JP2005022943A - Method for manufacturing optical fiber - Google Patents

Method for manufacturing optical fiber Download PDF

Info

Publication number
JP2005022943A
JP2005022943A JP2003270492A JP2003270492A JP2005022943A JP 2005022943 A JP2005022943 A JP 2005022943A JP 2003270492 A JP2003270492 A JP 2003270492A JP 2003270492 A JP2003270492 A JP 2003270492A JP 2005022943 A JP2005022943 A JP 2005022943A
Authority
JP
Japan
Prior art keywords
optical fiber
hole
holes
diameter
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003270492A
Other languages
Japanese (ja)
Inventor
Katsusuke Tajima
克介 田嶋
Takeshi Shu
健 周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003270492A priority Critical patent/JP2005022943A/en
Publication of JP2005022943A publication Critical patent/JP2005022943A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • C03B37/01231Removal of preform material to form a longitudinal hole, e.g. by drilling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/42Photonic crystal fibres, e.g. fibres using the photonic bandgap PBG effect, microstructured or holey optical fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a low-loss optical fiber having a long size and a uniform dispersion property. <P>SOLUTION: Eighteen holes 13, each having an inner diameter of 3 mm, are perforated at a prescribed interval in a glass rod 14 by using an ultrasonic drill 9. Then, capillaries 16, each having a hole diameter of 3 mm and an outer diameter of 3.5 mm, are arranged at the outer periphery of the glass rod 14. In a PCF, a defective part 15 free from the hole is arranged at the central part so as to impart waveguide property. After cleaning the inner faces of the holes 13 with hydrofluoric acid and drying the faces, the glass rod 14 having the perforated holes 13 is heated in an electrical furnace and drawn into an optical fiber having a diameter of 125 μm. After drawing the optical fiber, the optical fiber is cut, and the hole diameters d and the intervals A between holes are measured with an electron microscope. The optical fiber having perforated holes analogous to the shape of the holes of the original glass rod having the perforated holes can be obtained. Further, it is possible to process several to several hundreds of holes almost free from deviation in the diameter at an equal hole interval. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光ファイバの製造方法に関し、より詳細には、光通信ネットワーク及び光信号処理に用いられる伝送媒体である光ファイバの製造方法に関する。   The present invention relates to an optical fiber manufacturing method, and more particularly to an optical communication network and an optical fiber manufacturing method as a transmission medium used for optical signal processing.

図1は、従来の光ファイバの一般的な構造を示す図で、図中符号1は光ファイバのコア部、2は光ファイバのクラッド部を示している。図1に示すように、従来の光ファイバは、屈折率の高いコア部1の外側に、屈折率の低いクラッド部2を配置した構造のものであった。   FIG. 1 is a diagram showing a general structure of a conventional optical fiber. In FIG. 1, reference numeral 1 denotes a core portion of the optical fiber, and 2 denotes a cladding portion of the optical fiber. As shown in FIG. 1, the conventional optical fiber has a structure in which a clad portion 2 having a low refractive index is disposed outside a core portion 1 having a high refractive index.

図2は、従来の光ファイバのうち、PCF(Photonic Crystal Fibers)を示す図で、図中符号3は孔、4は純石英ガラス、5は欠陥部を示している。図2に示すように、単一のガラス、例えば、純石英ガラス4に、周期的に孔3を開けた構造となっている。隣接する孔3の間隔は全て等しくなっている。ただし、この光ファイバの中心部には欠陥部5、すなわち、孔3の無い部分が配置されている。この欠陥部5がコアとして動作して光を閉じ込めるように機能する(例えば、非特許文献1参照)。   FIG. 2 is a view showing PCF (Photonic Crystal Fibers) among conventional optical fibers, in which 3 is a hole, 4 is pure silica glass, and 5 is a defect. As shown in FIG. 2, a hole is periodically formed in a single glass, for example, pure quartz glass 4. The intervals between adjacent holes 3 are all equal. However, the defect portion 5, that is, the portion without the hole 3 is arranged at the center of the optical fiber. The defect 5 functions as a core and functions to confine light (for example, see Non-Patent Document 1).

