank Co Ltd
Original Assignee
Hitachi Engineering Co Ltd
Techno Bank Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Techno Bank Co Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP2003189807A priority Critical patent/JP2005023833A/en
Publication of JP2005023833A publication Critical patent/JP2005023833A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the size and cost of a device by applying a minimum temperature difference to hydrogen absorbing alloy, compressing working-fluid by pumping action utilizing fluctuation of hydrogen pressure, and converting mechanical motion to electric power after converting hydraulic action accompanying expansion action of the working fluid to the mechanical motion. <P>SOLUTION: This device includes a hydrogen absorbing and discharging means of a hydrogen absorbing alloy unit having rubberized hydrogen absorbing alloy installed, a working fluid compression means having the hydrogen absorbing and discharging means and a rotary piston engine in series, an electronic control means composed of one or a plurality of the working fluid compression means and executing electronic control of electric apparatus such as a heat medium circulation system, and a temperature difference reducing means circulating working fluid compressed by the working fluid compressing means in a sealed circulating passage composed of a check valve, a pressure regulating valve, a high pressure tank and a low pressure tank. And the device is constructed with a power generating means provided with a power collecting body connected and working together with a generator in the circulating passage of the temperature difference reducing means and executing electric conversion. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、水素吸蔵合金の機能を用いて、温度差を水素吸蔵合金に与え水素圧の変動によるポンプ作用を利用して作動流体を圧縮しておき低圧下で解放させ、その流体膨脹による流体運動を機械運動として回収して電気変換ができる熱電変換に係り、特に常温域での低温度差から電気変換ができる温度差発電装置に関する。
【0002】
【従来の技術】
これまで水素吸蔵合金を利用した関連装置について、文献1(JP,2−110263)、文献2(JP,60−9839)、文献3(JP,2000―45926)、文献4(JP,63−161368)、文献5(JP−2528621)、文献6(US―4609038)、文献7(JP,4−232202)、文献8(JP,2−188401)等があり、熱電変換装置として高温ガス熱と常温空気を熱源とする発電装置(文献9:JP,08−240106)等がある。
【0003】
これまでの温度差発電装置は、常温との温度差が100℃以上必要で、常温との温度差30℃以下では、効率のよい発電技術の提案がない。
【0004】
本発明は文献10(国際公開 WO 02/068882 A1)の改良に係るもので、文献10の熱電変換技術においては、作動流体の圧縮および圧縮流体の膨張力を用いた流体運動からの動力回収などの技術提案がない。
【0005】
【発明が解決しようとする課題】
常温域での低温度差による発電装置では、装置が大きくなるためコストも高くなるという問題点に繋がる課題がある。
【0006】
本発明の目的は、上述の点を考慮してなされたもので、水素吸蔵合金の可逆的反応熱を短時間に伝播することで水素吸蔵合金の使用量を最少にして、熱源の温度差が小さくても水素吸蔵合金の機能を最大限用いることができる熱電変換装置を目的とする。当該発明者が考案したゴム化水素吸蔵合金を装着した水素吸蔵合金ユニット(文献10:国際公開WO 02/068882 A1)を用いて、作動流体を圧縮しておき低圧下で解放させ、その膨張運動力を発電機の駆動源にすることで、小型化、メンテナンスフリー化および低コスト化ができる装置を提供することにある。
【0007】
【課題を解決するための手段】
ゴム化水素吸蔵合金を装着した水素吸蔵合金ユニットによる水素吸蔵放出手段と、
前記水素吸蔵放出手段と、揺動ピストン機関の二連による作動流体圧縮手段と、前記作動流体圧縮手段の単体または複数を設けて構成し、熱媒体循環系などの電動機器を電子制御する電子制御手段と、前記作動流体圧縮手段で圧縮された作動流体が逆止弁、制圧弁、高圧タンクおよび低圧タンクを含めて構成する循環路を密閉にして循環をする温度差縮小手段と、前記温度差縮小手段の循環路に発電機を連結連動させた動力回収体を設けて電気変換をする発電手段とで構成したことを特徴とする。
【0008】
【発明の実施の形態】
ゴム化水素吸蔵合金を装着した水素吸蔵合金ユニットによる水素吸蔵放出手段は、当該発明者によって考案された「水素吸蔵合金ユニットを用いる熱電変換装置および冷暖房・冷凍の装置(国際公開WO 02/068882 A1)」の水素吸蔵合金ユニットであり、特に水素の吸蔵と放出に要する時間を大幅に短縮できる。
【0009】
