JP2005023229A - Heat storage resin composition - Google Patents

Heat storage resin composition Download PDF

Info

Publication number
JP2005023229A
JP2005023229A JP2003191318A JP2003191318A JP2005023229A JP 2005023229 A JP2005023229 A JP 2005023229A JP 2003191318 A JP2003191318 A JP 2003191318A JP 2003191318 A JP2003191318 A JP 2003191318A JP 2005023229 A JP2005023229 A JP 2005023229A
Authority
JP
Japan
Prior art keywords
heat storage
resin
storage material
microcapsule
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003191318A
Other languages
Japanese (ja)
Inventor
Yuichiro Konishi
雄一朗 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2003191318A priority Critical patent/JP2005023229A/en
Publication of JP2005023229A publication Critical patent/JP2005023229A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat storage resin composition having high moldability and selectivity of resin and keeping high heat storage performance after repeated utilization. <P>SOLUTION: The heat storage resin composition comprises a microcapsule including a heat storage material in a resin. The heat storage material included in the microcapsule is used in order to store heat by utilizing latent heat. The film of the microcapsule is a thermosetting urea-formalin resin or melamine-formalin resin film and has ≤10 μm volume average particle diameter. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、蓄熱性能を有する樹脂組成物に関するものであり、本発明の蓄熱性樹脂組成物を容器やシートなどに用いることにより内容物や表面の温度を任意の温度域に長時間保持できる。
【0002】
【従来の技術】
潜熱蓄熱材は、顕熱だけでなく相変化に伴う潜熱も利用できることから狭い温度域に多量の熱を蓄えたり放出することが可能である。これを建材、衣類などへ利用することが検討されている。しかし、潜熱蓄熱材は融解、凝固という相転移を起こすために、利用に際しては融解した蓄熱材のしみ出しを防ぐために容器に封入することが求められる。そのため手間およびコストが増大するだけでなく、利用の際には封入のために形態に大きな制限を受け、成形性に大きな問題があった。
【0003】
ポリオレフィン(例えば、特許文献1参照)および光硬化性樹脂(例えば、特許文献2参照)に潜熱蓄熱材を混合し成形する方法が提案されている。しかし、この方法では蓄熱材が溶解しない樹脂である必要があるなど、利用できる樹脂および蓄熱材に大きな制限があるばかりではなく、含有させる蓄熱材の量を多くすると繰り返し利用した際に蓄熱材がしみ出すという問題点があった。
【0004】
【特許文献1】
特開平8−60143号公報
【特許文献2】
特開平10−306277号公報
【0005】
【発明が解決しようとする課題】
本発明では高い成形性および樹脂の選択性を有し、かつ繰り返し利用した後でも高い蓄熱性能を維持する蓄熱性樹脂組成物を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決すべく検討を行った結果、蓄熱材を内包したマイクロカプセルを樹脂内に含有することにより、蓄熱性能を有する樹脂組成物を得る。
【0007】
【発明の実施の形態】
本発明のマイクロカプセルで内包される蓄熱材は相転移に伴う潜熱を利用して蓄熱する目的で用いられる。具体的には、融点あるいは凝固点を有する化合物であれば使用可能であるが、例えば好ましい化合物としてはテトラデカン、ペンタデカン、エイコサン、ドコサンの如き炭素数が10以上の脂肪族炭化水素が好ましい化合物として挙げられる。これらの脂肪族炭化水素化合物は炭素数の増加とともに融点が上昇するため、目的に応じた融点を有する脂肪族炭化水素化合物を選択したり、2種以上を混合することも可能である。
【0008】
