JP2005022225A - Method for setting operation condition of injection molding machine and mold used in injection molding machine - Google Patents

Method for setting operation condition of injection molding machine and mold used in injection molding machine Download PDF

Info

Publication number
JP2005022225A
JP2005022225A JP2003189984A JP2003189984A JP2005022225A JP 2005022225 A JP2005022225 A JP 2005022225A JP 2003189984 A JP2003189984 A JP 2003189984A JP 2003189984 A JP2003189984 A JP 2003189984A JP 2005022225 A JP2005022225 A JP 2005022225A
Authority
JP
Japan
Prior art keywords
injection molding
molding machine
resin material
molten resin
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003189984A
Other languages
Japanese (ja)
Inventor
Shigeyuki Suzuki
滋之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003189984A priority Critical patent/JP2005022225A/en
Publication of JP2005022225A publication Critical patent/JP2005022225A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily setting the operation condition of an injection molding machine for molding a resin molded product having no flaw, and a mold used in the injection molding machine. <P>SOLUTION: The flowing length of the molten resin material, which is injected in the bar flow cavity 45 provided to the mold 30, is measured at each of a plurality of the extrusion positions of a screw member 13 under the operation condition of the injection molding machine 20 for molding the resin molded product having no flaw. In the setting of the operation condition of another injection molding machine, the operation condition is adjusted so that the flowing length equal to that at each of extrusion positions is obtained in another injection molding machine when the molten resin material is injected in the bar flow cavity 45 from the injection molding machine. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、いわゆるひけのような欠陥のない樹脂成形品を成形すべく射出成形機の運転条件を設定するための運転条件設定方法及びそれに使用する金型に関する。
【0002】
【従来の技術】
従来、射出成形機を用いて、バリ、ひけ、充填不足等の成形不良を招くことなく樹脂成形品を成形するためには、樹脂成形品を成形するための金型に形成された製品部キャビティに溶融樹脂材料を射出して樹脂成形品を成形するのに先立ち、射出成形機に最適な運転条件を設定しておく必要がある。運転条件の設定内容によっては、得られる成形品の外観、寸法、更には樹脂成形品の例えば強度のような物的性質まで変化する。射出成形機を最適な運転状態におくための設定パラメータの組合せ数が多いことから、最適な運転条件の設定を計算上で出すことは困難である。
【0003】
そこで、これら運転条件のうちの代表的な運転条件である射出速度、射出圧力及びスクリュー位置等の運転条件を設定パラメータとして、製品部キャビティで故意に充填不足すなわちショートショットを成形する状況下から、徐々に良品へ向けて運転条件を変えながら試行錯誤を繰り返し、最適な運転条件を見出す方法が採られていた。
【0004】
【発明が解決しようとする課題】
しかしながら、このような最適な運転条件で運転していた射出成形機が例えば故障を生じ、そのため射出成形機を他の新たな射出成形機と交換して同じ樹脂成形品を成形する場合、たとえ新たな射出成形機が先のそれと同一規格の射出成形機であったとしても、機械によってそれぞれ製造誤差があるため、先の射出成形機で見出した最適な運転条件を新たな射出成形機に設定し、この設定下で作動させても、精密に最適な運転状態を再現することができない。そのため、射出成形機を他の射出成形機と交換する毎に、当該射出成形機に最適な運転条件を見出すために、金型の製品部キャビティへのショートショットの繰り返しを伴う試行錯誤を行う必要があり、この試行錯誤に多大な手間が掛かるという欠点があった。
【0005】
本発明の目的は、欠陥のない樹脂成形品を成形する射出成形機の運転条件の設定を従来に比較して容易に行うことができる射出成形機の運転条件の設定方法及びそれに使用する金型を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決するために、請求項1に記載の発明は、金型で樹脂成形品を成形すべく前記金型に溶融樹脂材料を押し出すためのプランジャ部材が設けられた射出成形機の運転条件を設定する方法であって、射出成形機から金型への溶融樹脂材料の注入により製品となる、すなわち、欠陥のない樹脂成形品を成形する運転条件下で、前記射出成形機から計測手段に溶融樹脂材料を射出し、前記射出成形機のプランジャ部材の複数の押出位置毎における前記計測手段内での前記溶融樹脂材料の流動長を計測し、他の射出成形機から前記金型への樹脂材料の注入により樹脂成形品を製造するに先立ち、前記他の射出成形機から前記計測手段内に溶融樹脂材料を射出するについて前記押出位置毎に対応する前記他の射出成形機の押出位置毎で、各前記押出位置毎の計測された前記流動長に等しい流動長を得るべく前記他の射出成形機の運転条件を設定することを特徴とする。
【0007】
請求項2に記載の発明は、請求項1に記載の発明において、前記プランジャ部材はスクリュー部材であることを特徴とする。
【0008】
請求項3に記載の発明は、射出成形機から溶融樹脂材料の注入を受ける金型であって、該金型内には、2つの分岐路を有し前記射出成形機から押し出された溶融樹脂材料を金型内に案内する流路と、該流路の一方の前記分岐路に連通する樹脂成形品のための製品部キャビティと、前記流路の他方の分岐路に連通し前記製品部キャビティの容量に等しい容量を有するバーフローキャビティと、前記分岐路の一方を選択的に遮断するための弁体が設けられ、前記バーフローキャビティは、その一端から他端に向けて前記溶融樹脂材料が注入可能の細長いキャビティであり、該キャビティの伸長方向に沿って、前記溶融樹脂材料の流動長を読み取るための目盛りが付されていることを特徴とする。
【0009】
請求項4に記載の発明は、請求項3に記載の発明において、それぞれが分割面を有し、該分割面で相互に当接可能の固定型板と可動型板とを有する金型であって、前記製品部キャビティは前記固定型板の前記分割面に配置され、前記バーフローキャビティは前記可動型板の前記分割面に配置されていることを特徴とする。
【0010】
請求項5に記載の発明は、請求項3に記載の発明において、前記各分岐路は前記両型板の前記分割面のそれぞれに形成された分岐溝部で構成され、前記弁体は前記分岐路を互いに共同して開放状態におくための一対の開放弁部材及び前記分岐路を互いに共同して遮断状態におくための一対の閉鎖弁部材を備え、前記各分岐溝部には前記一対の開放弁部材及び前記一対の閉鎖弁部材のいずれか一方を取替え可能に収容する凹所が形成されており、該各凹所内に前記各開放弁部材及び前記各閉鎖弁部材が選択的に位置決め可能であることを特徴とする。
【0011】
請求項6に記載の発明は、請求項3に記載の発明において、前記射出成形機は溶融樹脂材料を押し出すために押出位置へ向けて移動するスクリュー部材を備え、該射出成形機から前記製品部キャビティへの前記溶融樹脂材料の注入により欠陥のない樹脂成形品を成形する運転条件下で、前記射出成形機から前記弁体で前記製品部キャビティを選択的に閉じた状態で前記バーフローキャビティに前記溶融樹脂材料を注入し、前記射出成形機の前記スクリュー部材の複数の各前記押出位置における前記バーフローキャビティ内での前記溶融樹脂材料の前記流動長を前記目盛りから読み取り、他の射出成形機から前記製品部キャビティに前記溶融樹脂材料を注入して前記樹脂成形品を成形するに先立ち、前記他の射出成形機から前記バーフローキャビティに前記溶融樹脂材料を注入するについて、前記目盛りから読み取った前記スクリュー部材の各前記押出位置に対応する押出位置における前記流動長に等しい流動長を得るべく前記押出位置毎の運転条件を設定し、設定された運転条件下で前記他の射出成形機から前記弁体で前記バーフローキャビティを閉じた状態で前記製品部キャビティに前記溶融樹脂を注入して成形品を成形することを特徴とする。
【0012】
請求項1に記載の構成によれば、欠陥のない樹脂成形品を成形する射出成形機の最適な運転条件下で、プランジャ部材の押出位置毎における前記射出成形機から計測手段に注入された溶融樹脂材料の流動長が計測される。これにより、他の射出成形機に交換した場合でも、前記他の射出成形機から前記計測手段に溶融樹脂材料を注入し、前記流動長に等しい流動長が得られるように運転条件を調整することにより、製品部キャビティでショートショットを繰り返し成形することによる試行錯誤を行うことなく、容易に最適な運転条件を得ることができる。