また、作動流体圧縮手段は、シリンダーおよびピストンによる揺動ピストン機関の二連が連結連動するクランク室を密閉にして、シール材を封入しシール材の分子間に水素分子で飽和にする。すなわち作動中に一方のシリンダー内の水素が漏れて他方のシリンダー内に入らないように防止することができる。
【0010】
また、電子制御手段は、作動流体圧縮手段の単体または複数で構成された水素吸蔵合金ユニットの熱媒体ノズルに設けられる加熱および冷却の電磁弁ほか、熱媒体循環系の電動機器などの電源を、各部の温度、流量、レベルなどセンサーの計測値と、予め設定された値によって電子制御することができる。すなわち装置が安定して作動をすることができる。
【0011】
また、温度差縮小手段は、作動流体圧縮手段の二連機関で圧縮された作動流体が逆止弁、制圧弁、高圧タンクおよび低圧タンクを含めて構成する循環路を密閉にして、低圧タンク内の作動流体圧が、水素吸蔵合金ユニット内の水素化時の水素圧より常に高くなるように予め作動流体を圧縮して封入することで、水素吸蔵合金ユニットの水素吸蔵温度を常圧時の吸蔵温度に比べ高くして水素化反応を実現させることができる。すなわち熱源の温度差を縮小して、且つ、水素吸蔵時に水素の体積を縮小することでシリンダーのコンパクト化とともに水素吸蔵合時間を短縮できる。
【0012】
この、温度差縮小手段の水素化反応熱は、水素加圧から水素化反応熱の発熱温度が常圧反応による発熱温度に比べて高温となるため、文献10(国際公開WO 02/068882 A1)の温度還元手段を採用して、発熱を熱媒体で回収して熱源として生成することが容易にできる。
【0013】
また、発電手段は、作動流体の循環路に発電機を連結連動させた動力回収体を設けて電気変換をする。すなわち圧縮した作動流体の膨張運動を機械運動に変換することで電気変換ができる。
【0014】
【実施例】
図2、3、4の実施例によって説明すると、一方のプレート30は、長方形の金属プレートに凹な平面部40、40a内に水素ホール41、41aを開けて、縦方向中央に水素誘導溝35と、水素誘導溝35に対し45度方向に直線な溝をプレート全面に複数列を平行に設けた波形溝33を、長辺側の両端面を折り曲げた平面な側面部がそれぞれ形成できるようにした金型を用いて、プレス加工により製造する。
【0015】
また、他方のプレート31は、長方形の金属プレートの両端に凸な平面部42、42a内に水素ホール43、43aを開けて、縦方向中央に水素誘導溝36と、プレート30に設けた波形溝33とは逆の角度で、水素誘導溝36に対し45度方向に直線な溝をプレート全面に複数列を平行に設けた波形溝34を、長辺側の両端面を折り曲げた平面な側面部がそれぞれ形成できるようにした金型を用いて、プレス加工により製造する。なお、この平面部は、水素を循環させる必要性がない場合は、金属プレート中央の一個所だけでも機能できる。
【0016】
次いで、プレート30とプレート31の間にロー付材の薄膜材を挟み真空炉内で高温処理により平面部40、42および40a、42aの面と面、波形溝33、34の山と谷46、47、側面部の面と面のそれぞれ接合する部分がロー付けされプレートカセットが製造される。
【0017】
その後、水素吸蔵合金ペーストをプレートカセットの両面に薄膜状で水素吸蔵合金を塗布したのち熱硬化によりゴム化して装着され、プレートカセットを必要枚数積層し密着接合させて、接合する外周の先端部を溶接で水素吸蔵合金部を密封にして、プレートカセットの積層体が製造される。
【0018】
水素吸蔵合金ペーストは、水素吸蔵合金(Fe−Ti、Ti−Mn等のチタン系、Mg−Ni等のマグネシウム系、La−Ni等の希土類系)などで環境熱源温度に合わせて選択し、特に合金の種類やプロセスを限定するものでなく、水素吸蔵合金に水素を吸蔵させ初期粉砕工程を経て粒子の径が約50μm程度に調整した粉末、または、粉末の表面に水素解離性の金属(触媒)の薄膜処理をして、ゴム剤または接着剤とを混合して水素吸蔵合金ペーストとして用いる。
【0019】
この水素吸蔵合金の装着条件として、膨張に伴う体積変化に対応でき、微紛の飛散防止をするほか熱伝導性がよく、例えば材料としてゴム剤にはシリコンゴムの高分子が最適である。紛体の水素吸蔵合金の周囲が、高分子材(シリコンゴム材など)で覆われて、水素分子のみが通過できるポアを持たせた仕組みから、不要ガスが混入していても、水素だけを選択して通過させ合金内部に貯蔵をすることができるため、被毒する要因がない。
【0020】
また、積層体の左右両端には、内部に開放する熱媒体ノズルを設けたキャップを取り付け、最上部のプレートカセットの両水素ホールにそれぞれ水素パイプを取り付け、積層体の上下両面から補強板がボルトによって締め付け拘束して水素吸蔵合金ユニットが耐圧化され製造される。
【0021】
このように水素吸蔵合金ユニットが構成されると、熱媒体ノズルから80℃程度の加熱媒体を通過させながら水素ノズルから真空引きしてゴム化水素吸蔵合金55の脱気を行い、次いで、熱媒体ノズルから20℃程度の冷却媒体を通過させながら、30kg/cm2程度で水素加圧が行えるため、水素吸蔵合金の初期活性化が専用チャンバーを用いることなく装置の設置後に直接に行うことができる。
【0022】
また、熱媒体ノズルから熱媒体流路53へ熱媒体102が通過することで、水素吸蔵合金の可逆的反応熱の授受を熱媒体が効率よく行い、水素は水素流路54と水素ノズル間を流動することができる。
【0023】
図1の実施例によって説明すると、水素吸蔵合金ユニット2の熱媒体ノズルの口先が流入側および流出側とに分岐し、それぞれ電磁弁を介して加熱および冷却の熱媒体循環系の配管と連結連通されている。
【0024】
また、水素吸蔵合金ユニット2の水素ノズルと水素パイプを介して二連機関70のシリンダー71の水素ノズルとが連結連通されている。
【0025】
また、シリンダーおよびピストンによる揺動ピストン機関の二つを連結連動するクランク76の室内を密閉にして、作動中にシリンダー内の水素が漏れて他方のシリンダー内に漏れ出さないように防止するシール材が封入され、二連機関が構成されて運転されている。必要にあっては同様に構成した二連機関70を複数設けて運転することもよい。
【0026】
また、二連機関70を水素圧縮ポンプとして可逆的に適用する場合では、シリンダー71に逆止弁を設け、作動流体を液体にして液体ポンプで作動液体をシリンダー74内へ送液すると、これまでのダイヤフラム方式の水素圧縮ポンプに比べ、特に高圧縮時では昇圧の機能性において勝る。
【0027】
シール材は、潤滑用の液体を注入した後、加圧封入するとよい。材質はアルゴンなど不活性ガスが最適で、このように加圧封入することで、シリンダー内の水素がクランク室内へ漏れ込み、シール材の分子間へ飽和状態まである程度水素分子が進入する。運転作動時にあっては、水素、クランク室、作動流体の圧力が均衡的であり、飽和水素が他方のシリンダー74内へ流出することを防止できる。
【0028】
シリンダー74には、逆止弁を介した作動流体の流出および流入のノズルが取り付けられ、シリンダー74から流出した作動流体は、高圧タンク94、制圧弁96、動力回収体98、低圧タンク95を経て再度シリンダー74まで循環できるように密閉で配管されている。
【0029】
