JP2005023347A - Method for producing high cleanliness steel - Google Patents

Method for producing high cleanliness steel Download PDF

Info

Publication number
JP2005023347A
JP2005023347A JP2003187788A JP2003187788A JP2005023347A JP 2005023347 A JP2005023347 A JP 2005023347A JP 2003187788 A JP2003187788 A JP 2003187788A JP 2003187788 A JP2003187788 A JP 2003187788A JP 2005023347 A JP2005023347 A JP 2005023347A
Authority
JP
Japan
Prior art keywords
deoxidation
alumina
alloy
nozzle
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003187788A
Other languages
Japanese (ja)
Inventor
Katsuhiro Fuchigami
勝弘 淵上
Masamitsu Wakao
昌光 若生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003187788A priority Critical patent/JP2005023347A/en
Publication of JP2005023347A publication Critical patent/JP2005023347A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the clogging of a casting nozzle caused by a deoxidation product in continuous casting. <P>SOLUTION: When a high cleanliness steel is produced by using a metal for deoxidation to remove oxygen dissolved in molten steel, the deoxidation product is efficiently removed by adding the oxide of the metal for deoxidation having ≥200 μm grain diameter to the alloy of the metal for deoxidation by 5 to 20 mass%, and thus, the clogging of the nozzle for casting can be prevented. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、溶鋼の脱酸時に不可避的に生成する脱酸生成物を効率的に除去するための高清浄度鋼の製造方法に関するものである。
【0002】
【従来の技術】
連続鋳造法の普及後、種々の技術開発により鋼材の清浄性は格段に向上している。鋼材の清浄性は向上してきているものの、通常脱酸に使用されるAl脱酸においては、鋳造用のノズルの閉塞の問題が未解決のまま残されている。
【0003】
通常のAl脱酸を行った溶鋼では、鋳造用ノズルの閉塞が生じる場合が多く、そのためにノズル内に不活性ガスを吹き込むことにより閉塞を防止することやCaなどを添加して高融点のアルミナを低融点の介在物に改質することが行われている。
【0004】
鋳造用ノズルに不活性ガスを吹き込む場合は、その弊害として鋳造用パウダーの巻き込みの問題がある。鋳造用パウダーを巻き込み、鋳片に残存してしまうとプレス割などの重大な欠陥に繋がる。また、Ca添加についても、溶鋼中の酸素量によってはアルミナの低融点化が不十分で逆にノズルの閉塞を助長することがある。このように従来の方法では、脱酸生成物であるアルミナを主要因とした鋳造用ノズルの閉塞防止は不十分である。
【0005】
また、鋳造用ノズルの閉塞は溶鋼流動の不均一を助長し、鋳造用パウダーの巻き込みといった問題も生じる原因となっている。さらに、鋳造用ノズルに付着した大型のアルミナ系介在物が脱落し、表面欠陥などの原因となっている。
【0006】
以上のように従来技術においても、Al脱酸時のアルミナ起因の鋳造用ノズルの閉塞防止は不十分であり、これらの従来技術の効果を十分発揮させるためにはAl脱酸時に生成するアルミナ量を極力少なくする必要がある。
【0007】
【発明が解決しようとする課題】
溶鋼の脱酸時に不可避的に生成する脱酸生成物を効率的に除去することである。
【0008】
【課題を解決するための手段】
本発明は上記課題を解決するためになされたものでその要旨は次のとおりである。
(1)溶鋼中の溶存酸素を脱酸用金属を用いて脱酸して高清浄度鋼を製造する際に、脱酸用金属の合金中に200μm以上の粒径の脱酸金属の酸化物を2mass%以上20mass%以下添加することを特徴とする高清浄度鋼の製造方法。
(2)溶鋼中の溶存酸素をAlを用いて脱酸して高清浄度鋼を製造する際に、Al合金中に200μm以上の粒径のAl酸化物を2mass%以上20mass%以下添加することを特徴とする高清浄度鋼の製造方法。
【0009】
【発明の実施の形態】
Al脱酸時のアルミナ酸化物の溶鋼中の残存量を極力減らすために、Al脱酸方法について検討した。通常、脱酸反応における脱酸生成物は溶鋼中に浮遊する不純物上に生成する不均一核生成の場合と溶鋼中に単独で生成する均一核生成の場合がある。均一核生成の場合には、非常に微細な酸化物が生成し、これらを除去するためには凝集合体を促進させて大型化させ浮上分離する手段が一般的である。しかしながら、凝集合体の促進には限界があり、酸素量として10〜30ppm程度の酸化物が残存してしまう。そこで、溶鋼中に浮遊する大型の不純物上への核生成を促進させることにより、後工程で浮上しやすくすることを検討した。不純物上への脱酸生成物の核生成は、同一酸化物への生成が容易であること及び脱酸反応領域に効率的にこのような不純物を供給することが重要であることから、脱酸時の合金中に脱酸元素の酸化物を混入させることを検討した。