図3は、図2に示した従来のPCFの製造方法を示す図で、図中符号6はガラスロッド、7は内側ガラスパイプ、8は外側ガラスパイプを示している。中心部には孔3の開いていない六角形のガラスロッド6を設け、その外側には孔3の開いた六角形の内側ガラスパイプ7を設け、これらをさらに外側ガラスパイプ8の中に挿入した後、約200℃の高温で光ファイバに線引きしていた。   FIG. 3 is a view showing a method of manufacturing the conventional PCF shown in FIG. 2, in which reference numeral 6 denotes a glass rod, 7 denotes an inner glass pipe, and 8 denotes an outer glass pipe. A hexagonal glass rod 6 without a hole 3 is provided at the center, and a hexagonal inner glass pipe 7 with a hole 3 is provided outside thereof, and these are further inserted into the outer glass pipe 8. Later, the optical fiber was drawn at a high temperature of about 200 ° C.

J.C.Knight, T.A.Birks, P.St.J.Russell, and D.M.Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,"Opt.Lett.21, 1547-1549(1996)J.C.Knight, T.A.Birks, P.St.J.Russell, and D.M.Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996)

しかしながら、上述した従来の製造方法では、以下のような問題点がある。
1)光ファイバ化する時、六角形のガラスロッドが熱により変形するため、孔の間隔や大きさが変形し、設計どおりの孔にならず、歩留まりよく光ファイバを作製することが出来なかった。
2)ガラスパイプを束ねて加熱延伸するとき、ガラスパイプの孔径や位置などが初期値から大きく変形するため、任意の位置に、任意の大きさの孔を開けることが出来なかった。
3)六角柱のガラスパイプを作製する際に、ガラスパイプの側面を研削加工する必要があるが、加工時の傷の発生及びガラスパイプを束ねた時の界面の不整合がどうしても避けられない。そのため、束ねたガラスパイプを一体化する時、傷が消滅する前に気泡としてガラスの内部に取り込まれてしまう。これはPCFの不要な孔を付加することになるためPCF作製上大きな問題となっていた。
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、長尺かつ分散特性が一定で、低損失の光ファイバの製造方法を提供することにある。
However, the conventional manufacturing method described above has the following problems.
1) Since the hexagonal glass rod is deformed by heat when it is made into an optical fiber, the interval and size of the holes are deformed, and the holes are not designed as designed, so that an optical fiber cannot be manufactured with a high yield. .
2) When a glass pipe is bundled and heated and stretched, the hole diameter and position of the glass pipe are greatly deformed from the initial values, and therefore, a hole of an arbitrary size cannot be formed at an arbitrary position.
3) When manufacturing a hexagonal glass pipe, it is necessary to grind the side surface of the glass pipe. However, the occurrence of scratches during processing and inconsistencies in the interface when the glass pipes are bundled are unavoidable. Therefore, when the bundled glass pipes are integrated, they are taken into the glass as bubbles before the scratches disappear. This adds a hole in the PCF, which has been a big problem in PCF production.
The present invention has been made in view of such problems, and an object of the present invention is to provide a method for producing a long, low-loss optical fiber having a constant dispersion characteristic.

本発明は、このような目的を達成するためになされたもので、請求項1に記載の発明は、光の導波されるコア部と、該コア部の周囲に配置され、光の波長と同程度の直径の複数個の空隙からなる光ファイバにおいて、該光ファイバの元になる前記空隙を超音波ドリルで数個〜数百個程度開けたガラスロッドの外周にキャピラリを配置した後、前記光ファイバに線引きすることを特徴とする。   The present invention has been made in order to achieve such an object. The invention according to claim 1 is directed to a core portion through which light is guided, and a wavelength of light disposed around the core portion. In an optical fiber composed of a plurality of gaps having the same diameter, after arranging a capillary on the outer periphery of a glass rod in which several to several hundreds of the gaps that are the basis of the optical fiber are opened by an ultrasonic drill, The optical fiber is drawn.