【0013】
製品部キャビティで故意にショートショットを成形し、繰り返し試行錯誤しながら徐々に良品へ向けて運転条件を調整し設定する前記した従来の方法では、ショートショットは金型からの離脱抵抗が大きいため、製品部キャビティで成形する樹脂成形品が複雑であればあるほど、そこで成形されたショートショットを取り出す手間がかかってしまう上、その良否の見極めが容易ではなくなってしまい、この方法で最適な運転条件を得るには熟練と経験が必要になる。
【0014】
これに対し、本発明の方法によれば、前記したように、計測手段に注入された溶融樹脂材料の流動長の計測により、熟練や経験を要することなく、この流動長を与えた設定条件が最適運転条件であるか否かを即時に判定することができるので、従来に比較して迅速かつ容易に最適運転条件を見出し、この最適運転条件を設定することができる。
【0015】
請求項2に記載の構成によれば、プランジャ部材にスクリュー部材を用いることができる。
【0016】
請求項3及び請求項6に記載の構成によれば、製品部キャビティとバーフローキャビティとが分岐路を介して一つの金型内に形成されていることから、溶融樹脂材料の流動長を計測するために専用の金型を別に用意する必要がなく、また分岐路に設けられた弁体の付替えによって製品部キャビティ及びバーフローキャビティに選択的に溶融樹脂材料を案内することができ、これにより、製品部キャビティにおける樹脂成形品の成形とバーフローキャビティにおける溶融樹脂材料の流動長の計測とを容易に実施することができる。
【0017】
また、従来方法では、前記したように複雑な形状の樹脂成形品を成形する製品部キャビティでショートショットを成形した場合、成形したショートショットの取出しが困難であるが、本発明では、バーフローキャビティは細長い単純形状をなしていることから、バーフローキャビティで流動長を計測するために使用した樹脂成形品をバーフローキャビティから取り出す際、手間をかけることなく、樹脂成形品を容易に取り出すことができる。また、バーフローキャビティには目盛りが付されていることから、スクリュー部材の押出位置毎のバーフローキャビティに注入された溶融樹脂材料の流動長を目盛りから目視により判定することができ、これにより本発明に係る射出成形機の運転条件の設定方法をより容易に実施することができる。
【0018】
従って、この射出成形機に代えて、他の射出成形機を用いて樹脂成形品を成形する場合でも、他の射出成形機からバーフローキャビティに溶融樹脂材料を注入し、先の射出成形機で計測した流動長に等しい流動長がバーフローキャビティから得られるように運転条件を調整することにより、製品部キャビティでショートショットを繰り返し成形することによる試行錯誤を行うことなく、容易に最適な運転条件を見出すことができる。
【0019】
請求項4に記載の構成によれば、バーフローキャビティが可動型板の分割面上に形成されていることから、固定型板及び可動型板の分離動作により、容易にバーフローキャビティへ注入された溶融樹脂材料の流動長を測定することができる。また、バーフローキャビティが可動型板の分割面上に形成されていることから、バーフローキャビティで成形された樹脂成形品を容易に取り出すことができる。
【0020】
請求項5に記載の構成によれば、一対の開放弁部材は、互いに共同して凹所を充填した状態で分岐路を開放状態におき、一対の閉鎖弁部材は、互いに共同して分岐路を閉鎖状態におく。これら両弁部材を取替え可能に凹所内に取り付けることにより、分岐路を容易に切り替えることができ、凹所内に配置された開放弁部材は、凹所内への溶融樹脂材料の侵入による溶融樹脂材料の容量の変更を防止して分岐路を開放状態におき、これにより溶融樹脂材料の容量変更を招くことなく選択的に製品部キャビティ及びバーフローキャビティに溶融樹脂材料を案内することができる。また、開放弁部材及び閉鎖弁部材が、金型を構成する固定型板及び可動型板の両分割面に取り付けられていることから、両弁部材によって分岐路を切り替える際、前記両型板のそれぞれを分解することなく、分割面で分岐路の切り替えを操作することができる。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態を図面に従って説明する。
【0022】
図1は、本発明に係る射出成形装置10を示す。射出成形装置10は、射出成形機20及び該射出成形機から溶融樹脂材料の射出を受ける金型30を備える。
【0023】
射出成形機20は、ホッパ11が設けられたシリンダ12と、該シリンダ内に該シリンダの軸線方向に摺動可能に設けられたプランジャ部材13とを備える。図示の例では、プランジャ部材13は、油圧モータ14によってシリンダ12と同軸上で駆動回転されるスクリュー部材13で構成されている。
【0024】
従来よく知られているように、ホッパ11からシリンダ12に供給された樹脂材料は、シリンダ12の周壁に設置された複数のヒータ15によってシリンダ12内で溶融される。溶融された樹脂材料は、所定の引戻し位置にあるスクリュー部材13の回転によって、シリンダ12内でスクリュー部材13の前方の加圧室16へ送られる。所定の量の溶融樹脂材料がシリンダ12の加圧室16に溜まると、スクリュー部材13の回転が停止する。スクリュー部材13はその後端に設けられた射出シリンダ17からの圧力によって、シリンダ12の先端に設けられた射出口18に向けて回転することなく移動する。このスクリュー部材13の移動による加圧により、溶融樹脂材料はシリンダ12の射出口18から金型30内に射出される。スクリュー部材13の先端部には、射出される溶融樹脂材料の逆流を防止する従来よく知られた逆流防止弁19が設けられている。溶融樹脂材料を射出した後、スクリュー部材13は、油圧モータ14及び射出シリンダ17の作動により回転しながら前記した引戻し位置まで後退する。
【0025】
金型30は、固定型板21と可動型板22とから構成されている。両型板21,22は、それぞれ分割面21a,22aを有し、その分割面21a,22aで相互に当接可能である。固定型板21は、図示の例では、第一板部23と第二板部24とを備え、それぞれの分離面23a,24aで相互に当接可能である。第二板部24は、その分離面24aの反対側に取付板25が取り付けられている。固定型板21は、この取付板25を介して射出成形装置10に固定的に設けられた固定ダイプレート26に固定されている。可動板部22は、分割面22aの反対側に取付板27が取り付けられており、可動型板22はこの取付板27を介して射出成形装置10の可動ダイプレート28に固定されている。可動ダイプレート28は、固定ダイプレート26に近づく方向及び固定ダイプレート26から離れる方向に移動可能である。この移動により、可動ダイプレート28に固定された可動型板22は、図1のA−A線で示した固定型板21と当接する当接位置と、固定型板21から分離して可動型板22の分割面22aから成形した樹脂成形品を取り出す取出位置との間で移動可能である。この可動型板22の移動を案内するために、固定型板21の分割面21AにはガイドピンG(図2参照)が設けられており、可動型板22の分割面22aにはガイドピンを受けるガイド孔H(図3参照)が設けられている。
【0026】
固定型板21に取り付けられた取付板25には、金型30が射出成形機20から溶融樹脂材料の射出を受けるための受口29を有するスプルーブッシュ31と、受口29にシリンダ12の射出口18を整合させるためのロケートリング32とが取り付けられている。スプルーブッシュ31は、取付板25及び第二板部24をそれらの板厚方向に貫通する。このスプルーブッシュ31により、第二板部24には、取付板25から分離面24aに向って第二板部24をその板厚方向に貫通する一次スプルー33aが形成されている。一次スプルー33aの先端は、第一板部23の分離面23a上で分離面23aに沿って形成されたランナ34の一端に接続されている。ランナ34の他端は、分離面23aから分割面21aに向かって第一板部23をその板厚方向に貫通した二次スプルー33bの一端に接続されている。二次スプルー33bの他端は、固定型板21の分割面21aに開放する。一次スプルー33a、ランナ34及び二次スプルー33bは、それぞれ射出成形機20から金型30に射出された溶融樹脂材料を分割面21a,22aまで案内する。
【0027】
固定型板21の分割面21aには、図2に示すように、分割面21aに開放する二次スプルー33bの他端すなわち開放口35と、半円形の横断面を有し開放口35から導入される溶融樹脂材料を分岐させる二つの分岐溝部36a,37aと、樹脂成形品を成形するための凹所39とが設けられている。
【0028】
凹所39は、図示の例では、固定型板21の分割面21aに形成された矩形状の開口部40を有する。また、凹所39内には、三つの凸部41,41,41がそれぞれ間隔を置いて配置されている。
【0029】
他方、可動型板22の分割面22aには、図3に示すように、固定型板21の分割面21aに形成された分岐溝部36a,37aと同一形状の分岐溝部36b,37bが、固定型板21に形成された分岐溝部36a,37aに対応する位置に設けられている。固定型板21方向への可動型板22の移動により両分割面21a,22aが当接する当接位置で、分岐溝部36a及び分岐溝部36bは、互いに共同して開放口35から後述する製品部キャビティ49に至る横断面円形の第一分岐路36を規定し、分岐溝部37a及び分岐溝部37bは互いに共同して開放口35から後述するバーフローキャビティ45に至る横断面円形の第二分岐路37を規定する。また可動型板22の分割面22aには、分岐溝部36b,37bの両端に接続されたゲート42,43と、ゲート42を介して分岐溝部36bに連通する製品部コア44と、ゲート43を介して分岐溝部37bに連通するバーフローキャビティ45とが設けられている。
【0030】
製品部コア44は、図示の例では、可動型板22の分割面22aから突出した凸所47を有する。この凸所47は、固定型板21の分割面21aに形成された凹所39と、所定の間隔をおいて嵌合される。また、凸所47には間隔をおいて三つの凹部48,48,48が設けられている。可動型板22の移動により両分割面21a,22aが当接した際、凹所39の凸部41,41,41のそれぞれが、製品部コア44の各凹部48,48,48に所定の間隔をおいて受け入れられる。この間隔によって、製品部キャビティ49が規定される。
【0031】