また、作動流体は、水素吸蔵合金ユニット内の水素化時の水素圧より常に低圧タンク内の作動流体圧が高くなるように予め作動流体を圧縮して封入され、水素吸蔵合金ユニットの水素吸蔵温度を常圧時で吸蔵する温度に比べ高くできるようにして水素化反応を実現している。この手段により熱源の温度差を縮小して、且つ、水素吸蔵時に水素の体積を縮小するとともに水素吸蔵合時間を短縮している。
【0030】
また、作動流体の材質は特定するものではないが、部材の酸化など耐久度を考慮するとアルゴンなど不活性ガスが最適である。
【0031】
また、タービン系または揺動ピストン系の動力回収機98の回転軸は、外部に設けられた発電機99の回転軸と連結連動できるように設けられ、動力回収体98の作動流体の流入口と制圧弁96を介して高圧タンクと、他方の作動流体の流出口と低圧タンクとがそれぞれ配管によって連結連通されている。
【0032】
作動流体圧の位差は、シリンダー74内および高圧タンク94内が水素合金ユニットの水素放出圧に同等で高く、制圧弁96を通過した作動流体圧は、動力回収体98の出口、低圧タンク95内が水素吸蔵合金ユニットの水素吸蔵圧に近く低いため、この圧力差のある作動流体の循環路に動力回収体98が設けられているため、動力回収体98が作動流体の流入口と流出口との圧力差からの流体膨張運動を回転運動に変換している。
【0033】
また、媒体循環系105は、熱交換器90から水素吸蔵合金ユニット2、加熱媒体タンク91を経てポンプを介して加熱の熱媒体が循環している。
【0034】
また、冷却媒体循環系106は、熱交換器92から水素吸蔵合金ユニット2、冷却媒体タンク93を経てポンプを介して冷却の熱媒体が循環している。
【0035】
また、水素吸蔵合金ユニット2の熱媒体ノズルに設けられた加熱および冷却の熱媒体の電磁弁ほか、熱媒体循環系の電動機器などの電源を、各部の温度、流量、レベルなどセンサーの計測値と、予め設定された値によって電子制御がされている。
【0036】
このように装置が構成されたことで、作動流体圧縮手段では、シール材によって、作動流体と水素が交わることなく水素吸蔵合金ユニットの水素放出圧によって作動流体を圧縮することができ、一方、水素吸蔵合金ユニットの水素吸蔵行程では、温度差縮小手段による水素吸蔵時の水素圧力を高めることができるため、騒音もなく、シリンダーを小型にして、熱媒体の温度差が20℃程度でも水素の吸蔵と放出の機能を可能とした。
【0037】
この機能性は多くの新分野で適用できる。例えば、ガス化溶融炉の排熱は60℃であり、発電変換はこれまで不可能とされて膨大な熱量が大気へ放熱されていたが、温度差が小さい夏季でも外気温度30℃で冷却して温度差発電ができるようになる。ほかにも利雪市場など、温度差20℃での新しい市場候補は多くある。
【0038】
また、水素吸蔵合金の水素化時の高温発熱を回収した熱媒体を用い、文献10(国際公開 WO 02/068882 A1)の温度還元手段を適用して、熱源を生成利用することで、変換効率を高めることができる。
【0039】
また、二連機関は、燃料電池自動車の超高圧水素貯蔵タンクへの超高圧充填装置として、可逆的に用いることを可能とした。
【0040】
本発明について説明したが、本発明は上記実施形態に限定されるものではなく、改良の目的または本発明の思想の範囲内において改良または変更が可能である。
【0041】
【発明の効果】
以上説明したようにゴム化水素吸蔵合金が装着された水素吸蔵合金ユニットを用いた発電装置は、低温域の低温度差による発電のほか、小型化、メンテナンスフリー化、コスト低下などを可能にし、特に水素超高圧縮ポンプに応用できるという利点がある。水素社会おいては、地球温暖化効果ガス削減から地球環境保全に功を奏する。
【図面の簡単な説明】
【図1】本発明の一実施例の系統線図であって、全体概要を示している。
【図2】本発明の一実施例の平面図であって、2種類のプレート上面を示している。
【図3】本発明の一実施例の断面図であって、2種類のプレート側面を示している。
【図4】本発明の一実施例の断面図であって、プレートカセットの積層体の断面を示している。
【符号の説明】
1 温度差発電装置
2 水素吸蔵合金ユニット
30、31 プレート
32 波形部
40、40a 凹な平面部
42、42a 凸な平面部
53 熱媒体流路
54 水素流路
55 ゴム化水素吸蔵合金
71、74 シリンダー
72、75 ピストン
76 クランク
94 高圧タンク
95 低圧タンク
96 制圧弁
98 動力回収体
99 発電機
100 水素
101 作動流体
102 熱媒体
103 シール材
105 加熱媒体循環系
106 冷却媒体循環系
[0001]
BACKGROUND OF THE INVENTION
The present invention uses the function of the hydrogen storage alloy to give a temperature difference to the hydrogen storage alloy, compress the working fluid using the pump action due to the fluctuation of the hydrogen pressure, release it under a low pressure, and fluid by the fluid expansion The present invention relates to thermoelectric conversion capable of recovering motion as mechanical motion and performing electrical conversion, and more particularly to a temperature difference power generation device capable of performing electrical conversion from a low temperature difference in a normal temperature range.
[0002]
[Prior art]
Regarding related apparatuses using hydrogen storage alloys so far, Document 1 (JP, 2-11263), Document 2 (JP, 60-9839), Document 3 (JP, 2000-45926), Document 4 (JP, 63-161368). ), Reference 5 (JP-2528621), Reference 6 (US-4609038), Reference 7 (JP, 4-232202), Reference 8 (JP, 2-188401), etc., and high temperature gas heat and room temperature as a thermoelectric conversion device There is a power generation device using air as a heat source (Reference 9: JP, 08-240106).
[0003]