本発明で用いられるマイクロカプセルは皮膜の内側に蓄熱材を内包した微少な粒子である。一般に蓄熱材をマイクロカプセル化する方法としては、複合エマルジョン法によるカプセル化法(特開昭62−1452号公報)、蓄熱材粒子の表面に熱可塑性樹脂を噴霧する方法(同62−45680号公報)、蓄熱材粒子の表面に液中で熱可塑性樹脂を形成する方法(同62−149334号公報)、蓄熱材粒子の表面でモノマーを重合させ被覆する方法(同62−225241号公報)、界面重縮合反応によるポリアミド皮膜マイクロカプセルの製法(特開平2−258052号公報)等に記載されている方法を用いることができる。
【0009】
カプセル膜材としては、界面重合法、インサイチュー法等の手法で得られる、ポリスチレン、ポリアクリロニトリル、ポリアミド、ポリアクリルアミド、エチルセルロース、ポリウレタン、アミノプラスト樹脂、またゼラチンとカルボキシメチルセルロース若しくはアラビアゴムとのコアセルベーション法を利用した合成あるいは天然の樹脂が用いられるが、高温で樹脂と混合されるため熱的に安定な熱硬化性樹脂皮膜を有するマイクロカプセルが好ましく、特に脂肪族系炭化水素化合物でも良好な品質のマイクロカプセルが得られるインサイチュー法による尿素ホルマリン樹脂、メラミンホルマリン樹脂皮膜を用いたマイクロカプセルが好ましい。
【0010】
本発明に係るマイクロカプセルの粒子径は、加工過程で物理的圧力による破壊を防止するために10μm以下、特に好ましくは5μm以下が好ましい。マイクロカプセルの粒子径は、カプセル作製時に用いる乳化剤の種類と濃度、乳化時の乳化液の温度、乳化比(水相と油相の体積比率)、乳化機、分散機等と称される微粒化装置の運転条件(攪拌回転数、時間等)等を適宜調節して所望の粒子径に設定する。この粒子径以上になるとマイクロカプセルが外圧で容易に壊れやすくなったり、蓄熱材の比重が分散媒のそれと大きく差がある場合など、浮遊したり沈降したりし易くなるので好ましくない。粒子径は例えばコールターカウンター(英国コールターエレクトロニクス社、コールターマルチサイザー)で測定することができる。
【0011】
マイクロカプセルはマイクロカプセルスラリーをドラムドライヤー、スプレードライヤー、フリーズドライヤー等の各種乾燥装置や造粒装置を乾燥状態にした後、樹脂成分と混合する。混合の際に使用される装置は特に限定されるものではない。例えば、マイクロカプセル、及び他の添加剤、樹脂などを必要に応じて、単軸、2軸などの押出機のような溶融混練機にて、溶融混練する方法などにより混合することができる。また、配合剤が液体である場合は、液体供給ポンプなどを用いて2軸押出機に途中添加して混合することもできる。
【0012】
本発明で用いられる樹脂は、熱可塑性、熱硬化性いずれの性質のものでも使用でき、フェノール樹脂、尿素樹脂、メラミン樹脂、尿素−メラミン共縮合樹脂、ポリウレタン、ポリブタジエン、デンプン類、ヒドロキシエチルセルロース、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、ゼラチン、カゼイン、ポリビニルアルコール、変性ポリビニルアルコール、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリアクリル酸ソーダ、ポリエチレンテレフタレート、ポリブチレンテレフタレート、塩素化ポリエーテル、アリル樹脂、フラン樹脂、ケトン樹脂、オキシベンゾイルポリエステル、ポリアセタール、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリイミド、ポリアミド、ポリアミドイミド、ポリアミノビスマレイミド、ポリメチルペンテン、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリフェニレンスルホン、ポリスルホン、ポリアリレート、ポリアリルスルホン、ポリブタジエン、ポリカーボネート、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ベンゾグアナミン樹脂、ビスマレイミドトリアジン樹脂、アルキド樹脂、アミノ樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、スチレン/ブタジエン共重合体、アクリロニトリル/ブタジエン共重合体、アクリル酸メチル/ブタジエン共重合体、エチレン/酢酸ビニル共重合体、アクリル酸アミド/アクリル酸エステル共重合体、アクリル酸アミド/アクリル酸エステル/メタクリル酸3元共重合体、スチレン/無水マレイン酸共重合体のアルカリ塩、エチレン/無水マレイン酸共重合体のアルカリ塩またはアンモニウム塩、その他各種ポリオレフィン系樹脂などが挙げられる。これらは2種以上を組み合わせて用いても構わない。
【0013】
本発明の樹脂組成物の成形加工法は特に限定されるものではなく、各樹脂について一般に用いられている成形法、例えば射出成形、ブロー成形、押出成形、真空成形、プレス成形、カレンダー成形、発泡成形、などが適用できる。
【0014】
樹脂の前駆体が水溶性のものである場合、樹脂の前駆体水溶液とカプセル分散液とを混合した後、加熱乾燥により硬化することによって樹脂組成物を得ることもできる。
【0015】
本発明のマイクロカプセルと樹脂の質量比率は自由に設定できるが、蓄熱性をなるべく発揮し得るように樹脂中に占めるマイクロカプセルの重量比率は1〜90%、好ましくは5〜80%の範囲が好ましい。この範囲以下であると蓄熱性に乏しくなり、この範囲上であると強度、加工性が低下するため好ましくない。
【0016】