バーフローキャビティ45は、半円状の凹溝から成る。該凹溝は、分割面22a上で上端がゲート43に接続され製品部コア44に平行な第一直線部45aと、下端が第一直線部45aの下端に接続され第一直線部45aに平行な第二直線部45bと、第二直線部45bに平行であり、上端が第二直線部45bの上端に接続され他端が閉鎖された第三直線部45cとから成り、全体でS字形をなしている。また、バーフローキャビティ45は、形状が複雑な製品部キャビティ49と比較して単純な形状をなしており、製品部キャビティ49の容量に等しい容量を有し、その凹面には、目盛り50が伸長方向に沿って所定の間隔をおいて刻まれている。
【0032】
固定型板21の分割面21aに形成された二つの分岐溝部36a,37aのそれぞれの中間部には、図2に示すように、分岐溝部36a及び分岐溝部37aを横切って互いに同一形状の凹所から成る弁体取付部51a及び弁体取付部52aが形成されている。各弁体取付部51a,52aには、開放口35から分岐溝部36a,37aに導入される溶融樹脂材料を製品部キャビティ49及びバーフローキャビティ45に選択的に供給するために、互いに同一外形寸法を有する開放弁部材53a及び閉鎖弁部材54aのいずれか一方が、ネジ部材55によって着脱可能に取り付けられる。
【0033】
他方、可動型板22の分割面22aには、図3に示すように、固定型板21の分割面21aに形成された弁体取付部51a,52aに対応する位置に、互いに同一形状の凹所から成る弁体取付部51b,52bがそれぞれ形成されている。弁体取付部51b,52bには、互いに同一外形寸法を有する開放弁部材53b及び閉鎖弁部材54bがネジ部材55によって着脱可能に取り付けられている。
【0034】
一対の開放弁部材53a,53bは、図4に示すように、固定型板21及び可動型板22の当接位置で互いに当接する当接面56a,56bをそれぞれ有する。当接位置では、当接面56a,56bは両分割面21a,22aの当接を妨げないように、それぞれネジ部材55と共に分割面21a,22aから突出することなく、分割面21a,22aと面一になる。この当接面56a,56bには、分岐路36,37の各分岐溝部36a,36b,37a,37bと同一形状の円弧面58を有する切欠部59がそれぞれ形成されている。
【0035】
他方、一対の閉鎖弁部材54a,54bは、図5に示すように、当接位置で互いに当接する当接面57a,57bをそれぞれ有する。これら当接面57a,57bは、当接時に開放弁部材53a,53bと同様に両分割面21a,22aの当接を妨げないように、それぞれネジ部材55と共に分割面21a,22aから突出することなく、分割面21a,22aと面一になる。当接面57a,57bには、開放弁部材53a,53bに形成されているような切欠部59は形成されていない。
【0036】
従って、例えば第一分岐路36に形成された弁体取付部51a,51bに一対の開放弁体53a,53bをそれぞれ取り付け、第二分岐路37に形成された弁体取付部52a,52bに一対の閉鎖弁部材54a,54bをそれぞれ取り付けた場合、一対の開放弁部材53a,53bは、それらの円弧面58が第一分岐路36の一部を連続的に形成し、両当接面56a,56bの当接時には互いに共同して弁体取付部51a,52bを充填した状態で第一分岐路36の弁体取付部51a,51bによる溶融樹脂材料の容量変更を招くことなく第一分岐路36を開放状態におくための開放弁体53を構成する。他方、一対の閉鎖弁部材54a,54bは、両当接面57a,57bの当接時に互いに共同して第二分岐路37を確実に閉鎖する閉鎖弁体54を構成する。この開放弁体53及び閉鎖弁体54が選択的に取り付けられる各分岐溝部36a,37a,36b,37bは、前記したように両分割面21a,22aの当接により分岐路36,37を構成し、この分岐路36,37は一次スプルー33a、ランナ34、二次スプルー33bと共に、溶融樹脂材料を金型30内の製品部キャビティ49及びバーフローキャビティ45に案内するための流路を構成する。このことから、開放弁体53と閉鎖弁体54とを互いに付け換えることにより、開放口35から導入された溶融樹脂材料を第一分岐路36に連通した製品部キャビティ49または第二分岐路37に連通したバーフローキャビティ45に選択的に案内することができる。
【0037】
本発明に係るバーフローキャビティ45が設けられた金型30を用いた射出成形機の運転条件の設定方法について説明する。
【0038】
射出成形機20を用いてバリ、ひけ、ショートショット(充填不足)等の成形不良を招くことなく金型30の製品部キャビティ49で樹脂成形品を成形するために、この樹脂成形に先立って従来におけると同様な方法によって射出成形機20に最適運転条件が設定される。この運転条件は、スクリュー部材13が溶融樹脂材料を射出するときの射出圧力、成形する樹脂成形品の形状に合わせて順次変化する射出速度、及び射出速度が変化するときのスクリュー部材13の複数の押出位置等がある。
【0039】
射出成形機20の最適運転条件の設定を金型30の製品部キャビティ49を用いて行うために、先ず、二次スプルー33bの開放口35から導入された溶融樹脂材料が、図2及び図3に示すように、第一分岐路36を矢印の方向へ流れ、ゲート42を介して製品部キャビティ49に案内されるように、弁体取付部52a,52bに閉鎖弁体54を取り付け、弁体取付部51a,51bに開放弁体53を取り付ける。これにより第一分岐路36が選択的に開放状態に保持される。
【0040】
この製品部キャビティ49への射出成形機20からの溶融樹脂材料の注入の繰り返しを伴う従来と同様な試行錯誤により、製品部キャビティ49で成形される樹脂成形品にバリ、ひけ、充填不足等の成形不良が生じない最適な運転状態を実現し得る前記した射出圧力、射出速度、及びこれらの変化点となる各押出位置等の各設定パラメータについての最適な運転条件が見出される。
【0041】
見出した最適な運転条件の一例を次表に示す。表1のS1〜S5は、射出速度が変化したときのスクリュー部材13の押出位置を示す。押出位置S1〜S5は、スクリュー部材13の先端からシリンダ12の射出口18までの距離であり、S1はスクリュー部材13の引戻し位置である。
【0042】
各押出位置S1〜S5で射出速度及び射出圧力が変化する。表2のV1〜V4はそれぞれ各押出位置間での射出速度を示し、P1〜P4はそれぞれ各押出位置間での射出圧力を示す。射出圧力及び射出圧力は、従来よく知られているように、図示しない油圧制御装置に設けられたバルブの全開時で溶融樹脂材料を射出したときの射出速度V及び射出圧力Pを100%とした割合である。
【0043】
【表1】

Figure 2005022225
【0044】
【表2】
Figure 2005022225
【0045】
次に、図6に示すように、溶融樹脂材料をバーフローキャビティ45に案内するように、開放弁体53と閉鎖弁体54とを付け替え、第二分岐路37を開放状態に保持する。その後、求められた最適な運転条件下で射出成形機20からバーフローキャビティ45に溶融樹脂材料を注入する。この際、スクリュー部材13をその引戻し位置S1(150mm)からシリンダ12の射出口18に向けて、押出位置S2(70mm)まで移動させることにより、溶融樹脂材料をバーフローキャビティ45に注入した後、スクリュー部材13を停止させる。その後、可動型板22の移動により金型30を分割し、バーフローキャビティ45内で冷却固化された樹脂材料を取り出す。取り出した樹脂材料からバーフローキャビティ45内に刻まれた目盛り50を読み取ることにより、スクリュー部材13を停止させた押出位置S2における溶融樹脂材料の流動長L1を計測する。バーフローキャビティ45から取り出された樹脂材料には目盛り50が転写されているため、容易に目盛り50を読み取ることができる。
【0046】
押出位置S2における流動長L1の計測後、金型30内の残留樹脂材料を取り除く。再びバーフローキャビティ45への溶融樹脂材料の注入のためにスクリュー部材13を引戻し位置S1まで一旦戻す。固定型板21及び可動型板22の両分割面21a,22aを当接させた後、引戻し位置S1から次の押出位置S3(40mm)までスクリュー部材13を移動させて溶融樹脂材料をバーフローキャビティ45に注入する。押出位置S2での計測と同様に、最適な運転条件下での押出位置S3における流動長L2を計測する。その後、各押出位置S4(25mm),S5(10mm)における各流動長L3,L4の計測毎に、バーフローキャビティ45への溶融樹脂材料の注入のためにスクリュー部材13を一旦引戻し位置S1まで戻し、以下同様に順次流動長L3、L4を計測する。
【0047】
計測された各押出位置S2〜S5における各流動長L1〜L4を、次表に示す。
【0048】
【表3】
Figure 2005022225
【0049】
上記のように流動長が計測され、成形不良を生じることのない最適な運転条件下で運転していた射出成形機20が例えば故障を生じ、射出成形機20を他の新たな射出成形機と交換する場合、この新たな射出成形機の運転条件の設定のために、金型30のバーフローキャビティ45と、計測された各押出位置S2〜S5における各流動長L1〜L4のデータとが用いられる。
【0050】
この場合、先ず、図6に示すように、溶融樹脂材料をバーフローキャビティ45に案内するように、第一分岐路36を閉鎖弁体54で閉鎖し、新たな最適運転条件を求めるために新たな射出成形機からバーフローキャビティ45に溶融樹脂材料を注入する。先の射出成形機20での計測と同様にスクリュー部材13の各押出位置S2〜S5における溶融樹脂材料の各流動長が計測され、各押出位置S2〜S5での流動長が先の射出成形機20で計測された流動長L1〜L4に等しくなるように、スクリュー部材13の射出速度及び射出圧力等が調整される。この調整に際し、先に得られた表2の射出速度V1〜V4及び射出圧力P1〜P4を参考にして射出速度及び射出圧力を微調整すれば、より迅速に測定データと一致する流動長が得られるように運転条件を設定することができる。先の射出成形機20で計測された各押出位置S2〜S5における各流動長L1〜L4に等しい流動長が新たな射出成形機で得られたとき、その流動長を与えた最適な運転条件が新たな射出成形機に設定されることとなる。
【0051】
従って、その新たに設定された最適な運転条件下で、図3に示すように、溶融樹脂材料を製品部キャビティ49に案内するように、再び開放弁体53と閉鎖弁体54とを付け替え、第二分岐路37を閉鎖弁体54により閉鎖状態に保持した状態で、新たな射出成形機から製品部キャビティ49に溶融樹脂材料を注入することにより、バリ、ひけ、充填不足等の成形不良を生じることなく、製品部キャビティ49で製品となる樹脂成形品を成形することができる。
【0052】
前記したように、本実施の形態に係る射出成形機20の運転条件設定方法によれば、射出成形機20に設定された最適な運転条件下で求められた溶融樹脂材料の流動長に関するデータを用いることにより、他の射出成形機についての最適運転条件をこの流動長を基に見出すことができ、これにより、従来のように製品部キャビティ49でショートショットを繰り返し成形することによる試行錯誤を行うことなく、迅速かつ容易にこの最適運転条件を設定することができる。