【0010】
脱酸剤として最も一般的でかつノズル詰まりなどの問題が大きいAl脱酸について検討を行った。Al脱酸時に生成するアルミナを効率的に除去するためのAl合金中のアルミナの粒径及び含有率の最適な条件をラボ溶解を用いて検討した。Al合金としては、既製の純Al(Al=99.9mass%)とアルミナ粉末を大きさ毎に分級したものを混合・溶融させて作製した。実験では、溶鋼中溶存酸素を100ppmとして上記のように作製したAl合金で脱酸し、脱酸後10分の溶鋼サンプリングを行いアルミナ系介在物及びT.[O]値の評価を行った。アルミナ系介在物については、10〜200μmのアルミナ系介在物をCMAで分析し面積率に換算した。T.[O]値は、微小な酸化物を代表しておりノズル閉塞の指標として用い、アルミナ系介在物の面積率は製品での表面欠陥の指標として用いる。
【0011】
製品での表面欠陥の指標としてのアルミナ系介在物の面積率についてAl合金中のアルミナのサイズと含有率との関係を図1に示す。アルミナ系介在物の面積率が0.0001%未満を○、0.0005%未満を△、0.0005%以上を×とした。ここで、面積率の評価は、通常のAl脱酸時に測定される面積率が0.0005%以上であるが、0.0005%未満を品質合格基準とした。図1に示すように、アルミナサイズが200μm以上の場合に通常のAl脱酸よりも良好となり、含有率が2〜20%程度の場合に良好であり、特に含有率が5〜20%程度の場合が良好である。アルミナサイズが200μm未満の場合には添加したアルミナ粒子が浮上せずそのまま残留しているものが多く、面積率が悪化している。また、含有率が20%を超えると、添加した直後にAl合金中のアルミナ粒子同士が凝集し、脱酸時の脱酸生成物の除去への寄与が少なかったためと考えられる。
【0012】
次に、ノズル閉塞の指標としてのT.[O]値についてAl合金中のアルミナのサイズと含有率との関係を図2に示す。T.[O]値が10ppm未満を○、20ppm未満を△、20ppm以上を×とした。ここで、T.[O]値の評価は、通常のAl脱酸時に測定されるT.[O]値が10〜50ppm程度であるが、20ppm未満を品質合格基準とした。図2に示すように、アルミナサイズが100μm以上かつ含有率が20%以下の領域で通常のAl脱酸よりも良好となる。T.[O]値の場合には、アルミナサイズが100μmの場合まで良好であるが、これはT.[O]値に対して支配的な微小介在物が減少したためと考えられる。
【0013】
以上の結果から、製品の表面欠陥の指標としてのアルミナ系介在物の面積率とノズル閉塞の指標としてのT.[O]値の両者の観点から、Al合金中に混入させるアルミナサイズは200μm以上かつ含有率が2%以上20%以下でノズル閉塞及び製品での表面欠陥の原因となるアルミナ系介在物が低減できることがわかった。特にAl合金中に混入させるアルミナサイズは200μm以上かつ含有率2%以上20%以下が優れていることがわった。
【0014】
ここでは、Al脱酸の例で示したが、原理的にAl脱酸以外の脱酸でも同様の効果が得られる。ただし、鋳造用のノズル閉塞や脱酸生成物起因の製品欠陥(表面欠陥が主)の問題があるのは、Al脱酸以外の一般的な脱酸ではTi脱酸であり、Ti脱酸でも同様の効果が得られる。
【0015】
【実施例】
実施例を以下に示す。
連々鋳におけるノズル閉塞及び鋳片中のアルミナ系介在物について効果を確認した。供試鋼の成分は表1の成分であり、低炭Al−Kを主として一部Ti脱酸鋼でも行った。製造条件を表2に示す。本発明以外の条件については、統一した製造条件とした。二次精錬(RH)におけるAlあるいはTi脱酸後の環流時間を10分とし、連続鋳造ではタンディッシュ(TD)容量70トンの垂直曲げ連鋳機とした。本発明例1では、Al合金中に200μm以上のアルミナを5%含有したものを使用した。本発明例2では、Al合金中に200μm以上のアルミナを10%含有したものを使用した。本発明例3では、Ti合金中に200μm以上のチタニアを10%含有したものを使用した。比較例1は、通常の金属Alを用いた。比較例2は、Al合金中に50μm以上のアルミナを10%含有したものを使用した。比較例3は、Al合金中に200μm以上のCaOを10%含有したものを使用した。鋳造用ノズルの閉塞指標として、鋳造用ノズル上部に設置されているスライディングノズルの開口率を溶鋼スループット量(ton/min)から換算される理論的な開口率との比を用いた。ノズル閉塞の基準として、上記の比が1.2以上である場合にノズル閉塞状態であるとした。なお、この指標では実際の鋳造実績から求めたものである。また、鋳片の100μm以上のアルミナもしくはチタニア系介在物の個数をスライム法で調査した。これらの介在物個数は、10個/kg以下を合格とした。結果を表3に示す。
【0016】
本発明例1は、Al脱酸時にAl合金中に200μm以上のアルミナを5%含有したものを使用したため、T.[O]値も13ppmと低く、最大ノズル閉塞指標も1.07であり、100μm以上のアルミナ系介在物も検出されず良好であった。
【0017】
本発明例2は、Al脱酸時にAl合金中に200μm以上のアルミナを10%含有したものを使用したため、T.[O]値も10ppmと低く、最大ノズル閉塞指標も1.03であり、100μm以上のアルミナ系介在物も検出されず非常に良好であった。
【0018】
本発明例3は、Ti脱酸時にTi合金中に200μm以上のアルミナを10%含有したものを使用したため、T.[O]値は30ppmであり、最大ノズル閉塞指標も1.12であり、100μm以上のチタニア系介在物も検出されず良好であった。ここで、Ti脱酸の脱酸平衡のフリー酸素が高いためにT.[O]値はAl脱酸の場合よりも高くなっている。
【0019】
比較例1は、通常の金属Alを使用したため、ノズル閉塞指標が1.2を超え、ノズル閉塞が生じた。
【0020】
比較例2は、Al合金中に50μm以上のアルミナを10%含有したものを使用したが、T.[O]値は15ppmと良好であったが、最大ノズル閉塞指標は1.2を超えた。
【0021】
比較例3は、Al合金中に200μm以上のCaOを10%含有したものを使用したが、T.[O]値は25ppmであり、最大ノズル閉塞指標も1.2を超えた。
【表1】