Conventional temperature difference power generation devices require a temperature difference of 100 ° C. or more from room temperature, and there is no proposal of efficient power generation technology at a temperature difference of 30 ° C. or less from room temperature.
[0004]
The present invention relates to the improvement of Document 10 (International Publication WO 02/068882 A1). In the thermoelectric conversion technique of Document 10, the power is recovered from the fluid motion using the compression of the working fluid and the expansion force of the compressed fluid. There is no technical proposal.
[0005]
[Problems to be solved by the invention]
In the power generation device with a low temperature difference in the normal temperature region, there is a problem that leads to a problem that the device becomes large and the cost becomes high.
[0006]
The object of the present invention has been made in consideration of the above-mentioned points, and the amount of use of the hydrogen storage alloy is minimized by propagating the reversible reaction heat of the hydrogen storage alloy in a short time, and the temperature difference of the heat source is reduced. It aims at the thermoelectric conversion apparatus which can utilize the function of a hydrogen storage alloy to the maximum even if it is small. Using a hydrogen storage alloy unit (Reference 10: International Publication WO 02/068882 A1) equipped with a rubberized hydrogen storage alloy devised by the inventor, the working fluid is compressed and released under low pressure, and its expansion motion An object of the present invention is to provide a device that can be reduced in size, maintenance-free, and reduced in cost by using power as a driving source of a generator.
[0007]
[Means for Solving the Problems]
Hydrogen storage / release means by a hydrogen storage alloy unit equipped with a rubberized hydrogen storage alloy;
Electronic control for electronically controlling an electric device such as a heat medium circulation system comprising the hydrogen storage / release means, a working fluid compression means by two oscillating piston engines, and a single or a plurality of the working fluid compression means. And a temperature difference reducing means for circulating the working fluid compressed by the working fluid compressing means with a circulation path including a check valve, a pressure control valve, a high-pressure tank and a low-pressure tank sealed, and the temperature difference It is characterized in that it comprises a power recovery means that performs electrical conversion by providing a power recovery body in which a generator is connected and linked to the circulation path of the reduction means.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The hydrogen storage / release means by the hydrogen storage alloy unit to which the rubberized hydrogen storage alloy is mounted is the “thermoelectric conversion device using the hydrogen storage alloy unit and the cooling / heating / refrigeration device (International Publication WO 02/068882 A1). ) "Hydrogen storage alloy unit, in particular, the time required for storage and release of hydrogen can be greatly reduced.