【0053】
また、本実施の形態によれば、固定型板21及び可動型板22を分解することなく、両型板21,22を分離させた状態で開放弁体53及び閉鎖弁体54を付け替えることができる。この両弁体53,54の付替えにより第一分岐路36及び第二分岐路37を切り替えることができ、これにより製品部キャビティ49及びバーフローキャビティ45に選択的に溶融樹脂材料を案内することができる。
【0054】
さらに、バーフローキャビティ45は、製品部キャビティ49と分岐路36,37を介して一つの金型30内に形成されていることから、流動長の計測専用の金型を別に用意する必要はなく、バーフローキャビティ45が形成された金型30を用いることにより、従来のように製品部キャビティ49で成形した成形品の良否から設定条件が最適であるか否かを判定するのではなく、溶融樹脂材料の流動長をバーフローキャビティ45に刻まれた目盛り50から目視により判定することができる。
【0055】
本実施の形態では、計測手段を構成するバーフローキャビティ45と、製品部キャビティ49とが分岐路36,37を介して一つの金型30内に形成された例を示したが、樹脂成形品を成形するための製品部キャビティ49が形成された金型とは別に、溶融樹脂材料の流動長を計測するためのバーフローキャビティ45が形成された金型を用いて本発明に係る運転条件設定方法を実施することができる。
【0056】
また、本発明に係るバーフローキャビティ45を、S字型に形成することに代えて、例えば渦巻状に形成するなど、適宜、所望の形状に配置することができる。また、バーフローキャビティ45内に刻まれた目盛り50をバーフローキャビティ45内から可動型板22の分割面22aにはみ出すように刻むことにより、樹脂成形品をバーフローキャビティ45から取り出すことなく、分割面22a上で溶融樹脂材料の流動長を計測することができる。
【0057】
さらに、開放弁体53及び閉鎖弁体54を弁体取付部51a,52a,51b,52bに保持させるために、本実施の形態ではネジ部材55を用いたが、ネジ部材55に代えて、それ以外の保持手段を用いることができる。
【0058】
バーフローキャビティ45の容量は、射出成形機20の設定に影響を及ぼさない範囲で製品部キャビティ49の容量に略等しければよい。
【0059】
本発明に係る射出成形機20の運転条件設定方法及びそれに使用する金型30は、プランジャ部材13としてピストンを用いた押出成形機などの射出成形機20以外の成形機でも用いることができる。
【0060】
【発明の効果】
本発明によれば、欠陥のない樹脂成形品を成形する射出成形機の運転条件下で、プランジャ部材の押出位置毎における前記射出成形機から計測手段に注入された溶融樹脂材料の流動長を計測し、この計測データを基に他の射出成形機の最適な運転条件を見出すことができる。これにより製品部キャビティでショートショットを繰り返し成形することによる試行錯誤なく、迅速かつ容易に最適運転条件を設定することができる。
【図面の簡単な説明】
【図1】本発明に係る射出成形機及び金型を概略的に示す縦断面図である。
【図2】本発明に係る金型の固定型板の分割面を金型に設けられた製品部キャビティに溶融樹脂材料を選択的に導入するように弁体を配置させた状態で示す平面図である。
【図3】本発明に係る金型の可動型板の分割面を金型に設けられた製品部キャビティに溶融樹脂材料を選択的に導入するように弁体を配置させた状態で示す平面図である。
【図4】本発明に係る開放弁部材を示す縦断面図である。
【図5】本発明に係る閉鎖弁部材を示す縦断面図である。
【図6】本発明に係る金型の可動型板の分割面を金型に設けられたバーフローキャビティに溶融樹脂材料を選択的に導入するように弁体を配置させた状態で示す平面図である。
【符号の説明】
30 金型
13 プランジャ部材(スクリュー部材)
20 射出成形機
45 計測手段(バーフローキャビティ)
S1,S2,S3,S4,S5 押出位置
L1、L2,L3,L4 流動長
36,37 分岐路(第一分岐路、第二分岐路)
33a,34,33b,36,37 流路(一次スプルー、ランナ、二次スプルー、第一分岐路、第二分岐路)
49 製品部キャビティ
53,54 弁体(開放弁体、閉鎖弁体)
50 目盛り
21a,22a 分割面
21 固定型板
22 可動型板
36a,37a,36b,37b 分岐溝部
53a,53b 開放弁部材
54a,54b 閉鎖弁部材
51a,52a,51b,52b 凹所(弁体取付部)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an operating condition setting method for setting operating conditions of an injection molding machine to mold a resin molded product having no defects such as so-called sinks, and a mold used therefor.
[0002]
[Prior art]
Conventionally, in order to mold a resin molded product using an injection molding machine without causing molding defects such as burrs, sink marks and insufficient filling, the product part cavity formed in the mold for molding the resin molded product Prior to the injection of the molten resin material to form a resin molded product, it is necessary to set the optimum operating conditions for the injection molding machine. Depending on the setting contents of the operating conditions, the appearance and dimensions of the obtained molded product, and further the physical properties such as strength of the resin molded product are changed. Since there are a large number of combinations of setting parameters for placing the injection molding machine in the optimum operating state, it is difficult to calculate the optimum operating conditions by calculation.
[0003]
Therefore, from the condition of intentionally forming a short shot, that is, underfilling in the product part cavity, with operating conditions such as injection speed, injection pressure and screw position, which are representative operating conditions among these operating conditions, as setting parameters, The method of finding optimal operating conditions by repeating trial and error while gradually changing the operating conditions toward non-defective products was adopted.
[0004]
[Problems to be solved by the invention]
However, when an injection molding machine that has been operated under such optimum operating conditions has failed, for example, if the injection molding machine is replaced with another new injection molding machine and the same resin molded product is molded, a new one is required. Even if the new injection molding machine is an injection molding machine of the same standard as the previous one, there are manufacturing errors depending on the machine, so the optimum operating conditions found in the previous injection molding machine are set in the new injection molding machine. Even if it is operated under this setting, the optimum operating state cannot be accurately reproduced. Therefore, every time an injection molding machine is replaced with another injection molding machine, it is necessary to perform trial and error with repeated short shots to the product cavity of the mold in order to find the optimum operating conditions for the injection molding machine. There is a drawback that this trial and error takes a lot of time and effort.