また、請求項2に記載の発明は、請求項1に記載の発明において、前記孔を開けたガラスロッドを加熱延伸後、該ガラスロッドの外側にガラスパイプを被嵌した後、前記光ファイバに線引きすることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the glass rod having the holes is heated and stretched, and a glass pipe is fitted outside the glass rod, and then the optical fiber is attached. It is characterized by drawing.

また、請求項3に記載の発明は、請求項1に記載の発明において、前記孔を開けたガラスの外側に、クラッド部となるガラス微粒子を形成し、その後に加熱して透明ガラス化することを特徴とする。   Further, the invention described in claim 3 is the invention described in claim 1, wherein glass fine particles serving as a clad portion are formed on the outside of the glass having the holes formed therein, and then heated to form a transparent glass. It is characterized by.

このように、本発明は、光ファイバの出発になるガラスロッドに、超音波ドリルで孔を開ける。例えば、超音波ドリルでガラスに内径3mmの孔を開ける場合には、内径3±0.01mmの精度で開けることができる。孔の数は10個前後である。その後、外周部にキャピラリを配置して高温で一体化し、その後に光ファイバ化する。従って、孔開けの数が従来の数十から数百に比べて、10分の1程度になるため、孔開け加工時間が少なくなり、コスト削減に役立つ。   Thus, in the present invention, a hole is made with an ultrasonic drill in a glass rod that is a starting point of an optical fiber. For example, when a hole with an inner diameter of 3 mm is opened in a glass with an ultrasonic drill, the hole can be opened with an accuracy of an inner diameter of 3 ± 0.01 mm. The number of holes is around 10. After that, a capillary is disposed on the outer peripheral portion and integrated at a high temperature, and then converted into an optical fiber. Therefore, since the number of holes is about one-tenth compared with the conventional tens to hundreds, the time for drilling is reduced, which contributes to cost reduction.

また、孔開きロッドを加熱炉で延伸加工する場合、電気炉の温度分布を均一に保てば孔の形状は線引きした後もほとんど変化しない。従って、光ファイバ化後の孔形状を設計どおりに維持できるため、設計どおりの特性の光ファイバを歩留まりよく作成できる。
本発明の利用分野としては、分散を補償し、非線形効果を利用したデバイス、偏波を保持する光ファイバなどがある。
Further, when the perforated rod is stretched in a heating furnace, the shape of the hole hardly changes even after the wire is drawn if the temperature distribution of the electric furnace is kept uniform. Therefore, since the hole shape after the optical fiber can be maintained as designed, an optical fiber having the characteristics as designed can be produced with high yield.
Fields of application of the present invention include devices that compensate for dispersion and use nonlinear effects, and optical fibers that maintain polarization.

以上説明したように、本発明によれば、光の導波されるコア部と、このコア部の周囲に配置され、光の波長と同程度の直径の複数個の空隙からなる光ファイバにおいて、光ファイバの元になる前記空隙を超音波ドリルで数個〜数百個程度開けたガラスロッドの外周にキャピラリを配置した後、光ファイバに線引きするので、径の変化の少ない(μm程度)正確な孔を数個〜数百個、孔間隔を等しく加工できる。この後、通常の線引きを行なうことにより、孔の大きさ間隔などは、初期の孔形状と相似変形するため、設計どおりの光ファイバを容易に作製することが出来る。   As described above, according to the present invention, in an optical fiber comprising a core portion where light is guided and a plurality of air gaps arranged around the core portion and having the same diameter as the wavelength of light, After the capillary is placed on the outer periphery of a glass rod with several to several hundreds of gaps, which are the basis of the optical fiber, drawn to the optical fiber, it is drawn to the optical fiber, so there is little change in diameter (about μm). Several to several hundreds of holes, and the hole interval can be equally processed. After that, by performing normal drawing, the hole size interval and the like are deformed similarly to the initial hole shape, so that an optical fiber as designed can be easily manufactured.

また、孔と孔の間には、ガラスの接続部が存在しないため、構造不整による損失が発生しない。このため、設計どおりに長尺の低損失の光ファイバを歩留まりよく製造できる。   Moreover, since there is no glass connection between the holes, there is no loss due to structural irregularities. For this reason, a long, low-loss optical fiber can be manufactured with high yield as designed.