[0009]
Further, the working fluid compressing means seals a crank chamber in which two oscillating piston engines of a cylinder and a piston are linked and interlocked, and encloses the sealing material and saturates the hydrogen molecules between the molecules of the sealing material. That is, it is possible to prevent hydrogen in one cylinder from leaking and entering the other cylinder during operation.
[0010]
In addition, the electronic control means includes a heating and cooling electromagnetic valve provided in a heat medium nozzle of a hydrogen storage alloy unit composed of a single or a plurality of working fluid compression means, and a power source such as an electric device of a heat medium circulation system, Electronic control can be performed based on sensor measurement values such as temperature, flow rate, and level of each part and preset values. That is, the apparatus can operate stably.
[0011]
In addition, the temperature difference reducing means is configured such that the working fluid compressed by the dual engine of the working fluid compressing means seals a circulation path including a check valve, a pressure control valve, a high pressure tank and a low pressure tank, and By compressing and sealing the working fluid in advance so that the working fluid pressure of the hydrogen storage alloy unit is always higher than the hydrogen pressure during hydrogenation in the hydrogen storage alloy unit, the hydrogen storage temperature of the hydrogen storage alloy unit is stored at normal pressure. The hydrogenation reaction can be realized at a higher temperature than the temperature. In other words, by reducing the temperature difference between the heat sources and reducing the volume of hydrogen during hydrogen storage, the cylinder can be made compact and the hydrogen storage time can be shortened.
[0012]
Since the heat of the hydrogenation reaction of the temperature difference reducing means is higher than the heat generation temperature of the hydrogenation reaction heat from the hydrogen pressurization due to the atmospheric pressure reaction, Document 10 (International Publication WO 02/068822 A1) Thus, it is possible to easily generate heat as a heat source by recovering heat generation with a heat medium.
[0013]
In addition, the power generation means performs electrical conversion by providing a power recovery body in which a generator is connected to the working fluid circulation path. That is, electrical conversion can be performed by converting the expansion motion of the compressed working fluid into mechanical motion.
[0014]
【Example】
2, 3, and 4, one plate 30 is formed by opening a hydrogen hole 41, 41 a in a concave flat portion 40, 40 a in a rectangular metal plate, and forming a hydrogen guide groove 35 in the longitudinal center. And a corrugated groove 33 in which a plurality of rows are provided in parallel on the entire surface of the plate with a straight line in the direction of 45 degrees with respect to the hydrogen guide groove 35 so that a flat side surface portion obtained by bending both end faces on the long side can be formed. It is manufactured by press working using the mold.
[0015]
Further, the other plate 31 is formed by opening hydrogen holes 43 and 43a in flat portions 42 and 42a that are convex at both ends of a rectangular metal plate, a hydrogen guiding groove 36 in the longitudinal center, and a corrugated groove provided in the plate 30. A flat side surface portion in which a corrugated groove 34 in which a plurality of rows are provided in parallel on the entire surface of the plate with a straight groove in the direction of 45 degrees with respect to the hydrogen guiding groove 36 at an angle opposite to that of the hydrogen guiding groove 36 Are manufactured by press working using molds that can be formed respectively. In addition, this plane part can function only at one place in the center of the metal plate when it is not necessary to circulate hydrogen.
[0016]
Next, a brazing material thin film material is sandwiched between the plate 30 and the plate 31, and the surfaces and surfaces of the flat portions 40, 42 and 40a, 42a, the peaks and troughs 46 of the corrugated grooves 33, 34, by high-temperature processing in a vacuum furnace, 47. The plate cassette is manufactured by brazing each side surface of the side surface.
[0017]
After that, the hydrogen storage alloy paste is applied as a thin film on both sides of the plate cassette and then made into rubber by thermosetting, and the necessary number of plate cassettes are stacked and closely bonded together. A laminate of plate cassettes is manufactured by sealing the hydrogen storage alloy part by welding.
[0018]
The hydrogen storage alloy paste is selected according to the environmental heat source temperature, such as a hydrogen storage alloy (a titanium system such as Fe-Ti and Ti-Mn, a magnesium system such as Mg-Ni, and a rare earth system such as La-Ni). The type and process of the alloy are not limited. The hydrogen storage alloy stores hydrogen and the initial pulverization process adjusts the particle diameter to about 50 μm, or the surface of the powder is a hydrogen dissociable metal (catalyst). ), And a rubber agent or an adhesive is mixed and used as a hydrogen storage alloy paste.