[0005]
An object of the present invention is to provide a method for setting operating conditions of an injection molding machine that can easily set operating conditions of an injection molding machine for molding a resin molded product having no defects as compared with the conventional one, and a mold used therefor Is to provide.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the invention according to claim 1 is an operating condition of an injection molding machine provided with a plunger member for extruding a molten resin material into the mold in order to mold a resin molded product with the mold. The injection molding machine injects the molten resin material into the mold to become a product, that is, under the operating conditions for molding a resin molded product having no defects, the injection molding machine to the measuring means. The molten resin material is injected, the flow length of the molten resin material in the measuring means at each of the plurality of extrusion positions of the plunger member of the injection molding machine is measured, and the resin from the other injection molding machine to the mold Prior to manufacturing a resin molded product by injecting a material, the molten resin material is injected into the measuring means from the other injection molding machine at each extrusion position of the other injection molding machine corresponding to each extrusion position. Each before And setting the operating condition of the other injection molding machine to obtain a flow length equal to measured the flow length of the extruded each position.
[0007]
The invention according to claim 2 is the invention according to claim 1, wherein the plunger member is a screw member.
[0008]
Invention of Claim 3 is a metal mold | die which receives injection | pouring of molten resin material from an injection molding machine, Comprising: In this metal mold | die, the molten resin extruded from the said injection molding machine which has two branch paths A flow path for guiding the material into the mold, a product part cavity for a resin molded product communicating with one of the branch paths of the flow path, and a product part cavity communicating with the other branch path of the flow path And a valve body for selectively blocking one of the branch passages, and the molten resin material is disposed from one end to the other end of the bar flow cavity. It is an elongate cavity which can be inject | poured, The scale for reading the flow length of the said molten resin material is attached | subjected along the extension direction of this cavity, It is characterized by the above-mentioned.
[0009]
The invention described in claim 4 is a mold according to the invention described in claim 3, wherein each of the molds has a divided surface, and has a fixed mold plate and a movable mold plate that can contact each other on the divided surface. The product part cavity is disposed on the dividing surface of the fixed mold plate, and the bar flow cavity is disposed on the dividing surface of the movable mold plate.
[0010]
According to a fifth aspect of the present invention, in the third aspect of the present invention, each of the branch paths is constituted by a branch groove portion formed in each of the split surfaces of the two mold plates, and the valve body is the branch path. And a pair of closing valve members for jointly closing the branch path to each other, and each branch groove portion includes the pair of opening valves. A recess is formed in which one of the member and the pair of closing valve members is replaceably accommodated, and each of the opening valve members and each of the closing valve members can be selectively positioned in each of the recesses. It is characterized by that.
[0011]
According to a sixth aspect of the present invention, in the third aspect of the present invention, the injection molding machine includes a screw member that moves toward an extrusion position to extrude the molten resin material, and the product portion from the injection molding machine. Under the operating conditions of molding a resin molded product having no defects by injecting the molten resin material into the cavity, the product part cavity is selectively closed with the valve body from the injection molding machine to the bar flow cavity. The molten resin material is injected, the flow length of the molten resin material in the bar flow cavity at each of the plurality of extrusion positions of the screw member of the injection molding machine is read from the scale, and another injection molding machine Prior to injecting the molten resin material into the product part cavity and molding the resin molded product, the bar flow cartridge is transferred from the other injection molding machine. For injecting the molten resin material into the tee, an operating condition for each extrusion position is set to obtain a flow length equal to the flow length at the extrusion position corresponding to each extrusion position of the screw member read from the scale. The molten resin is injected into the product part cavity with the valve body closed with the valve body from the other injection molding machine under the set operating conditions to form a molded product. .
[0012]
According to the configuration of claim 1, under the optimum operating conditions of an injection molding machine that molds a resin molded product having no defects, the melt injected from the injection molding machine into the measuring means at each plunger member extrusion position The flow length of the resin material is measured. Thereby, even when it is replaced with another injection molding machine, the molten resin material is injected from the other injection molding machine into the measuring means, and the operating conditions are adjusted so that a flow length equal to the flow length can be obtained. Thus, it is possible to easily obtain optimum operating conditions without trial and error by repeatedly forming short shots in the product portion cavity.
[0013]
By deliberately forming a short shot in the product cavity and adjusting and setting the operating conditions gradually toward a good product through repeated trial and error, the short shot has a large separation resistance from the mold. The more complex the resin molded product that is molded in the product cavity, the more time is required to take out the short shots molded there, and it is not easy to determine the quality. It takes skill and experience to gain.
[0014]
On the other hand, according to the method of the present invention, as described above, by measuring the flow length of the molten resin material injected into the measuring means, the setting condition that gives this flow length can be obtained without requiring skill or experience. Since it is possible to immediately determine whether or not it is the optimum operation condition, it is possible to find the optimum operation condition quickly and easily compared to the conventional case, and to set the optimum operation condition.
[0015]
According to the structure of Claim 2, a screw member can be used for a plunger member.
[0016]
According to the structure of Claim 3 and Claim 6, since the product part cavity and the bar flow cavity are formed in one metal mold | die via a branch path, the flow length of molten resin material is measured. Therefore, it is not necessary to prepare a dedicated mold separately, and the molten resin material can be selectively guided to the product cavity and the bar flow cavity by replacing the valve body provided in the branch path. Accordingly, it is possible to easily perform the molding of the resin molded product in the product portion cavity and the measurement of the flow length of the molten resin material in the bar flow cavity.
[0017]
Further, in the conventional method, when the short shot is formed by the product part cavity for forming the resin molded product having a complicated shape as described above, it is difficult to take out the formed short shot. Has a long and simple shape, it is easy to take out the resin molded product without taking time and effort when taking out the resin molded product used to measure the flow length in the bar flow cavity from the bar flow cavity. it can. In addition, since the bar flow cavity is graduated, the flow length of the molten resin material injected into the bar flow cavities at each screw member extrusion position can be visually determined from the scale. The operation condition setting method for an injection molding machine according to the invention can be more easily implemented.
[0018]
Therefore, instead of this injection molding machine, even when molding a resin molded product using another injection molding machine, the molten resin material is injected into the bar flow cavity from the other injection molding machine, By adjusting the operating conditions so that a flow length equal to the measured flow length can be obtained from the bar flow cavity, the optimum operating conditions can be easily achieved without trial and error by repeatedly forming short shots in the product cavity. Can be found.
[0019]
According to the configuration of the fourth aspect, since the bar flow cavity is formed on the dividing surface of the movable mold plate, it is easily injected into the bar flow cavity by the separation operation of the fixed mold plate and the movable mold plate. The flow length of the molten resin material can be measured. Further, since the bar flow cavity is formed on the dividing surface of the movable mold plate, the resin molded product molded by the bar flow cavity can be easily taken out.
[0020]
According to the configuration of the fifth aspect, the pair of open valve members jointly close each other to leave the branch path in a state where the recess is filled, and the pair of close valve members jointly cooperate with each other. Is closed. By installing these both valve members in the recess so that they can be replaced, the branch path can be easily switched, and the open valve member arranged in the recess is made of molten resin material by intrusion of the molten resin material into the recess. The change of the volume is prevented and the branch path is left open, so that the molten resin material can be selectively guided to the product portion cavity and the bar flow cavity without changing the volume of the molten resin material. In addition, since the opening valve member and the closing valve member are attached to both split surfaces of the fixed mold plate and the movable mold plate constituting the mold, when switching the branch path by both valve members, The branch path can be switched on the dividing plane without disassembling each.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0022]
FIG. 1 shows an injection molding apparatus 10 according to the present invention. The injection molding apparatus 10 includes an injection molding machine 20 and a mold 30 that receives injection of a molten resin material from the injection molding machine.
[0023]
The injection molding machine 20 includes a cylinder 12 provided with a hopper 11 and a plunger member 13 provided in the cylinder so as to be slidable in the axial direction of the cylinder. In the illustrated example, the plunger member 13 is constituted by a screw member 13 that is driven and rotated coaxially with the cylinder 12 by a hydraulic motor 14.