本発明の樹脂組成物は蓄熱材を内包したマイクロカプセルと樹脂からなるが、これらの成分に加え、必要に応じて、老化防止剤、酸化防止剤、可塑剤、滑剤、着色剤、有機顔料、無機顔料、紫外線吸収剤、熱安定剤、光安定剤、分散剤、防カビ剤、帯電防止剤、難燃化剤、粘着付与剤、硬化剤、発泡剤、合成繊維、合成樹脂類、ガラス繊維、金属繊維、断熱材、VOC除去材、活性炭、吸放湿剤などを添加することが可能である。
【0017】
蓄熱材を内包するマイクロカプセルを含有する蓄熱性樹脂組成物を容器として利用することにより、容器の内容物の温度が上がりにくい、下がりにくいという効果を付与することができるため、保冷あるいは保温容器として利用可能である。蓄熱材を単独で樹脂内に含有させるよりも、繰り返し利用した後でも蓄熱材のしみ出しがなく熱量の低下が起こらないため、繰り返し利用した後でも高い蓄熱性能を維持する容器が得られる。蓄熱材の融点は−10〜60℃の範囲のものが好ましい。
【0018】
蓄熱材を内包するマイクロカプセルを含有する蓄熱性樹脂組成物はシートとして利用することにより、蓄熱性壁紙、土壌の保温シート、冬季のコンクリートの養生シートなどとして利用可能である。蓄熱材を単独で樹脂内に含有させるよりも、繰り返し利用した後でも蓄熱材のしみ出しがなく熱量の低下が起こらないため、繰り返し利用した後でも高い蓄熱性能を維持するシートが得られる。蓄熱材の融点は0〜40℃の範囲のものが好ましい。
【0019】
【実施例】
以下、本発明の実施手順を実施例として具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、蓄熱量については示差熱熱量計(米国パーキンエルマー社製、DSC−7型)を用いて測定し、粒子径についてはコールターカウンター(英国コールターエレクトロニクス社、コールターマルチサイザー)で測定した。
【0020】
実施例1
蓄熱材マイクロカプセルの製法
メラミン粉末12重量部に37%ホルムアルデヒド水溶液15.4重量部と水40重量部を加え、pHを8に調整した後、約70℃まで加熱してメラミン−ホルムアルデヒド初期縮合物水溶液を得た。pHを4.5に調整した10%スチレン−無水マレイン酸共重合体のナトリウム塩水溶液100重量部中に、蓄熱材として、n−オクタデカン(融点26〜28℃)80重量部を激しく撹拌しながら添加し、粒子径が3.0μmになるまで乳化を行った。
【0021】
得られた乳化液に、上記メラミン−ホルムアルデヒド初期縮合物水溶液全量を添加し70℃で2時間撹拌を施し、粒子径3.2μmの蓄熱材マイクロカプセル分散液を得た。このマイクロカプセル分散液をスプレードライヤーで水分含有率3%以下まで乾燥しマイクロカプセル粉体を得た。このマイクロカプセル粉体200重量部とポリエチレン100重量部を200℃に加熱して三本ロール混練り機でよく混ぜ合わせた後、射出成形機にて加工し、蓄熱性を有する容器を得た。
【0022】
冷却した水を入れて室温に放置しておくと、蓄熱性を有していない容器に比べ、内容物の水の温度が室温になるまでの時間が長くなることが分かった。
【0023】
得られた蓄熱性を有する容器に、10℃から50℃までの温度範囲で繰り返しの温度変化を1000回与えた後でも蓄熱材のしみ出しは観察されず、熱量の低下も見られなかった。
【0024】
実施例2
実施例1で得られたマイクロカプセルの内容物をn−テトラデカン(融点5℃)に変えて得られた粉体200重量部とポリ塩化ビニル100重量部を170℃に加熱して三本ロール混練り機でよく混ぜ合わせた後、射出成形機にて加工し、蓄熱性を有するシートを得た。
【0025】
得られた蓄熱性を有するシートをコンクリートの養生シートとして用いると、蓄熱性を有していないシートに比べ、水分の凍結が防がれるために冬季でのコンクリートの硬化時間が大幅に短縮されることが分かった。
【0026】
−20℃から20℃までの温度範囲で繰り返しの温度変化を1000回与えた後でも蓄熱材のしみ出しは観察されず、熱量の低下も見られなかった。
【0027】
比較例1
n−オクタデカン150重量部とポリエチレン100重量部を200℃に加熱して三本ロール混練り機で良く混ぜ合わせた後、射出成形機にて加工し、容器を得た。
【0028】
得られた容器に、10℃から50℃までの温度範囲で繰り返しの温度変化を1000回与えた後では蓄熱材のしみ出しによるベタつきが見られ、熱量は約50%低下した。
【0029】
比較例2
n−オクタデカン150重量部、光硬化性モノマー2,2−ビス(4−メタクリロキシジエトキシ)フェニルプロパン100重量部およびベンゾフェノン0.1重量部を混合し、紫外線照射装置にて紫外線を照射し硬化させてサンプルを得た。
【0030】
得られたサンプルに10℃から50℃までの温度範囲で繰り返しの温度変化を1000回与えた後では蓄熱材のしみ出しによるベタつきが見られ、熱量は約60%低下した。
【0031】
【発明の効果】
以上のように、本発明の樹脂組成物は成形性が良く、繰り返し利用しても高い蓄熱性能を維持しているので、例えば、容器、シートとして好適に使用される。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin composition having heat storage performance. By using the heat storage resin composition of the present invention for a container, a sheet or the like, the contents and the surface temperature can be maintained in an arbitrary temperature range for a long time.