Figure 2005023347
【表2】
Figure 2005023347
【表3】
Figure 2005023347
【0022】
【発明の効果】
以上の結果から、本発明法により溶鋼の脱酸時の脱酸生成物起因の鋳造用ノズルの閉塞を確実に防止することができる。
【図面の簡単な説明】
【図1】アルミナ系介在物に対するAl合金中のアルミナのサイズと含有率の関係を示す図。
【図2】T.[O]値に対するAl合金中のアルミナのサイズと含有率の関係を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high cleanliness steel for efficiently removing deoxidation products inevitably produced during deoxidation of molten steel.
[0002]
[Prior art]
After the spread of the continuous casting method, the cleanliness of steel has been remarkably improved by various technological developments. Although the cleanliness of steel materials has been improved, in the Al deoxidation usually used for deoxidation, the problem of clogging of the nozzle for casting remains unsolved.
[0003]
In molten steel that has been subjected to normal Al deoxidation, the nozzle for casting is often clogged. For this reason, it is possible to prevent clogging by blowing an inert gas into the nozzle or to add high-melting alumina by adding Ca or the like. Is reformed into inclusions with a low melting point.
[0004]
When the inert gas is blown into the casting nozzle, there is a problem of entrainment of the casting powder as its adverse effect. If the powder for casting is entrained and remains on the slab, it will lead to serious defects such as press splitting. In addition, the addition of Ca may cause the nozzle to be blocked due to insufficient melting of alumina depending on the amount of oxygen in the molten steel. As described above, the conventional method is insufficient in preventing the clogging of the casting nozzle mainly due to the deoxidation product alumina.
[0005]
Further, the clogging of the casting nozzle promotes the non-uniformity of the molten steel flow and causes a problem such as entrainment of casting powder. Furthermore, large alumina inclusions attached to the casting nozzle fall off, causing surface defects and the like.
[0006]
As described above, even in the prior art, the prevention of clogging of the casting nozzle caused by alumina at the time of Al deoxidation is insufficient, and in order to fully demonstrate the effects of these conventional techniques, the amount of alumina produced at the time of Al deoxidation Must be reduced as much as possible.
[0007]
[Problems to be solved by the invention]
It is to efficiently remove deoxidation products that are inevitably produced during deoxidation of molten steel.
[0008]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, and the gist thereof is as follows.
(1) Deoxidized metal oxide having a particle size of 200 μm or more in a deoxidizing metal alloy when producing high cleanliness steel by deoxidizing dissolved oxygen in molten steel using a deoxidizing metal Is added at 2 mass% or more and 20 mass% or less.
(2) When producing high cleanliness steel by deoxidizing dissolved oxygen in molten steel using Al, add 2 mass% or more and 20 mass% or less of Al oxide having a particle size of 200 μm or more in the Al alloy. A method for producing a high cleanliness steel.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In order to reduce as much as possible the remaining amount of alumina oxide in molten steel during Al deoxidation, an Al deoxidation method was studied. Usually, the deoxidation product in the deoxidation reaction may be heterogeneous nucleation generated on impurities floating in the molten steel or homogeneous nucleation generated alone in the molten steel. In the case of uniform nucleation, very fine oxides are generated, and in order to remove these, a means for promoting the aggregation and coalescence and increasing the size and separating by floating is common. However, there is a limit to the promotion of aggregation and coal, and an oxide amount of about 10 to 30 ppm remains as an oxygen amount. Therefore, we investigated how to facilitate nucleation on large impurities floating in the molten steel to facilitate levitation in subsequent processes. Nucleation of deoxidation products on impurities is easy to produce to the same oxide and it is important to supply such impurities efficiently to the deoxidation reaction region. It was studied to mix oxides of deoxidizing elements in the alloy at the time.
[0010]
Al deoxidation, which is the most common deoxidizer and has a large problem such as nozzle clogging, was examined. The optimum conditions for the particle size and content of alumina in an Al alloy for efficiently removing alumina produced during Al deoxidation were studied using laboratory dissolution. The Al alloy was prepared by mixing and melting ready-made pure Al (Al = 99.9 mass%) and alumina powder classified according to size. In the experiment, the dissolved oxygen in the molten steel was deoxidized with the Al alloy produced as described above at 100 ppm, and the molten steel was sampled for 10 minutes after deoxidation, and the alumina inclusions and T.W. The [O] value was evaluated. For alumina inclusions, 10-200 μm alumina inclusions were analyzed by CMA and converted to area ratio. T.A. The [O] value represents a fine oxide and is used as an index of nozzle clogging, and the area ratio of alumina inclusions is used as an index of surface defects in the product.
[0011]
FIG. 1 shows the relationship between the size and content of alumina in an Al alloy with respect to the area ratio of alumina inclusions as an index of surface defects in products. When the area ratio of the alumina inclusions is less than 0.0001%, the case is less than 0.0001%, the case is less than 0.0005%, and the case is 0.0005% or more. Here, in the evaluation of the area ratio, the area ratio measured at the time of normal Al deoxidation is 0.0005% or more, but less than 0.0005% was used as a quality acceptance standard. As shown in FIG. 1, when the alumina size is 200 μm or more, it becomes better than ordinary Al deoxidation, and it is good when the content is about 2 to 20%, especially the content is about 5 to 20%. The case is good. When the alumina size is less than 200 μm, the added alumina particles often remain without being floated, and the area ratio is deteriorated. Moreover, when the content rate exceeds 20%, it is considered that alumina particles in the Al alloy aggregated immediately after the addition, and the contribution to the removal of the deoxidation product during deoxidation was small.