[0024]
As is well known, the resin material supplied from the hopper 11 to the cylinder 12 is melted in the cylinder 12 by a plurality of heaters 15 installed on the peripheral wall of the cylinder 12. The melted resin material is sent to the pressurizing chamber 16 in front of the screw member 13 in the cylinder 12 by the rotation of the screw member 13 in a predetermined pull-back position. When a predetermined amount of molten resin material accumulates in the pressurizing chamber 16 of the cylinder 12, the rotation of the screw member 13 stops. The screw member 13 is moved by the pressure from the injection cylinder 17 provided at the rear end thereof without rotating toward the injection port 18 provided at the front end of the cylinder 12. Due to the pressurization caused by the movement of the screw member 13, the molten resin material is injected into the mold 30 from the injection port 18 of the cylinder 12. The tip of the screw member 13 is provided with a well-known backflow prevention valve 19 that prevents backflow of the molten resin material to be injected. After injecting the molten resin material, the screw member 13 moves back to the above-described pull-back position while rotating by the operation of the hydraulic motor 14 and the injection cylinder 17.
[0025]
The mold 30 includes a fixed mold plate 21 and a movable mold plate 22. Both mold plates 21 and 22 have divided surfaces 21a and 22a, respectively, and can be brought into contact with each other at the divided surfaces 21a and 22a. In the illustrated example, the fixed mold plate 21 includes a first plate portion 23 and a second plate portion 24, and can be brought into contact with each other at the respective separation surfaces 23a and 24a. A mounting plate 25 is attached to the second plate portion 24 on the opposite side of the separation surface 24a. The fixed mold plate 21 is fixed to a fixed die plate 26 fixedly provided in the injection molding apparatus 10 via the mounting plate 25. The movable plate 22 has a mounting plate 27 attached to the opposite side of the dividing surface 22a, and the movable mold plate 22 is fixed to the movable die plate 28 of the injection molding apparatus 10 via the mounting plate 27. The movable die plate 28 is movable in a direction approaching the fixed die plate 26 and a direction away from the fixed die plate 26. By this movement, the movable mold plate 22 fixed to the movable die plate 28 is separated from the fixed mold plate 21 and the abutting position where the movable mold plate 22 is in contact with the fixed mold plate 21 indicated by the line AA in FIG. It is possible to move between the take-out position for taking out the resin molded product molded from the divided surface 22a of the plate 22. In order to guide the movement of the movable mold plate 22, a guide pin G (see FIG. 2) is provided on the dividing surface 21A of the fixed mold plate 21, and a guide pin is provided on the dividing surface 22a of the movable mold plate 22. A receiving guide hole H (see FIG. 3) is provided.
[0026]
The mounting plate 25 attached to the fixed mold plate 21 includes a sprue bush 31 having a receiving port 29 for the mold 30 to receive the injection of the molten resin material from the injection molding machine 20, and the cylinder 12 is exposed to the receiving port 29. A locate ring 32 for aligning the outlet 18 is attached. The sprue bush 31 penetrates the mounting plate 25 and the second plate portion 24 in the plate thickness direction. By the sprue bush 31, a primary sprue 33 a that penetrates the second plate portion 24 in the plate thickness direction from the mounting plate 25 toward the separation surface 24 a is formed in the second plate portion 24. The tip end of the primary sprue 33a is connected to one end of a runner 34 formed along the separation surface 23a on the separation surface 23a of the first plate portion 23. The other end of the runner 34 is connected to one end of a secondary sprue 33b that penetrates the first plate portion 23 in the thickness direction from the separation surface 23a toward the division surface 21a. The other end of the secondary sprue 33b opens to the dividing surface 21a of the fixed mold plate 21. The primary sprue 33a, the runner 34, and the secondary sprue 33b guide the molten resin material injected from the injection molding machine 20 to the mold 30 to the divided surfaces 21a and 22a, respectively.
[0027]
As shown in FIG. 2, the other end of the secondary sprue 33 b that opens to the dividing surface 21 a, that is, an opening 35, and a semicircular cross section are introduced into the dividing surface 21 a of the fixed mold 21 from the opening 35. There are provided two branch groove portions 36a and 37a for branching the molten resin material and a recess 39 for molding a resin molded product.
[0028]
In the illustrated example, the recess 39 has a rectangular opening 40 formed in the dividing surface 21 a of the fixed mold 21. Further, in the recess 39, three convex portions 41, 41, 41 are arranged at intervals.
[0029]
On the other hand, the split surface 22a of the movable mold plate 22 has branch groove portions 36b and 37b having the same shape as the branch groove portions 36a and 37a formed on the split surface 21a of the fixed mold plate 21 as shown in FIG. It is provided at a position corresponding to the branch groove portions 36 a and 37 a formed on the plate 21. The branch groove portion 36a and the branch groove portion 36b cooperate with each other from the opening 35 in the product portion cavity to be described later at a contact position where both the divided surfaces 21a and 22a contact each other by the movement of the movable mold plate 22 toward the fixed mold plate 21. The first branch path 36 having a circular cross section extending to 49 is defined, and the branch groove section 37a and the branch groove section 37b cooperate with each other to form a second branch path 37 having a circular cross section extending from the opening 35 to a bar flow cavity 45 described later. Stipulate. Further, on the dividing surface 22 a of the movable mold plate 22, gates 42 and 43 connected to both ends of the branch groove portions 36 b and 37 b, a product core 44 communicating with the branch groove portion 36 b via the gate 42, and the gate 43 And a bar flow cavity 45 communicating with the branch groove portion 37b.
[0030]
The product part core 44 has the convex part 47 which protruded from the division surface 22a of the movable mold plate 22 in the example of illustration. The convex portion 47 is fitted with a concave portion 39 formed on the dividing surface 21a of the fixed mold plate 21 at a predetermined interval. Further, the convex portion 47 is provided with three concave portions 48, 48, 48 at intervals. When the two split surfaces 21 a and 22 a come into contact with each other due to the movement of the movable mold plate 22, the convex portions 41, 41 and 41 of the recess 39 are spaced apart from the concave portions 48, 48 and 48 of the product portion core 44 by a predetermined distance. Is accepted. The product portion cavity 49 is defined by this interval.
[0031]
The bar flow cavity 45 is formed of a semicircular concave groove. The concave groove has a first straight portion 45a whose upper end is connected to the gate 43 on the dividing surface 22a and parallel to the product core 44, and a second lower end connected to the lower end of the first straight portion 45a and parallel to the first straight portion 45a. It consists of a straight line part 45b and a third straight line part 45c that is parallel to the second straight line part 45b, whose upper end is connected to the upper end of the second straight line part 45b and whose other end is closed, and has an S-shape as a whole. . Further, the bar flow cavity 45 has a simple shape as compared with the product part cavity 49 having a complicated shape, and has a capacity equal to the capacity of the product part cavity 49, and the scale 50 extends on the concave surface. It is carved at predetermined intervals along the direction.
[0032]
As shown in FIG. 2, recesses having the same shape across the branch groove portion 36a and the branch groove portion 37a are provided in the intermediate portions of the two branch groove portions 36a and 37a formed on the dividing surface 21a of the fixed mold plate 21, respectively. A valve body mounting portion 51a and a valve body mounting portion 52a are formed. In order to selectively supply the molten resin material introduced from the opening 35 to the branch groove portions 36a and 37a to the product portion cavity 49 and the bar flow cavity 45, the valve body mounting portions 51a and 52a have the same outer dimensions. Any one of the open valve member 53 a and the close valve member 54 a having the above is detachably attached by the screw member 55.
[0033]
On the other hand, as shown in FIG. 3, the dividing surface 22a of the movable mold plate 22 has recesses of the same shape at positions corresponding to the valve body mounting portions 51a and 52a formed on the dividing surface 21a of the fixed mold plate 21. Valve body mounting portions 51b and 52b each having a location are formed. An open valve member 53b and a close valve member 54b having the same external dimensions are detachably attached to the valve body attaching portions 51b and 52b by screw members 55.
[0034]
As shown in FIG. 4, the pair of release valve members 53 a and 53 b have contact surfaces 56 a and 56 b that contact each other at the contact positions of the fixed mold plate 21 and the movable mold plate 22, respectively. At the abutting position, the abutting surfaces 56a and 56b do not protrude from the dividing surfaces 21a and 22a together with the screw members 55 so as not to prevent the abutting of the dividing surfaces 21a and 22a, respectively. Become one. The contact surfaces 56a and 56b are formed with notches 59 having arcuate surfaces 58 having the same shape as the branch groove portions 36a, 36b, 37a and 37b of the branch paths 36 and 37, respectively.
[0035]
On the other hand, as shown in FIG. 5, the pair of shut-off valve members 54a and 54b have contact surfaces 57a and 57b that contact each other at the contact positions, respectively. These contact surfaces 57a and 57b project from the split surfaces 21a and 22a together with the screw member 55 so as not to prevent the contact of both split surfaces 21a and 22a in the same manner as the open valve members 53a and 53b. It becomes flush with the dividing surfaces 21a and 22a. The contact surfaces 57a and 57b are not formed with the notches 59 as formed in the release valve members 53a and 53b.