[0002]
[Prior art]
Since the latent heat storage material can use not only sensible heat but also latent heat associated with phase change, it can store and release a large amount of heat in a narrow temperature range. The use of this for building materials, clothing, etc. is being studied. However, since the latent heat storage material causes a phase transition of melting and solidification, it is required to be sealed in a container in order to prevent the molten heat storage material from seeping out. For this reason, not only the labor and cost increase, but also there is a big problem in moldability due to a large limitation on the form for encapsulation during use.
[0003]
A method has been proposed in which a latent heat storage material is mixed with polyolefin (for example, see Patent Document 1) and a photocurable resin (for example, see Patent Document 2). However, in this method, the heat storage material needs to be a resin that does not dissolve, so there are not only great restrictions on the resin and heat storage material that can be used, but if the amount of heat storage material to be included is increased, There was a problem of exudation.
[0004]
[Patent Document 1]
JP-A-8-60143 [Patent Document 2]
Japanese Patent Laid-Open No. 10-306277
[Problems to be solved by the invention]
An object of the present invention is to provide a heat storage resin composition that has high moldability and resin selectivity and maintains high heat storage performance even after repeated use.
[0006]
[Means for Solving the Problems]
As a result of studying to solve the above problems, a resin composition having heat storage performance is obtained by containing microcapsules encapsulating a heat storage material in the resin.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The heat storage material included in the microcapsule of the present invention is used for the purpose of storing heat using latent heat accompanying phase transition. Specifically, any compound having a melting point or freezing point can be used. For example, preferred compounds include aliphatic hydrocarbons having 10 or more carbon atoms such as tetradecane, pentadecane, eicosane and docosan. . Since these aliphatic hydrocarbon compounds have a melting point that increases with an increase in the number of carbon atoms, it is possible to select an aliphatic hydrocarbon compound having a melting point according to the purpose, or to mix two or more kinds.
[0008]
The microcapsules used in the present invention are fine particles in which a heat storage material is encapsulated inside the film. In general, as a method of microencapsulating a heat storage material, an encapsulation method by a composite emulsion method (Japanese Patent Laid-Open No. 62-1452), a method of spraying a thermoplastic resin on the surface of the heat storage material particles (JP 62-45680). ), A method of forming a thermoplastic resin in the liquid on the surface of the heat storage material particles (JP-A 62-149334), a method of polymerizing and coating the monomer on the surface of the heat storage material particles (JP-A 62-225241), an interface The method described in the manufacturing method of the polyamide membrane | film | coat microcapsule by a polycondensation reaction (Unexamined-Japanese-Patent No. 2-258052) etc. can be used.
[0009]
Capsule membrane materials include polystyrene, polyacrylonitrile, polyamide, polyacrylamide, ethylcellulose, polyurethane, aminoplast resins, and core cells of gelatin and carboxymethylcellulose or gum arabic obtained by techniques such as interfacial polymerization and in situ methods. Synthetic or natural resins using the basation method are used, but microcapsules having a thermosetting resin film that is thermally stable because they are mixed with the resin at high temperatures are preferred, and even aliphatic hydrocarbon compounds are particularly good. A microcapsule using a urea formalin resin or melamine formalin resin film by an in-situ method for obtaining a quality microcapsule is preferable.