[0012]
Next, the T.D. FIG. 2 shows the relationship between the size and content of alumina in the Al alloy with respect to the [O] value. T.A. [O] A value of less than 10 ppm was evaluated as ◯, a value of less than 20 ppm as Δ, and a value of 20 ppm or more as x. Here, T.W. The evaluation of the [O] value is based on the T.O. value measured during normal Al deoxidation. [O] The value is about 10 to 50 ppm, but the quality acceptance standard is less than 20 ppm. As shown in FIG. 2, it becomes better than ordinary Al deoxidation in the region where the alumina size is 100 μm or more and the content is 20% or less. T.A. In the case of the [O] value, it is good up to the case where the alumina size is 100 μm. This is probably because the number of fine inclusions that dominate the [O] value decreased.
[0013]
From the above results, the area ratio of alumina inclusions as an indicator of product surface defects and T.O. From the viewpoint of both [O] value, the alumina size mixed in the Al alloy is 200 μm or more and the content is 2% or more and 20% or less, and the number of alumina inclusions that cause nozzle clogging and surface defects in the product is reduced I knew it was possible. In particular, it was found that the alumina size mixed in the Al alloy was excellent when it was 200 μm or more and the content was 2% or more and 20% or less.
[0014]
Although an example of Al deoxidation is shown here, the same effect can be obtained by deoxidation other than Al deoxidation in principle. However, there is a problem of product defects (mainly surface defects) caused by clogging of nozzles for casting and deoxidation products (mainly surface defects) are Ti deoxidation in general deoxidation other than Al deoxidation. Similar effects can be obtained.
[0015]
【Example】
Examples are shown below.
The effect was confirmed for nozzle clogging in continuous casting and alumina inclusions in the slab. The components of the test steel are those shown in Table 1, and low-carbon Al-K was mainly used for partially Ti-deoxidized steel. The manufacturing conditions are shown in Table 2. The conditions other than the present invention were unified manufacturing conditions. The reflux time after deoxidation of Al or Ti in secondary refining (RH) was 10 minutes, and in continuous casting, a vertical bending continuous casting machine with a tundish (TD) capacity of 70 tons was used. In Example 1 of the present invention, an Al alloy containing 5% alumina of 200 μm or more was used. In Example 2 of the present invention, an Al alloy containing 10% alumina of 200 μm or more was used. In Invention Example 3, a Ti alloy containing 10% of titania of 200 μm or more was used. In Comparative Example 1, ordinary metal Al was used. In Comparative Example 2, an Al alloy containing 10% alumina of 50 μm or more was used. The comparative example 3 used what contained 10% of CaO of 200 micrometers or more in Al alloy. As a clogging index for the casting nozzle, the ratio of the opening ratio of the sliding nozzle installed on the upper part of the casting nozzle to the theoretical opening ratio converted from the molten steel throughput (ton / min) was used. As a criterion for nozzle clogging, the nozzle clogging state was assumed when the above ratio was 1.2 or more. This index is obtained from actual casting results. Further, the number of alumina or titania inclusions of 100 μm or more in the slab was examined by a slime method. The number of these inclusions was determined to be 10 or less. The results are shown in Table 3.
[0016]
Since Example 1 of the present invention used 5% alumina of 200 μm or more in an Al alloy at the time of Al deoxidation, T.I. The [O] value was as low as 13 ppm, the maximum nozzle clogging index was 1.07, and alumina inclusions of 100 μm or more were not detected and were good.
[0017]
In Invention Example 2, since an Al alloy containing 10% alumina of 200 μm or more was used during Al deoxidation. The [O] value was as low as 10 ppm, the maximum nozzle clogging index was 1.03, and alumina inclusions of 100 μm or more were not detected, which was very good.
[0018]
In Invention Example 3, since a Ti alloy containing 10% alumina of 200 μm or more was used during Ti deoxidation. The [O] value was 30 ppm, the maximum nozzle clogging index was 1.12, and no titania inclusions of 100 μm or more were detected. Here, since the free oxygen in the deoxidation equilibrium of Ti deoxidation is high, T.I. The [O] value is higher than in the case of Al deoxidation.
[0019]
In Comparative Example 1, since normal metal Al was used, the nozzle clogging index exceeded 1.2 and the nozzle clogging occurred.
[0020]
In Comparative Example 2, an Al alloy containing 10% alumina of 50 μm or more was used. The [O] value was as good as 15 ppm, but the maximum nozzle blockage index exceeded 1.2.
[0021]
In Comparative Example 3, an Al alloy containing 10% of CaO of 200 μm or more was used. The [O] value was 25 ppm, and the maximum nozzle blockage index exceeded 1.2.
[Table 1]
Figure 2005023347
[Table 2]
Figure 2005023347
[Table 3]
Figure 2005023347
[0022]
【The invention's effect】
From the above results, the method of the present invention can surely prevent the clogging of the casting nozzle caused by the deoxidation product when the molten steel is deoxidized.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the size and content of alumina in an Al alloy relative to alumina inclusions.
FIG. The figure which shows the relationship between the size of the alumina in Al alloy with respect to [O] value, and content rate.