以下、図面を参照して本発明の実施の形態について説明する。
PCFの分散特性やMFD特性などは、孔径d及び孔間隔Aによって決まる。PCFを歩留まりよく製造するためには、孔径d及び孔間隔Aなどの再現性が重要である。また、低損失のPCFを実現するためには、1)出発となるガラスの損失(レーリー散乱損失、赤外吸収損失など)が低いこと、2)孔の形状を光ファイバ長手方向に維持すること、3)孔の面粗さを少なくすること、4)孔内面および内部の不純物を低減することなどが必要になる。
Embodiments of the present invention will be described below with reference to the drawings.
The dispersion characteristics and MFD characteristics of PCF are determined by the hole diameter d and the hole interval A. In order to manufacture PCF with high yield, reproducibility such as hole diameter d and hole interval A is important. In order to realize a low-loss PCF, 1) the starting glass loss (Rayleigh scattering loss, infrared absorption loss, etc.) is low, and 2) the hole shape is maintained in the longitudinal direction of the optical fiber. 3) It is necessary to reduce the surface roughness of the holes, and 4) to reduce impurities inside and inside the holes.

図4は、d/A=0.5とした場合の分散の波長依存性を示す図である。
孔間隔Aが1.6μmの場合の零分散波長は1.2μm、Aが1.9μmの場合には零分散波長は1.68μmとなる。孔間隔Aが0.3μm増加すると、零分散波長は0.48μm増加する。
FIG. 4 is a diagram showing the wavelength dependence of dispersion when d / A = 0.5.
When the hole interval A is 1.6 μm, the zero dispersion wavelength is 1.2 μm, and when A is 1.9 μm, the zero dispersion wavelength is 1.68 μm. As the hole spacing A increases by 0.3 μm, the zero dispersion wavelength increases by 0.48 μm.

図5は、A=1.6μmとした場合の分散の波長依存性を示す図である。
例えば、孔径dが0.8μmから0.9μmに増加すると零分散波長は1.2μmから1.4μmに変化する。すなわち、孔径dが11%変化すると零分散波長は200nm変化する。従って、零分散波長の変化を10nm程度におさえるためには0.5%以下の孔径変動にしなければならない。
FIG. 5 is a diagram showing the wavelength dependence of dispersion when A = 1.6 μm.
For example, when the pore diameter d increases from 0.8 μm to 0.9 μm, the zero dispersion wavelength changes from 1.2 μm to 1.4 μm. That is, when the pore diameter d changes by 11%, the zero dispersion wavelength changes by 200 nm. Therefore, in order to suppress the change of the zero dispersion wavelength to about 10 nm, the pore diameter variation must be 0.5% or less.

図6(a),(b)は、本発明に係る光ファイバの製造方法の実施例1を示す図で、図(b)は図(a)の断面図である。図中符号9は超音波ドリル、13は孔、14はガラスロッド、15は欠陥部、16はキャピラリを示している。外径40mm、長さ200mmのガラスロッド14に、超音波ドリル9で内径3mmの孔13を5mm間隔で18個開けた。次に、そのガラスロッド14の外周に孔径3mm、外径3.5mmのキャピラリ16を配置した。   FIGS. 6A and 6B are views showing Example 1 of the optical fiber manufacturing method according to the present invention, and FIG. 6B is a cross-sectional view of FIG. In the figure, reference numeral 9 is an ultrasonic drill, 13 is a hole, 14 is a glass rod, 15 is a defective portion, and 16 is a capillary. Eighteen holes 13 having an inner diameter of 3 mm were formed in the glass rod 14 having an outer diameter of 40 mm and a length of 200 mm with an ultrasonic drill 9 at intervals of 5 mm. Next, a capillary 16 having a hole diameter of 3 mm and an outer diameter of 3.5 mm was disposed on the outer periphery of the glass rod 14.