[0010]
The particle size of the microcapsules according to the present invention is preferably 10 μm or less, particularly preferably 5 μm or less in order to prevent breakage due to physical pressure during the processing. The particle size of the microcapsule is the type and concentration of the emulsifier used at the time of capsule preparation, the temperature of the emulsion during emulsification, the emulsification ratio (volume ratio of water phase to oil phase), atomization called emulsifier, disperser The operation conditions (stirring speed, time, etc.) of the apparatus are adjusted as appropriate to set the desired particle size. If the particle size is larger than this, it is not preferable because the microcapsules are easily broken by an external pressure, or when the specific gravity of the heat storage material is significantly different from that of the dispersion medium. The particle size can be measured, for example, with a Coulter counter (Coulter Electronics, UK, Coulter Multisizer).
[0011]
In the microcapsule, the microcapsule slurry is mixed with the resin component after drying various drying devices such as a drum dryer, a spray dryer, and a freeze dryer, and a granulating device. The apparatus used in mixing is not particularly limited. For example, microcapsules and other additives, resins, and the like can be mixed by a melt kneading method using a melt kneader such as a single screw or twin screw extruder, if necessary. Moreover, when a compounding agent is a liquid, it can also add to a twin-screw extruder on the way using a liquid supply pump etc., and can also mix.
[0012]
The resin used in the present invention may be any of thermoplastic and thermosetting properties, such as phenol resin, urea resin, melamine resin, urea-melamine cocondensation resin, polyurethane, polybutadiene, starches, hydroxyethyl cellulose, methyl cellulose. , Ethyl cellulose, carboxymethyl cellulose, gelatin, casein, polyvinyl alcohol, modified polyvinyl alcohol, polyacrylic acid, polymethacrylic acid, polyacrylic acid ester, polymethacrylic acid ester, polyacrylic acid soda, polyethylene terephthalate, polybutylene terephthalate, chlorinated poly Ether, allyl resin, furan resin, ketone resin, oxybenzoyl polyester, polyacetal, polyetheretherketone, polyethersulfone, polyimid , Polyamide, polyamideimide, polyaminobismaleimide, polymethylpentene, polyphenylene oxide, polyphenylene sulfide, polyphenylene sulfone, polysulfone, polyarylate, polyallyl sulfone, polybutadiene, polycarbonate, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, Polyvinyl acetate, benzoguanamine resin, bismaleimide triazine resin, alkyd resin, amino resin, epoxy resin, unsaturated polyester resin, styrene / butadiene copolymer, acrylonitrile / butadiene copolymer, methyl acrylate / butadiene copolymer, ethylene / Vinyl acetate copolymer, acrylic acid amide / acrylic acid ester copolymer, acrylic acid amide / acrylic acid ester / Methacrylic acid terpolymer, styrene / anhydrous alkali salts of maleic acid copolymers, alkali salts or ammonium salts of ethylene / maleic anhydride copolymer, and other various polyolefin resins. Two or more of these may be used in combination.
[0013]
The molding method of the resin composition of the present invention is not particularly limited, and molding methods generally used for each resin, for example, injection molding, blow molding, extrusion molding, vacuum molding, press molding, calendar molding, foaming Molding, etc. can be applied.
[0014]
When the resin precursor is water-soluble, the resin precursor aqueous solution and the capsule dispersion are mixed, and then cured by heat drying to obtain a resin composition.
[0015]
The mass ratio of the microcapsules and the resin of the present invention can be freely set, but the weight ratio of the microcapsules in the resin is 1 to 90%, preferably 5 to 80% so that the heat storage property can be exhibited as much as possible. preferable. If it is below this range, the heat storage property is poor, and if it is within this range, the strength and workability are lowered, which is not preferable.
[0016]
The resin composition of the present invention comprises a microcapsule encapsulating a heat storage material and a resin. In addition to these components, an anti-aging agent, an antioxidant, a plasticizer, a lubricant, a colorant, an organic pigment, Inorganic pigments, ultraviolet absorbers, heat stabilizers, light stabilizers, dispersants, fungicides, antistatic agents, flame retardants, tackifiers, curing agents, foaming agents, synthetic fibers, synthetic resins, glass fibers It is possible to add metal fibers, heat insulating materials, VOC removing materials, activated carbon, moisture absorbing / releasing agents, and the like.
[0017]
By using a heat storage resin composition containing a microcapsule containing a heat storage material as a container, it is possible to give the effect that the temperature of the contents of the container is difficult to rise or fall, so as a cold or heat insulation container Is available. Rather than containing the heat storage material alone in the resin, since the heat storage material does not ooze out and the amount of heat does not decrease even after repeated use, a container that maintains high heat storage performance even after repeated use is obtained. The heat storage material preferably has a melting point in the range of −10 to 60 ° C.