[0019]
As a mounting condition of this hydrogen storage alloy, it can cope with a volume change due to expansion, prevents scattering of fine particles, and has good thermal conductivity. For example, a polymer of silicon rubber is optimal as a rubber agent. Even if unnecessary gas is mixed, only hydrogen is selected from the mechanism in which the periphery of the powdered hydrogen storage alloy is covered with a polymer material (silicon rubber material, etc.) and has a pore through which only hydrogen molecules can pass. Therefore, there is no cause of poisoning because it can be stored inside the alloy.
[0020]
In addition, caps with heat medium nozzles that open to the inside are attached to the left and right ends of the laminate, hydrogen pipes are attached to both hydrogen holes of the uppermost plate cassette, and reinforcing plates are bolted from the upper and lower sides of the laminate. The hydrogen storage alloy unit is pressure-proofed and manufactured by tightening and restraining.
[0021]
When the hydrogen storage alloy unit is configured in this manner, the rubberized hydrogen storage alloy 55 is degassed by evacuation from the hydrogen nozzle while passing a heating medium of about 80 ° C. from the heating medium nozzle, and then the heating medium Since hydrogen pressurization can be performed at about 30 kg / cm 2 while passing a cooling medium of about 20 ° C. from the nozzle, initial activation of the hydrogen storage alloy can be performed directly after installation of the apparatus without using a dedicated chamber.
[0022]
In addition, when the heat medium 102 passes from the heat medium nozzle to the heat medium flow path 53, the heat medium efficiently transfers the reversible reaction heat of the hydrogen storage alloy, and hydrogen flows between the hydrogen flow path 54 and the hydrogen nozzle. Can flow.
[0023]
Referring to the embodiment of FIG. 1, the tip of the heat medium nozzle of the hydrogen storage alloy unit 2 branches into an inflow side and an outflow side, and is connected to a heating and cooling heat medium circulation system pipe through a solenoid valve, respectively. Has been.
[0024]
Further, the hydrogen nozzle of the hydrogen storage alloy unit 2 and the hydrogen nozzle of the cylinder 71 of the dual engine 70 are connected to each other through a hydrogen pipe.
[0025]
In addition, a sealing material that seals the inside of the crank 76 that connects and interlocks the two of the cylinder and the oscillating piston engine by the piston to prevent hydrogen from leaking into the other cylinder during operation is prevented. Is enclosed, and a dual engine is configured and operated. If necessary, it is also possible to operate by providing a plurality of dual engines 70 configured in the same manner.
[0026]
Further, in the case where the dual engine 70 is reversibly applied as a hydrogen compression pump, a check valve is provided in the cylinder 71, and when the working fluid is made liquid and the working liquid is fed into the cylinder 74 by the liquid pump, Compared to the diaphragm-type hydrogen compression pump of this type, the pressure boosting functionality is superior especially at high compression.
[0027]
The sealing material may be sealed under pressure after injecting a liquid for lubrication. Inert gas such as argon is optimal for the material, and by sealing under pressure in this way, hydrogen in the cylinder leaks into the crank chamber, and some hydrogen molecules enter between the molecules of the seal material until saturation. During operation, hydrogen, crank chamber, and working fluid pressures are balanced, and saturated hydrogen can be prevented from flowing into the other cylinder 74.
[0028]
The cylinder 74 is fitted with nozzles for the outflow and inflow of the working fluid via the check valve. The working fluid flowing out of the cylinder 74 passes through the high pressure tank 94, the pressure control valve 96, the power recovery body 98, and the low pressure tank 95. The pipe is hermetically sealed so that it can be circulated to the cylinder 74 again.
[0029]
In addition, the working fluid is sealed by compressing the working fluid in advance so that the working fluid pressure in the low-pressure tank is always higher than the hydrogen pressure during hydrogenation in the hydrogen storage alloy unit, and the hydrogen storage temperature of the hydrogen storage alloy unit The hydrogenation reaction is realized by making the temperature higher than the temperature of occlusion at normal pressure. By this means, the temperature difference of the heat source is reduced, the volume of hydrogen is reduced and the hydrogen storage time is shortened when storing hydrogen.
[0030]
Further, although the material of the working fluid is not specified, an inert gas such as argon is optimal in consideration of durability such as oxidation of the member.
[0031]
Further, the rotating shaft of the power recovery machine 98 of the turbine system or the swinging piston system is provided so as to be connected and interlocked with the rotating shaft of the generator 99 provided outside, and the working fluid inlet of the power recovery body 98 and The high-pressure tank, the other working fluid outlet and the low-pressure tank are connected to each other by piping through a pressure control valve 96.
[0032]
The difference in working fluid pressure between the cylinder 74 and the high-pressure tank 94 is equal to and high in the hydrogen release pressure of the hydrogen alloy unit, and the working fluid pressure that has passed through the pressure control valve 96 is the outlet of the power recovery body 98, the low-pressure tank 95. Since the inside is close to the hydrogen storage pressure of the hydrogen storage alloy unit, the power recovery body 98 is provided in the circulation path of the working fluid having this pressure difference, so that the power recovery body 98 is connected to the inlet and the outlet of the working fluid. The fluid expansion motion from the pressure difference between the two is converted into a rotational motion.