このキャピラリ16を併用することにより、孔開けガラスロッド14における孔数は18本となる。従来は、例えば、光をコア部に有効に閉じ込めるために、60本以上の孔を開ける必要があった。このため、本発明では、この孔開けに要する時間が3分の1以下に低減でき、従来の孔開けにかかる時間を大幅に短縮することができた。また、光はコア部15を伝搬するが、その外側のキャピラリ16を配置した部分は、光は中心部に比べて十分減衰しているため、キャピラリ16の精度や汚染などによる過剰損失の発生することはなかった。   By using this capillary 16 in combination, the number of holes in the perforated glass rod 14 is 18. Conventionally, for example, in order to effectively confine light in the core portion, it was necessary to open 60 or more holes. For this reason, in the present invention, the time required for drilling can be reduced to one third or less, and the time required for conventional drilling can be greatly shortened. Further, although light propagates through the core portion 15, the portion where the outer capillary 16 is disposed is sufficiently attenuated as compared with the central portion, so that excessive loss occurs due to the accuracy and contamination of the capillary 16. It never happened.

PCFでは、導波特性をもたせるために中心部に孔のない欠陥部15を配置している。孔13を開けた後のガラスロッド14の一部を切断して、孔13の形状を測定した。孔径dは3mm±10μm以内であった。また、孔間隔Aは5mm±10μm以内であった。   In the PCF, a defect portion 15 having no hole is disposed in the center portion in order to provide waveguide characteristics. A part of the glass rod 14 after the hole 13 was opened was cut, and the shape of the hole 13 was measured. The hole diameter d was within 3 mm ± 10 μm. The hole interval A was within 5 mm ± 10 μm.

次に、孔13の内面をフッ酸にて洗浄後乾燥させた後、この孔13の開いたガラスロッド14を電気炉で加熱し、125μm径の光ファイバに線引きした。作製した光ファイバ長は10kmであった。光ファイバ線引き後、その光ファイバを切断し、電子顕微鏡で孔径d及び孔間隔Aを測定した。光ファイバ線引き後の孔径dは9.4μmであり、孔間隔Aは15.6μmであり、元の孔の開いたガラスロッドにおける孔の形状と相似の孔開き光ファイバが実現でき、光ファイバの全長にわたって形状の変化はなかった。   Next, the inner surface of the hole 13 was washed with hydrofluoric acid and dried, and then the glass rod 14 having the hole 13 was heated in an electric furnace and drawn into an optical fiber having a diameter of 125 μm. The length of the produced optical fiber was 10 km. After drawing the optical fiber, the optical fiber was cut, and the hole diameter d and the hole interval A were measured with an electron microscope. The hole diameter d after drawing the optical fiber is 9.4 μm, the hole interval A is 15.6 μm, and a perforated optical fiber similar to the shape of the hole in the original glass hole can be realized. There was no change in shape over the entire length.

また、PCFでは、中心部の孔で光を閉じ込めるため、中心の孔を高精度にまた、クラックがない場合状態で開けてしまえば、外側の孔は伝送特性に大きな影響は与えないことが知られている。この光ファイバでは光損失は波長1.3μmで1dB/km、波長1.55μmでは0.5dB/kmと低損失であった。   In addition, in PCF, light is confined in the hole at the center, so if the hole at the center is opened with high accuracy and in the absence of cracks, the outer hole does not significantly affect the transmission characteristics. It has been. In this optical fiber, the optical loss was as low as 1 dB / km at a wavelength of 1.3 μm and 0.5 dB / km at a wavelength of 1.55 μm.

図7は、本発明に係る光ファイバの製造方法の実施例2を説明するための図で、図6と同じ機能を有する構成要素には同一の符号を付してある。外径40mm、長さ200mmのガラスロッドに、孔径dを1.4mm、孔間隔Aを2.9mmで18個の孔13を開けた。   FIG. 7 is a view for explaining Example 2 of the optical fiber manufacturing method according to the present invention, and the same reference numerals are given to components having the same functions as those in FIG. 18 holes 13 with a hole diameter d of 1.4 mm and a hole interval A of 2.9 mm were formed in a glass rod having an outer diameter of 40 mm and a length of 200 mm.