Claims (2)

溶鋼中の溶存酸素を脱酸用金属を用いて脱酸して高清浄度鋼を製造する際に、脱酸用金属の合金中に200μm以上の粒径の脱酸金属の酸化物を2mass%以上20mass%以下添加することを特徴とする高清浄度鋼の製造方法。When manufacturing high cleanliness steel by deoxidizing dissolved oxygen in molten steel using deoxidizing metal, 2 mass% of deoxidized metal oxide having a particle size of 200 μm or more is contained in the deoxidizing metal alloy. More than 20 mass% is added, The manufacturing method of the high cleanliness steel characterized by the above-mentioned. 溶鋼中の溶存酸素をAlを用いて脱酸して高清浄度鋼を製造する際に、Al合金中に200μm以上の粒径のAl酸化物を2mass%以上20mass%以下添加することを特徴とする高清浄度鋼の製造方法。When manufacturing high cleanliness steel by deoxidizing dissolved oxygen in molten steel using Al, 2 mass% or more and 20 mass% or less of Al oxide having a particle size of 200 μm or more is added to the Al alloy. To produce high cleanliness steel.
JP2003187788A 2003-06-30 2003-06-30 Method for producing high cleanliness steel Withdrawn JP2005023347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003187788A JP2005023347A (en) 2003-06-30 2003-06-30 Method for producing high cleanliness steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003187788A JP2005023347A (en) 2003-06-30 2003-06-30 Method for producing high cleanliness steel