[0018]
By using a heat storage resin composition containing microcapsules enclosing a heat storage material as a sheet, it can be used as a heat storage wallpaper, a heat insulating sheet for soil, a curing sheet for concrete in winter, and the like. Rather than containing the heat storage material alone in the resin, the heat storage material does not ooze out and the amount of heat does not decrease even after repeated use, so a sheet that maintains high heat storage performance even after repeated use can be obtained. The heat storage material preferably has a melting point in the range of 0 to 40 ° C.
[0019]
【Example】
Hereinafter, although the implementation procedure of this invention is concretely demonstrated as an Example, this invention is not limited to a following example. The heat storage amount was measured using a differential calorimeter (DSC-7, manufactured by Perkin Elmer, USA), and the particle size was measured using a Coulter counter (Coulter Electronics, UK, Coulter Multisizer).
[0020]
Example 1
Preparation method of heat storage material microcapsule To 12 parts by weight of melamine powder, 15.4 parts by weight of 37% formaldehyde aqueous solution and 40 parts by weight of water were added, and the pH was adjusted to 8, followed by heating to about 70 ° C. and melamine-formaldehyde initial condensate An aqueous solution was obtained. While vigorously stirring 80 parts by weight of n-octadecane (melting point: 26 to 28 ° C.) as a heat storage material in 100 parts by weight of an aqueous sodium salt solution of 10% styrene-maleic anhydride copolymer adjusted to pH 4.5. The mixture was added and emulsified until the particle size became 3.0 μm.
[0021]
The total amount of the melamine-formaldehyde initial condensate aqueous solution was added to the obtained emulsion and stirred at 70 ° C. for 2 hours to obtain a heat storage material microcapsule dispersion with a particle size of 3.2 μm. This microcapsule dispersion was dried with a spray dryer to a moisture content of 3% or less to obtain a microcapsule powder. 200 parts by weight of this microcapsule powder and 100 parts by weight of polyethylene were heated to 200 ° C. and mixed well with a three-roll kneader, and then processed with an injection molding machine to obtain a container having heat storage properties.
[0022]
It was found that when cooled water was added and allowed to stand at room temperature, the time until the temperature of the water in the contents reached room temperature was longer than that of a container having no heat storage property.
[0023]
Even after the container having heat storage property was subjected to repeated temperature changes 1000 times in the temperature range from 10 ° C. to 50 ° C., no seepage of the heat storage material was observed and no decrease in the amount of heat was observed.
[0024]
Example 2
200 parts by weight of the powder obtained by changing the contents of the microcapsules obtained in Example 1 to n-tetradecane (melting point: 5 ° C.) and 100 parts by weight of polyvinyl chloride were heated to 170 ° C. and mixed with three rolls. After thoroughly mixing with a kneader, it was processed with an injection molding machine to obtain a sheet having heat storage properties.
[0025]
When the obtained sheet with heat storage property is used as a curing sheet for concrete, the freezing of moisture is prevented compared to the sheet without heat storage property, so the hardening time of concrete in winter is greatly shortened. I understood that.
[0026]
Even after a repeated temperature change in the temperature range from −20 ° C. to 20 ° C. was applied 1000 times, no seepage of the heat storage material was observed, and no decrease in the amount of heat was observed.
[0027]
Comparative Example 1
150 parts by weight of n-octadecane and 100 parts by weight of polyethylene were heated to 200 ° C. and mixed well with a three-roll kneader, and then processed with an injection molding machine to obtain a container.
[0028]
After the obtained container was repeatedly subjected to a temperature change 1000 times in the temperature range from 10 ° C. to 50 ° C., stickiness due to the exudation of the heat storage material was observed, and the amount of heat decreased by about 50%.
[0029]
Comparative Example 2
150 parts by weight of n-octadecane, 100 parts by weight of photocurable monomer 2,2-bis (4-methacryloxydiethoxy) phenylpropane and 0.1 part by weight of benzophenone are mixed and cured by irradiating with ultraviolet rays using an ultraviolet irradiation device. A sample was obtained.
[0030]
After the sample was subjected to repeated temperature changes 1000 times in the temperature range from 10 ° C. to 50 ° C., stickiness due to the seepage of the heat storage material was observed, and the amount of heat decreased by about 60%.
[0031]
【The invention's effect】
As described above, since the resin composition of the present invention has good moldability and maintains high heat storage performance even when it is repeatedly used, it is suitably used, for example, as a container or sheet.