このようにして作製した孔開きガラスロッド14を洗浄して乾燥させた後、バーナーで外径8mmに延伸後、その後、外周にキャピラリ16を72本配置して、孔数を90個とした。図7に示すように、ガラスロッド14とキャピラリ16を共に、外径40mm、内径12mmのガラスパイプ10に挿入し、125μm径の光ファイバに線引きした。光ファイバ長は5kmであり、光ファイバ線引き後の孔径は0.9μm、孔間隔は1.8μmであり、光ファイバ全長で一定であった。損失は波長1.3μmで1dB/km、波長1.55μmでは0.6dB/kmであった。   The perforated glass rod 14 thus produced was washed and dried, and then stretched to an outer diameter of 8 mm with a burner. Thereafter, 72 capillaries 16 were arranged on the outer periphery to make the number of holes 90. As shown in FIG. 7, both the glass rod 14 and the capillary 16 were inserted into a glass pipe 10 having an outer diameter of 40 mm and an inner diameter of 12 mm, and drawn into an optical fiber having a diameter of 125 μm. The optical fiber length was 5 km, the hole diameter after drawing the optical fiber was 0.9 μm, the hole interval was 1.8 μm, and the entire length of the optical fiber was constant. The loss was 1 dB / km at a wavelength of 1.3 μm, and 0.6 dB / km at a wavelength of 1.55 μm.

このようにして作製したPCFの零分散波長は1.55μmであり、波長1.55μmでの分散スロープは−0.1ps/km/nmであった。このPCFを用いて1.55μm零分散の分散シフトファイバの波長1.55μmでの分散を補償した。その結果、波長1.5〜1.6μmでの分散値は±0.1ps/km/nmとすることができた。 The zero dispersion wavelength of the PCF thus produced was 1.55 μm, and the dispersion slope at the wavelength of 1.55 μm was −0.1 ps / km / nm 2 . This PCF was used to compensate the dispersion at a wavelength of 1.55 μm of a dispersion-shifted fiber having a 1.55 μm zero dispersion. As a result, the dispersion value at a wavelength of 1.5 to 1.6 μm could be ± 0.1 ps / km / nm 2 .

図8は、本発明に係る光ファイバの製造方法の実施例3を説明するための図で、図中符号11はバーナー、12はガラス微粒子を示している。なお、図7と同じ機能を有する構成要素については同一の符号を付してある。上述した実施例1に示すように、超音波ドリルを用いて、外径40mm、孔径1.3mm、孔間隔2.8mmの孔18個をあけた。   FIG. 8 is a view for explaining Example 3 of the optical fiber manufacturing method according to the present invention, in which reference numeral 11 indicates a burner, and 12 indicates glass particles. In addition, the same code | symbol is attached | subjected about the component which has the same function as FIG. As shown in Example 1 described above, 18 holes having an outer diameter of 40 mm, a hole diameter of 1.3 mm, and a hole interval of 2.8 mm were drilled using an ultrasonic drill.

この孔開きガラスロッド14を外径10mmに延伸後、VAD法を用いてガラス合成用バーナー11で、延伸した孔開きガラスロッド14の外周部にガラス微粒子12を形成した後、電気炉内で1700℃に加熱し、外径50mm、孔径0.33mmの出発ガラス母材を形成した。この孔開きガラス材を光ファイバ線引き炉により加熱して125μm径の光ファイバ10kmを作製した。   After stretching the apertured glass rod 14 to an outer diameter of 10 mm, glass fine particles 12 are formed on the outer peripheral portion of the apertured glass rod 14 by the glass synthesis burner 11 using the VAD method, and then 1700 in an electric furnace. Heated to ° C., a starting glass base material having an outer diameter of 50 mm and a hole diameter of 0.33 mm was formed. This perforated glass material was heated by an optical fiber drawing furnace to produce an optical fiber having a diameter of 125 μm and 10 km.