Publications (1)

Publication Number Publication Date
JP2005023347A true JP2005023347A (en) 2005-01-27

Family

ID=34186528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003187788A Withdrawn JP2005023347A (en) 2003-06-30 2003-06-30 Method for producing high cleanliness steel

Country Status (1)

Country Link
JP (1) JP2005023347A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021238A (en) * 2009-07-15 2011-02-03 Sumitomo Metal Ind Ltd Method for preventing clogging of ladle nozzle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021238A (en) * 2009-07-15 2011-02-03 Sumitomo Metal Ind Ltd Method for preventing clogging of ladle nozzle

Similar Documents

Publication Publication Date Title
JP6686837B2 (en) Highly clean steel manufacturing method
JP4460462B2 (en) Method for preventing nozzle clogging in continuous casting of steel
JP6593233B2 (en) Manufacturing method of high clean steel
JP6686838B2 (en) Highly clean steel manufacturing method
JP5047477B2 (en) Secondary refining method for high Al steel
JP4042657B2 (en) Continuous casting method of steel to prevent contamination of molten steel in tundish
JP4879809B2 (en) Continuous casting method
JP2005023347A (en) Method for producing high cleanliness steel
JP4022190B2 (en) Method of adding rare earth elements to molten steel
JP2001335824A (en) Method for producing high cleanliness steel
JP4882249B2 (en) Manufacturing method of high clean steel
JP4477971B2 (en) Low carbon steel sheet, low carbon steel slab and method for producing the same
JP2001026812A (en) Deoxidizing alloy for molten steel
JP3903603B2 (en) Melting method of ultra-low carbon steel with excellent cleanability
JPH07224317A (en) Production of high cleanliness steel
JPH0873923A (en) Production of clean steel having excellent hydrogen induced crack resistance
JP3971698B2 (en) Method for preventing nozzle clogging in continuous casting
JP3740084B2 (en) Manufacturing method of high cleanliness steel
KR910006640B1 (en) Making process for high pure steel
JPH07300611A (en) Production of molten steel for continuous casting
JP4520654B2 (en) Deoxidation method for molten steel
JP6561778B2 (en) Slab manufacturing method
JP3497364B2 (en) Continuous casting method
JPH11279678A (en) Cast slab for steel sheet for can, excellent in cleanliness and steel sheet for can
JPH05163517A (en) Method for deoxidizing molten steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905