Claims (2)

蓄熱材を内包するマイクロカプセルを樹脂内に含有することを特徴とする蓄熱性樹脂組成物。A heat storage resin composition comprising a microcapsule containing a heat storage material in a resin. マイクロカプセルの皮膜が熱硬化性の尿素ホルマリン樹脂、メラミンホルマリン樹脂皮膜であり、且つ体積平均粒子径が10μm以下である請求項1記載の蓄熱性樹脂組成物。The heat storage resin composition according to claim 1, wherein the film of the microcapsule is a thermosetting urea formalin resin or melamine formalin resin film, and the volume average particle diameter is 10 µm or less.
JP2003191318A 2003-07-03 2003-07-03 Heat storage resin composition Pending JP2005023229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003191318A JP2005023229A (en) 2003-07-03 2003-07-03 Heat storage resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003191318A JP2005023229A (en) 2003-07-03 2003-07-03 Heat storage resin composition

Publications (1)

Publication Number Publication Date
JP2005023229A true JP2005023229A (en) 2005-01-27

Family

ID=34188969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003191318A Pending JP2005023229A (en) 2003-07-03 2003-07-03 Heat storage resin composition

Country Status (1)

Country Link
JP (1) JP2005023229A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284031A (en) * 2005-03-31 2006-10-19 National Institute Of Advanced Industrial & Technology Heat storage device
JP2007031184A (en) * 2005-07-25 2007-02-08 Matsushita Electric Works Ltd Resin composition for artificial marble
JP2007137992A (en) * 2005-11-17 2007-06-07 Mitsubishi Paper Mills Ltd Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage microcapsule solid material
JP2008069293A (en) * 2006-09-15 2008-03-27 Achilles Corp Heat storage acrylic resin composition and heat storage sheet-like molding using it
JP2009079115A (en) * 2007-09-26 2009-04-16 Achilles Corp Heat-storable urethane resin sheet molding
JP2014040761A (en) * 2012-08-23 2014-03-06 Masaru Hiyamizu Heat insulation construction building material and storage battery heat insulation material
JP2016145674A (en) * 2015-02-06 2016-08-12 イビデン株式会社 Structure and manufacturing method of the same
JP6041078B1 (en) * 2015-06-23 2016-12-07 Dic株式会社 Thermal storage molded body, thermal storage laminate, and method for manufacturing thermal storage molded body
JP6037192B1 (en) * 2015-06-23 2016-12-07 Dic株式会社 Thermal storage molded body, thermal storage laminate, and method for manufacturing thermal storage molded body
JP2016217634A (en) * 2015-05-21 2016-12-22 イビデン株式会社 Structure and manufacturing method of the same
WO2018207876A1 (en) 2017-05-12 2018-11-15 日立化成株式会社 Resin composition, heat storage material, and commodity
JP2020088176A (en) * 2018-11-26 2020-06-04 東洋インキScホールディングス株式会社 Electro-thermal power generation device
KR20210038438A (en) 2018-07-25 2021-04-07 쇼와덴코머티리얼즈가부시끼가이샤 Acrylic resin and its manufacturing method, resin composition set, heat storage material and article
US11965048B2 (en) 2018-07-25 2024-04-23 Resonac Corporation Acrylic resin, producing method thereof, resin composition set, heat storage material, and article

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284031A (en) * 2005-03-31 2006-10-19 National Institute Of Advanced Industrial & Technology Heat storage device
JP4714923B2 (en) * 2005-03-31 2011-07-06 独立行政法人産業技術総合研究所 Heat storage device
JP2007031184A (en) * 2005-07-25 2007-02-08 Matsushita Electric Works Ltd Resin composition for artificial marble
JP2007137992A (en) * 2005-11-17 2007-06-07 Mitsubishi Paper Mills Ltd Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage microcapsule solid material
JP2008069293A (en) * 2006-09-15 2008-03-27 Achilles Corp Heat storage acrylic resin composition and heat storage sheet-like molding using it
JP2009079115A (en) * 2007-09-26 2009-04-16 Achilles Corp Heat-storable urethane resin sheet molding
JP2014040761A (en) * 2012-08-23 2014-03-06 Masaru Hiyamizu Heat insulation construction building material and storage battery heat insulation material
JP2016145674A (en) * 2015-02-06 2016-08-12 イビデン株式会社 Structure and manufacturing method of the same
JP2016217634A (en) * 2015-05-21 2016-12-22 イビデン株式会社 Structure and manufacturing method of the same
JP6037192B1 (en) * 2015-06-23 2016-12-07 Dic株式会社 Thermal storage molded body, thermal storage laminate, and method for manufacturing thermal storage molded body