光ファイバ線引き後の孔径dは0.83μm、孔間隔Aは1.8μmであり、作製した光ファイバの全長に渡って孔径d及び孔間隔Aは一定であった。また、作製した光ファイバの損失は波長1.3μmで2dB/km、波長1.55μmでは0.5dB/kmであった。零分散波長は1.31μm、波長1.31μmでの分散スロープは−0.1ps/km/nmであった。 The hole diameter d after drawing the optical fiber was 0.83 μm, and the hole interval A was 1.8 μm. The hole diameter d and the hole interval A were constant over the entire length of the manufactured optical fiber. The loss of the manufactured optical fiber was 2 dB / km at a wavelength of 1.3 μm, and 0.5 dB / km at a wavelength of 1.55 μm. The zero dispersion wavelength was 1.31 μm, and the dispersion slope at the wavelength of 1.31 μm was −0.1 ps / km / nm 2 .

この光ファイバを用いて従来型のSMFの波長1.3〜1.4μmでの分散を補償した。その結果、波長1.3〜1.4μmでの分散値は±0.1ps/km/nmとすることができた。 This optical fiber was used to compensate for dispersion of a conventional SMF at a wavelength of 1.3 to 1.4 μm. As a result, the dispersion value at a wavelength of 1.3 to 1.4 μm could be ± 0.1 ps / km / nm 2 .

本発明は、光通信ネットワーク及び光信号処理に用いられる伝送媒体である光ファイバの製造方法に関し、長尺かつ分散特性が一定で、低損失の光ファイバの製造方法を提供することができる。   The present invention relates to an optical fiber manufacturing method that is a transmission medium used for an optical communication network and optical signal processing, and can provide a method for manufacturing an optical fiber that is long, has constant dispersion characteristics, and has low loss.

従来の光ファイバの一般的な構造を示す図である。It is a figure which shows the general structure of the conventional optical fiber. 従来の光ファイバのうち、PCF(Photonic Crystal Fibers)を示す図である。It is a figure which shows PCF (Photonic Crystal Fibers) among the conventional optical fibers. 図2に示した従来のPCFの製造方法を示す図である。It is a figure which shows the manufacturing method of the conventional PCF shown in FIG. d/A=0.5とした場合の分散の波長依存性を示す図である。It is a figure which shows the wavelength dependence of dispersion | distribution in case d / A = 0.5. A=1.6μmとした場合の分散の波長依存性を示す図である。It is a figure which shows the wavelength dependence of dispersion | distribution at the time of setting A = 1.6micrometer. 本発明に係る光ファイバの製造方法の実施例1を示す図で、(b)は(a)の断面図である。It is a figure which shows Example 1 of the manufacturing method of the optical fiber which concerns on this invention, (b) is sectional drawing of (a). 本発明に係る光ファイバの製造方法の実施例2を説明するための図である。It is a figure for demonstrating Example 2 of the manufacturing method of the optical fiber which concerns on this invention. 本発明に係る光ファイバの製造方法の実施例3を説明するための図である。It is a figure for demonstrating Example 3 of the manufacturing method of the optical fiber which concerns on this invention.

符号の説明Explanation of symbols

1 光ファイバのコア部
2 光ファイバのクラッド部
3 孔
4 純石英ガラス
5 欠陥部
6 ガラスロッド
7 内側ガラスパイプ
8 外側ガラスパイプ
9 超音波ドリル
10 ガラスパイプ
11 バーナー
12 ガラス微粒子
13 孔
14 ガラスロッド
15 欠陥部
16 キャピラリ
DESCRIPTION OF SYMBOLS 1 Core part of optical fiber 2 Clad part of optical fiber 3 Hole 4 Pure quartz glass 5 Defect part 6 Glass rod 7 Inner glass pipe 8 Outer glass pipe 9 Ultrasonic drill 10 Glass pipe 11 Burner 12 Glass particulate 13 Hole 14 Glass rod 15 Defect 16 Capillary

Claims (3)