[0036]
Therefore, for example, a pair of open valve bodies 53a and 53b are respectively attached to the valve body attaching portions 51a and 51b formed in the first branch passage 36, and a pair is attached to the valve body attaching portions 52a and 52b formed in the second branch passage 37. When the shut-off valve members 54a and 54b are attached, the pair of open valve members 53a and 53b has a circular arc surface 58 continuously forming a part of the first branch path 36, and the contact surfaces 56a and At the time of abutting 56b, the first branch passage 36 is filled with the valve body attachment portions 51a and 52b together without causing a change in the volume of the molten resin material by the valve body attachment portions 51a and 51b of the first branch passage 36. An open valve body 53 for keeping the valve in an open state is configured. On the other hand, the pair of closing valve members 54a and 54b constitutes a closing valve body 54 that reliably closes the second branch passage 37 in cooperation with each other when the both contact surfaces 57a and 57b contact. As described above, the branch groove portions 36a, 37a, 36b, and 37b to which the open valve body 53 and the closed valve body 54 are selectively attached constitute the branch paths 36 and 37 by the contact of the two divided surfaces 21a and 22a. The branch paths 36 and 37 together with the primary sprue 33a, the runner 34, and the secondary sprue 33b constitute a flow path for guiding the molten resin material to the product portion cavity 49 and the bar flow cavity 45 in the mold 30. From this, by replacing the opening valve body 53 and the closing valve body 54 with each other, the product portion cavity 49 or the second branch path 37 in which the molten resin material introduced from the opening 35 communicates with the first branch path 36. Can be selectively guided to a bar flow cavity 45 communicating with the.
[0037]
A method for setting operating conditions of an injection molding machine using the mold 30 provided with the bar flow cavity 45 according to the present invention will be described.
[0038]
In order to form a resin molded product in the product portion cavity 49 of the mold 30 without causing molding defects such as burrs, sink marks and short shots (underfilling) using the injection molding machine 20, prior to this resin molding, The optimum operating conditions are set in the injection molding machine 20 by the same method as in. This operating condition includes the injection pressure when the screw member 13 injects the molten resin material, the injection speed that sequentially changes in accordance with the shape of the resin molded product to be molded, and a plurality of screw members 13 when the injection speed changes. There are extrusion positions.
[0039]
In order to set the optimum operating conditions of the injection molding machine 20 using the product part cavity 49 of the mold 30, first, the molten resin material introduced from the opening 35 of the secondary sprue 33b is shown in FIGS. As shown in FIG. 5, the closing valve body 54 is attached to the valve body attaching portions 52a and 52b so as to flow through the first branch path 36 in the direction of the arrow and be guided to the product portion cavity 49 via the gate 42. The open valve body 53 is attached to the attachment portions 51a and 51b. As a result, the first branch path 36 is selectively held open.
[0040]
Due to trial and error similar to the conventional method involving repeated injection of the molten resin material from the injection molding machine 20 into the product portion cavity 49, the resin molded product formed in the product portion cavity 49 may have burrs, sink marks, insufficient filling, etc. Optimal operating conditions are found for each set parameter such as the above-described injection pressure, injection speed, and each extrusion position that becomes the change point, which can realize an optimal operating state in which molding defects do not occur.
[0041]
An example of the optimum operating conditions found is shown in the following table. S1 to S5 in Table 1 indicate the extrusion positions of the screw member 13 when the injection speed changes. Extrusion positions S1 to S5 are distances from the tip of the screw member 13 to the injection port 18 of the cylinder 12, and S1 is a retracting position of the screw member 13.
[0042]
The injection speed and the injection pressure change at each of the extrusion positions S1 to S5. In Table 2, V1 to V4 indicate injection speeds between the respective extrusion positions, and P1 to P4 indicate injection pressures between the respective extrusion positions. As is well known in the art, the injection pressure V and the injection pressure P when the molten resin material is injected when the valve provided in the hydraulic control device (not shown) is fully opened are set to 100%. It is a ratio.
[0043]
[Table 1]
Figure 2005022225
[0044]
[Table 2]
Figure 2005022225
[0045]
Next, as shown in FIG. 6, the open valve body 53 and the close valve body 54 are replaced so that the molten resin material is guided to the bar flow cavity 45, and the second branch path 37 is held open. Thereafter, a molten resin material is injected into the bar flow cavity 45 from the injection molding machine 20 under the optimum operating conditions obtained. At this time, after the molten resin material is injected into the bar flow cavity 45 by moving the screw member 13 from the pullback position S1 (150 mm) toward the injection port 18 of the cylinder 12 to the extrusion position S2 (70 mm), The screw member 13 is stopped. Thereafter, the mold 30 is divided by the movement of the movable mold plate 22, and the resin material cooled and solidified in the bar flow cavity 45 is taken out. By reading the scale 50 carved in the bar flow cavity 45 from the taken out resin material, the flow length L1 of the molten resin material at the extrusion position S2 where the screw member 13 is stopped is measured. Since the scale 50 is transferred to the resin material taken out from the bar flow cavity 45, the scale 50 can be easily read.
[0046]
After measurement of the flow length L1 at the extrusion position S2, the residual resin material in the mold 30 is removed. The screw member 13 is once returned to the pull-back position S1 for again injecting the molten resin material into the bar flow cavity 45. After bringing the split surfaces 21a and 22a of the fixed mold plate 21 and the movable mold plate 22 into contact with each other, the screw member 13 is moved from the pull-back position S1 to the next extrusion position S3 (40 mm), and the molten resin material is transferred to the bar flow cavity. 45 is injected. Similar to the measurement at the extrusion position S2, the flow length L2 at the extrusion position S3 under the optimum operating condition is measured. Thereafter, each time the flow lengths L3 and L4 are measured at the extrusion positions S4 (25 mm) and S5 (10 mm), the screw member 13 is temporarily returned to the pull-back position S1 in order to inject the molten resin material into the bar flow cavity 45. In the same manner, the flow lengths L3 and L4 are sequentially measured.
[0047]
The flow lengths L1 to L4 at the measured extrusion positions S2 to S5 are shown in the following table.
[0048]
[Table 3]
Figure 2005022225
[0049]
As described above, the flow length is measured, and the injection molding machine 20 that has been operated under the optimum operating conditions without causing molding defects, for example, causes a failure, and the injection molding machine 20 is replaced with another new injection molding machine. In the case of replacement, in order to set the operating conditions of the new injection molding machine, the bar flow cavity 45 of the mold 30 and the data of the flow lengths L1 to L4 at the measured extrusion positions S2 to S5 are used. It is done.
[0050]
In this case, first, as shown in FIG. 6, the first branch path 36 is closed with the closing valve body 54 so as to guide the molten resin material to the bar flow cavity 45, and a new optimum operating condition is obtained. A molten resin material is injected into the bar flow cavity 45 from a different injection molding machine. Similarly to the measurement at the previous injection molding machine 20, the flow lengths of the molten resin material at the extrusion positions S2 to S5 of the screw member 13 are measured, and the flow lengths at the extrusion positions S2 to S5 are the previous injection molding machines. The injection speed, injection pressure, and the like of the screw member 13 are adjusted so as to be equal to the flow lengths L1 to L4 measured at 20. In this adjustment, if the injection speed and the injection pressure are finely adjusted with reference to the injection speeds V1 to V4 and the injection pressures P1 to P4 obtained in Table 2, the flow length that matches the measurement data can be obtained more quickly. Operating conditions can be set. When a flow length equal to each flow length L1 to L4 at each of the extrusion positions S2 to S5 measured by the previous injection molding machine 20 is obtained with a new injection molding machine, the optimum operating condition giving the flow length is It will be set to a new injection molding machine.
[0051]
Therefore, under the newly set optimum operating conditions, as shown in FIG. 3, the opening valve body 53 and the closing valve body 54 are replaced again so as to guide the molten resin material to the product portion cavity 49, By injecting the molten resin material into the product portion cavity 49 from a new injection molding machine with the second branch path 37 held closed by the closing valve body 54, molding defects such as burrs, sink marks, insufficient filling, and the like can be obtained. A resin molded product to be a product can be molded in the product portion cavity 49 without being generated.
[0052]
As described above, according to the operation condition setting method of the injection molding machine 20 according to the present embodiment, the data relating to the flow length of the molten resin material obtained under the optimum operation condition set in the injection molding machine 20 is obtained. By using it, the optimum operating conditions for other injection molding machines can be found based on this flow length, and this makes trial and error by repeatedly molding short shots in the product cavity 49 as in the prior art. This optimum operating condition can be set quickly and easily.
[0053]
Further, according to the present embodiment, it is possible to replace the open valve body 53 and the closed valve body 54 in a state where both the mold plates 21 and 22 are separated without disassembling the fixed mold plate 21 and the movable mold plate 22. it can. The first branch path 36 and the second branch path 37 can be switched by changing both the valve bodies 53 and 54, thereby selectively guiding the molten resin material to the product portion cavity 49 and the bar flow cavity 45. Can do.