JP6041078B1 (en) * 2015-06-23 2016-12-07 Dic株式会社 Thermal storage molded body, thermal storage laminate, and method for manufacturing thermal storage molded body
WO2016208573A1 (en) * 2015-06-23 2016-12-29 Dic株式会社 Heat storage molded body, heat storage laminate, and heat storage molded body production method
WO2016208572A1 (en) * 2015-06-23 2016-12-29 Dic株式会社 Heat storage molded body, heat storage laminate, and heat storage molded body production method
CN107614653A (en) * 2015-06-23 2018-01-19 Dic株式会社 The manufacture method of accumulation of heat formed body, accumulation of heat layered product and accumulation of heat formed body
WO2018207876A1 (en) 2017-05-12 2018-11-15 日立化成株式会社 Resin composition, heat storage material, and commodity
KR20200007785A (en) 2017-05-12 2020-01-22 히타치가세이가부시끼가이샤 Resin Compositions, Heat Storage Materials, and Articles
US11352466B2 (en) 2017-05-12 2022-06-07 Showa Denko Materials Co., Ltd. Resin composition, heat storage material, and commodity
KR20210038438A (en) 2018-07-25 2021-04-07 쇼와덴코머티리얼즈가부시끼가이샤 Acrylic resin and its manufacturing method, resin composition set, heat storage material and article
US11965048B2 (en) 2018-07-25 2024-04-23 Resonac Corporation Acrylic resin, producing method thereof, resin composition set, heat storage material, and article
JP2020088176A (en) * 2018-11-26 2020-06-04 東洋インキScホールディングス株式会社 Electro-thermal power generation device

Similar Documents

Publication Publication Date Title
Geng et al. Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing
JP2005023229A (en) Heat storage resin composition
Wang et al. Fabrication and characterization of microcapsulated phase change materials with an additional function of thermochromic performance
JP5351758B2 (en) Microcapsules modified with polyelectrolytes
CN1946475B (en) Particulate compositions and their manufacture
Zhu et al. Morphological control and thermal properties of nanoencapsulated n-octadecane phase change material with organosilica shell materials
CN105399889B (en) A kind of hydridization wall material Nano capsule of phase-changing energy storage material and preparation method thereof
Qiu et al. Preparation, thermal properties and thermal reliabilities of microencapsulated n-octadecane with acrylic-based polymer shells for thermal energy storage
Beyhan et al. Robust microencapsulated phase change materials in concrete mixes for sustainable buildings
KR970008262B1 (en) Global shaped capsule of thermal energy storage material &amp; process
Wu et al. Microencapsulation of 1-hexadecanol as a phase change material with reversible thermochromic properties
CN104449590A (en) Phase-change energy-storage material nanocapsule and preparation method thereof
Su et al. Influence of temperature on the deformation behaviors of melamine–formaldehyde microcapsules containing phase change material
CN105924569B (en) A kind of preparation method of multinuclear coated complex microsphere
Karthikeyan et al. Review of thermal energy storage of micro-and nanoencapsulated phase change materials
Wang et al. A facile approach to synthesize microencapsulated phase change materials embedded with silver nanoparicle for both thermal energy storage and antimicrobial purpose
Döğüşcü et al. Poly (styrene-co-divinylbenzene-co-acrylamide)/n-octadecane microencapsulated phase change materials for thermal energy storage
KR101494961B1 (en) Polymer Fiber Embedded Complex Capsule Containing Phase Change Material and Method for Preparing the Same
Qiu et al. Preparation and thermal properties of microencapsulated paraffin with polyurea/acrylic resin hybrid shells as phase change energy storage materials
KR20200018307A (en) Phase change energy storage microcapsule preparation and use thereof
CN106046229A (en) Phase change microsphere and preparation method thereof
Qiu et al. Fabrication, thermal property and thermal reliability of microencapsulated paraffin with ethyl methacrylate-based copolymer shell
Rao et al. Preparation and thermal properties of microencapsulated phase change material for enhancing fluid flow heat transfer
Paçacı et al. Poly (boron-urethane) shell microencapsulated N-octadecane thermal energy storage materials for extended durability
Wang et al. Tetradecyl octadecanoate phase change microcapsules incorporated with hydroxylated boron nitrides for reliable and durable heat energy storage