光の導波されるコア部と、該コア部の周囲に配置され、光の波長と同程度の直径の複数個の空隙からなる光ファイバにおいて、該光ファイバの元になる前記空隙を超音波ドリルで数個〜数百個程度開けたガラスロッドの外周にキャピラリを配置した後、前記光ファイバに線引きすることを特徴とする光ファイバの製造方法。   In an optical fiber composed of a core portion where light is guided and a plurality of voids having a diameter of the same diameter as the wavelength of the light disposed around the core portion, an ultrasonic wave is applied to the void that is the source of the optical fiber. A method of manufacturing an optical fiber, comprising: arranging a capillary on the outer periphery of a glass rod opened by several to several hundreds with a drill, and then drawing the optical fiber. 前記孔を開けたガラスロッドを加熱延伸後、該ガラスロッドの外側にガラスパイプを被嵌した後、前記光ファイバに線引きすることを特徴とする請求項1に記載の光ファイバの製造方法。   2. The method of manufacturing an optical fiber according to claim 1, wherein the glass rod having the hole is heated and stretched, and a glass pipe is fitted on the outside of the glass rod, and then drawn to the optical fiber. 前記孔を開けたガラスの外側に、クラッド部となるガラス微粒子を形成し、その後に加熱して透明ガラス化することを特徴とする請求項1に記載の光ファイバの製造方法。
The method for producing an optical fiber according to claim 1, wherein glass fine particles serving as a clad portion are formed outside the glass having the holes formed therein, and then heated to form a transparent glass.
JP2003270492A 2003-07-02 2003-07-02 Method for manufacturing optical fiber Pending JP2005022943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003270492A JP2005022943A (en) 2003-07-02 2003-07-02 Method for manufacturing optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003270492A JP2005022943A (en) 2003-07-02 2003-07-02 Method for manufacturing optical fiber

Publications (1)

Publication Number Publication Date
JP2005022943A true JP2005022943A (en) 2005-01-27

Family

ID=34190434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003270492A Pending JP2005022943A (en) 2003-07-02 2003-07-02 Method for manufacturing optical fiber

Country Status (1)

Country Link
JP (1) JP2005022943A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007072251A (en) * 2005-09-08 2007-03-22 Fujikura Ltd Optical fiber and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007072251A (en) * 2005-09-08 2007-03-22 Fujikura Ltd Optical fiber and manufacturing method therefor
JP4541264B2 (en) * 2005-09-08 2010-09-08 株式会社フジクラ Optical fiber preform manufacturing method and optical fiber manufacturing method

Similar Documents

Publication Publication Date Title
Bise et al. Sol-gel derived microstructured fiber: fabrication and characterization
US7366388B2 (en) Hollow-core optical fiber and method of making same
US8175437B2 (en) Microstructured transmission optical fiber
JPH1095628A (en) Optical fiber-containing product having fine structure and production of optical fiber having fine structure
JP2002249335A (en) Method for producing optical fiber, optical fiber and optical communication system
JPWO2010073821A1 (en) Multi-core optical fiber
JP2004522201A (en) Plastic photonic crystal fiber for terahertz wave transmission and method of manufacturing the same
JP5612654B2 (en) Rare earth doped optical fibers for fiber lasers and fiber amplifiers
US20090180746A1 (en) Holey fiber
JP5676152B2 (en) Optical fiber and manufacturing method thereof
JP2011033899A (en) Holey fibers
JP3909014B2 (en) Single mode photonic crystal optical fiber
JP2003206149A (en) Method for manufacturing optical fiber
Rostami et al. Correspondence between effective mode area and dispersion variations in defected core photonic crystal fibers
JP3917115B2 (en) Optical fiber manufacturing method
JP3866696B2 (en) Optical fiber manufacturing method
JP2005022943A (en) Method for manufacturing optical fiber
US6775450B2 (en) Micro-structured optical fibers
JP2005022942A (en) Method for manufacturing optical fiber
JP4015959B2 (en) High stress-resistant optical fiber
WO2010107138A1 (en) Chromatic-dispersion photonic crystal fiber
JP6291892B2 (en) Multi-core optical fiber preform manufacturing method
JP3836730B2 (en) Polarization-maintaining photonic crystal fiber and manufacturing method thereof
US9052434B2 (en) Zero group-velocity modes in chalcogenide holey photonic crystal fibers
JP2005208268A (en) Optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070112