[0033]
In the medium circulation system 105, a heating heat medium circulates from the heat exchanger 90 through the hydrogen storage alloy unit 2 and the heating medium tank 91 via a pump.
[0034]
In the cooling medium circulation system 106, a cooling heat medium circulates from the heat exchanger 92 through the hydrogen storage alloy unit 2 and the cooling medium tank 93 via a pump.
[0035]
In addition, the heating and cooling heat medium solenoid valve provided in the heat medium nozzle of the hydrogen storage alloy unit 2 as well as the power source of the heat medium circulation system electric equipment, etc., the sensor measured values such as the temperature, flow rate, and level of each part The electronic control is performed according to a preset value.
[0036]
By configuring the apparatus in this manner, the working fluid compressing means can compress the working fluid by the hydrogen release pressure of the hydrogen storage alloy unit without crossing the working fluid and hydrogen by the sealing material, In the hydrogen occlusion process of the occlusion alloy unit, the hydrogen pressure during the occlusion of hydrogen by the temperature difference reducing means can be increased, so there is no noise, the cylinder is downsized, and the hydrogen occlusion is performed even when the temperature difference of the heat medium is about 20 ° C. And enabled the function of release.
[0037]
This functionality can be applied in many new areas. For example, the exhaust heat of a gasification melting furnace is 60 ° C, and power generation conversion has been impossible so far, and a huge amount of heat has been dissipated to the atmosphere, but it is cooled at an outdoor temperature of 30 ° C even in summer when the temperature difference is small. Temperature differential power generation. There are many other new market candidates with a temperature difference of 20 ° C, such as the Toshiyuki market.
[0038]
Further, by using a heat medium that recovers high-temperature heat generation during hydrogenation of the hydrogen storage alloy and applying the temperature reduction means of Document 10 (International Publication WO 02/068882 A1), a heat source is generated and used, so that the conversion efficiency is improved. Can be increased.
[0039]
The dual engine can be used reversibly as an ultra-high pressure filling device for an ultra-high pressure hydrogen storage tank of a fuel cell vehicle.
[0040]
Although the present invention has been described, the present invention is not limited to the above embodiment, and can be improved or modified within the scope of the purpose of the improvement or the idea of the present invention.
[0041]
【The invention's effect】
As described above, the power generation device using the hydrogen storage alloy unit to which the rubberized hydrogen storage alloy is attached enables not only power generation due to a low temperature difference in the low temperature range, but also miniaturization, maintenance-free, cost reduction, etc. In particular, there is an advantage that it can be applied to a hydrogen ultra-high compression pump. In the hydrogen society, it is effective for the global environment conservation from the global warming effect gas reduction.
[Brief description of the drawings]
FIG. 1 is a system diagram of an embodiment of the present invention and shows an overall outline.
FIG. 2 is a plan view of an embodiment of the present invention, showing two types of upper surfaces of the plates.
FIG. 3 is a cross-sectional view of an embodiment of the present invention, showing two types of plate side surfaces.
FIG. 4 is a cross-sectional view of an embodiment of the present invention, showing a cross section of a laminate of plate cassettes.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Temperature difference power generation apparatus 2 Hydrogen storage alloy unit 30, 31 Plate 32 Corrugated part 40, 40a Concave plane part 42, 42a Convex plane part 53 Heat medium flow path 54 Hydrogen flow path 55 Rubberized hydrogen storage alloy 71, 74 Cylinder 72, 75 Piston 76 Crank 94 High pressure tank 95 Low pressure tank 96 Pressure control valve 98 Power recovery body 99 Generator 100 Hydrogen 101 Working fluid 102 Heat medium 103 Sealing material 105 Heating medium circulation system 106 Cooling medium circulation system

Claims (6)

ゴム化水素吸蔵合金を装着した水素吸蔵合金ユニットによる水素吸蔵放出手段と、
前記水素吸蔵放出手段と、揺動ピストン機関の二連による作動流体圧縮手段と、前記作動流体圧縮手段の単体または複数を設けて構成し、熱媒体循環系などの電動機器を電子制御する電子制御手段と、
前記作動流体圧縮手段で圧縮された作動流体が逆止弁、制圧弁、高圧タンクおよび低圧タンクを含めて構成する循環路を密閉にして循環をする温度差縮小手段と、
前記温度差縮小手段の循環路に発電機を連結連動させた動力回収体を設けて電気変換をする発電手段とで構成したことを特徴とする温度差発電装置。
Hydrogen storage / release means by a hydrogen storage alloy unit equipped with a rubberized hydrogen storage alloy;
Electronic control for electronically controlling an electric device such as a heat medium circulation system comprising the hydrogen storage / release means, a working fluid compression means by two oscillating piston engines, and a single or a plurality of the working fluid compression means. Means,
A temperature difference reducing means for circulating the working fluid compressed by the working fluid compressing means by sealing a circulation path including a check valve, a pressure control valve, a high pressure tank and a low pressure tank;
A temperature difference power generator comprising: a power recovery unit that is connected to and linked to a generator in a circulation path of the temperature difference reduction unit, and that generates electricity.
波形部を持つ金属のプレートの平面部内に水素ホールを設けて、前記プレートを重ねあわせてプレートカセットを構成し、
前記プレートカセット両面の波形部の波形溝内にゴム化水素吸蔵合金を装着して、前記プレートカセットを積層したことを特徴とする請求項1記載の水素吸蔵放出手段。
Provide a hydrogen hole in the flat part of the metal plate with the corrugated part, and configure the plate cassette by overlapping the plates,
2. The hydrogen storage / release means according to claim 1, wherein a rubberized hydrogen storage alloy is mounted in the corrugated grooves of the corrugated portions on both sides of the plate cassette, and the plate cassette is stacked.
揺動ピストン機関を連結連動するクランク室を密閉にして、シール材を封入しシール材の分子間に水素分子で飽和にすることを特徴とする請求項1記載の作動流体圧縮手段。2. The working fluid compressing means according to claim 1, wherein the crank chamber connected to and interlocking with the oscillating piston engine is hermetically sealed, a sealing material is enclosed, and hydrogen molecules are saturated between molecules of the sealing material. 水素圧縮ポンプとして可逆的に用いることを特徴とする請求項1記載の作動流体圧縮手段。2. The working fluid compressing means according to claim 1, wherein the working fluid compressing means is used reversibly as a hydrogen compression pump. 低圧タンク内の作動流体圧は、水素吸蔵合金ユニット内の水素化時の水素圧より常に高くなるように予め作動流体を圧縮して封入したことを特徴とする請求項1記載の温度差縮小手段。2. The temperature difference reducing means according to claim 1, wherein the working fluid is compressed and sealed in advance so that the working fluid pressure in the low-pressure tank is always higher than the hydrogen pressure during hydrogenation in the hydrogen storage alloy unit. . 動力回収体がタービン系もしくは揺動ピストン系の機関であることを特徴とする請求項1記載の発電手段。2. The power generation means according to claim 1, wherein the power recovery body is a turbine system or an oscillating piston system engine.
JP2003189807A 2003-07-01 2003-07-01 Temperature-difference power generation device Pending JP2005023833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003189807A JP2005023833A (en) 2003-07-01 2003-07-01 Temperature-difference power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003189807A JP2005023833A (en) 2003-07-01 2003-07-01 Temperature-difference power generation device

Publications (1)

Publication Number Publication Date
JP2005023833A true JP2005023833A (en) 2005-01-27

Family

ID=34187907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189807A Pending JP2005023833A (en) 2003-07-01 2003-07-01 Temperature-difference power generation device

Country Status (1)

Country Link
JP (1) JP2005023833A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111931A (en) * 2009-11-25 2011-06-09 Seiwa Giken:Kk Thermal power generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111931A (en) * 2009-11-25 2011-06-09 Seiwa Giken:Kk Thermal power generator

Similar Documents

Publication Publication Date Title
US6915656B2 (en) Heat pump system
JP4087443B2 (en) Method for operating fuel cell facility and fuel cell facility for carrying out this method
US20050274138A1 (en) Metal hydride air conditioner
CN105190973B (en) With cascade seal arrangement and it is used for the regenerated electrochemical cell of hydrogen
JP2019185985A (en) Fuel cell system
WO2012114229A1 (en) Metal hydride hydrogen compressor
JP3530939B2 (en) Reactor plant
CN101083329A (en) Minisize highly-effective thermal self-circulation cooling system for fuel cell
CA2260490C (en) Air supply device for fuel cell
WO2002068881A1 (en) Device for effecting thermoelectric conversion, heating, cooling and freezing, by using hydrogen occlusion alloy unit
JP2007122906A (en) Ion exchanger and ion exchange resin pack
JP2005023833A (en) Temperature-difference power generation device
US6755021B2 (en) On-board hydrogen gas production system for stirling engines
WO2003106899A1 (en) Hydrogen absorbing alloy, hydrogen absorbing alloy unit, heat pump using hydrogen absorbing alloy, and hydrogen compressing device
US11952941B2 (en) Compressed air energy storage power generation device
CN1832237B (en) Fuel apparatus with pressurized fuel
CN111237021B (en) Small-pressure-difference steam direct-driven high-supercharging-ratio working medium pump for organic Rankine cycle
Park et al. Metal hydride heat storage technology for directed energy weapon systems
CN213936271U (en) Fuel cell air inlet energy comprehensive utilization system
CN112610442A (en) Reciprocating compression expander
JP2021048123A (en) System and method for heat management of high-temperature system
WO2002068882A1 (en) Device for thermoelectric transduction, air condition and refrigeration, using hydrogen occluding alloy unit
CN102230420A (en) Low-temperature gas exhausting engine
CN201851210U (en) Low-temperature exhaust engine
CN116364972A (en) Fuel cell energy management system