[0054]
Further, since the bar flow cavity 45 is formed in one mold 30 via the product portion cavity 49 and the branch paths 36 and 37, it is not necessary to prepare a separate mold for measuring the flow length. By using the mold 30 in which the bar flow cavity 45 is formed, it is not necessary to determine whether the setting conditions are optimal based on the quality of the molded product molded in the product portion cavity 49 as in the past, but to melt. The flow length of the resin material can be visually determined from the scale 50 carved in the bar flow cavity 45.
[0055]
In the present embodiment, an example in which the bar flow cavity 45 constituting the measuring means and the product part cavity 49 are formed in one mold 30 via the branch paths 36 and 37 is shown. The operating condition setting according to the present invention is carried out using a mold in which a bar flow cavity 45 for measuring the flow length of the molten resin material is used separately from the mold in which the product part cavity 49 for molding the mold is formed. The method can be carried out.
[0056]
Further, the bar flow cavity 45 according to the present invention can be appropriately arranged in a desired shape, for example, in a spiral shape instead of being formed in an S shape. Further, the scale 50 engraved in the bar flow cavity 45 is engraved so as to protrude from the bar flow cavity 45 to the dividing surface 22a of the movable mold plate 22, so that the resin molded product can be divided without taking out from the bar flow cavity 45. The flow length of the molten resin material can be measured on the surface 22a.
[0057]
Furthermore, in order to hold the opening valve body 53 and the closing valve body 54 in the valve body mounting portions 51a, 52a, 51b, and 52b, the screw member 55 is used in the present embodiment. Other holding means can be used.
[0058]
The capacity | capacitance of the bar flow cavity 45 should just be substantially equal to the capacity | capacitance of the product part cavity 49 in the range which does not affect the setting of the injection molding machine 20. FIG.
[0059]
The operating condition setting method of the injection molding machine 20 according to the present invention and the mold 30 used therein can be used in molding machines other than the injection molding machine 20 such as an extrusion molding machine using a piston as the plunger member 13.
[0060]
【The invention's effect】
According to the present invention, the flow length of the molten resin material injected into the measuring means from the injection molding machine at each plunger member extrusion position is measured under the operating conditions of the injection molding machine that molds a resin molded product having no defects. Then, based on this measurement data, it is possible to find the optimum operating conditions for other injection molding machines. Thus, the optimum operating conditions can be set quickly and easily without trial and error by repeatedly forming short shots in the product cavity.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view schematically showing an injection molding machine and a mold according to the present invention.
FIG. 2 is a plan view showing a state in which a valve body is arranged so as to selectively introduce a molten resin material into a product portion cavity provided in the mold, on a divided surface of a fixed mold plate of the mold according to the present invention; It is.
FIG. 3 is a plan view showing a dividing surface of a movable mold plate of a mold according to the present invention in a state where a valve body is arranged so as to selectively introduce a molten resin material into a product part cavity provided in the mold. It is.
FIG. 4 is a longitudinal sectional view showing an open valve member according to the present invention.
FIG. 5 is a longitudinal sectional view showing a closing valve member according to the present invention.
FIG. 6 is a plan view showing a dividing surface of a movable mold plate of a mold according to the present invention in a state where a valve body is arranged so as to selectively introduce a molten resin material into a bar flow cavity provided in the mold. It is.
[Explanation of symbols]
30 mold
13 Plunger member (screw member)
20 Injection molding machine
45 Measuring means (Bar flow cavity)
S1, S2, S3, S4, S5 Extrusion position
L1, L2, L3, L4 Flow length
36, 37 Branch (first branch, second branch)
33a, 34, 33b, 36, 37 flow path (primary sprue, runner, secondary sprue, first branch path, second branch path)
49 Product cavity
53,54 Valve body (open valve body, closed valve body)
50 scales
21a, 22a Dividing surface
21 Fixed template
22 Movable template
36a, 37a, 36b, 37b Branch groove
53a, 53b Opening valve member
54a, 54b Closing valve member
51a, 52a, 51b, 52b Recess (Valve attachment)

Claims (6)

金型で樹脂成形品を成形すべく前記金型に溶融樹脂材料を押し出すためのプランジャ部材が設けられた射出成形機の運転条件を設定する方法であって、
射出成形機から金型への溶融樹脂材料の注入により製品となる樹脂成形品を成形する運転条件下で、前記射出成形機から計測手段に溶融樹脂材料を射出し、前記射出成形機のプランジャ部材の複数の押出位置毎における前記計測手段内での前記溶融樹脂材料の流動長を計測し、
他の射出成形機から前記金型への樹脂材料の注入により樹脂成形品を製造するに先立ち、前記他の射出成形機から前記計測手段内に溶融樹脂材料を射出するについて前記押出位置毎に対応する前記他の射出成形機の押出位置毎で、各前記押出位置毎の計測された前記流動長に等しい流動長を得るべく前記他の射出成形機の運転条件を設定することを特徴とする、射出成形機の運転条件設定方法。
A method of setting operating conditions of an injection molding machine provided with a plunger member for extruding a molten resin material into the mold to mold a resin molded product with a mold,
A plunger member of the injection molding machine is formed by injecting the molten resin material from the injection molding machine to the measuring means under an operating condition of molding a resin molded product as a product by injecting the molten resin material into the mold from the injection molding machine. Measuring the flow length of the molten resin material in the measuring means at each of the plurality of extrusion positions,
Prior to manufacturing a resin molded product by injecting a resin material from another injection molding machine into the mold, injection of a molten resin material from the other injection molding machine into the measuring means corresponds to each extrusion position. The operation condition of the other injection molding machine is set to obtain a flow length equal to the flow length measured for each of the extrusion positions at each extrusion position of the other injection molding machine. Operation condition setting method for injection molding machines.
前記プランジャ部材はスクリュー部材であることを特徴とする請求項1に記載の運転条件設定方法。The operating condition setting method according to claim 1, wherein the plunger member is a screw member. 射出成形機から溶融樹脂材料の注入を受ける金型であって、該金型内には、2つの分岐路を有し前記射出成形機から押し出された溶融樹脂材料を金型内に案内する流路と、該流路の一方の前記分岐路に連通する樹脂成形品のための製品部キャビティと、前記流路の他方の分岐路に連通し前記製品部キャビティの容量に等しい容量を有するバーフローキャビティと、前記分岐路の一方を選択的に遮断するための弁体が設けられ、
前記バーフローキャビティは、その一端から他端に向けて前記溶融樹脂材料が注入可能の細長いキャビティであり、該キャビティの伸長方向に沿って、前記溶融樹脂材料の流動長を読み取るための目盛りが付されていることを特徴とする金型。
A mold for injecting molten resin material from an injection molding machine, the mold having two branch paths, and a flow for guiding the molten resin material extruded from the injection molding machine into the mold A bar flow having a capacity equal to the capacity of the product part cavity communicating with the other branch path of the channel, a product part cavity for the resin molded product communicating with the one branch path of the channel A cavity and a valve body for selectively blocking one of the branch paths are provided,
The bar flow cavity is an elongated cavity into which the molten resin material can be injected from one end to the other end, and a scale for reading the flow length of the molten resin material is attached along the extending direction of the cavity. Mold characterized by being made.
それぞれが分割面を有し、該分割面で相互に当接可能の固定型板と可動型板とを有する金型であって、前記製品部キャビティは前記固定型板の前記分割面に配置され、前記バーフローキャビティは前記可動型板の前記分割面に配置されていることを特徴とする請求項3に記載の金型。Each of the molds has a divided surface and a fixed mold plate and a movable mold plate that can come into contact with each other on the divided surface, and the product portion cavity is disposed on the divided surface of the fixed mold plate. The mold according to claim 3, wherein the bar flow cavity is disposed on the dividing surface of the movable mold plate. 前記各分岐路は前記両型板の前記分割面のそれぞれに形成された分岐溝部で構成され、前記弁体は前記分岐路を互いに共同して開放状態におくための一対の開放弁部材及び前記分岐路を互いに共同して遮断状態におくための一対の閉鎖弁部材を備え、前記各分岐溝部には前記一対の開放弁部材及び前記一対の閉鎖弁部材のいずれか一方を取替え可能に収容する凹所が形成されており、該各凹所内に前記各開放弁部材及び前記各閉鎖弁部材が選択的に位置決め可能であることを特徴とする請求項3に記載の金型。Each of the branch passages is constituted by a branch groove portion formed on each of the dividing surfaces of the both mold plates, and the valve body has a pair of open valve members for keeping the branch passages in an open state together with each other, and A pair of closing valve members for putting the branch paths together in a shut-off state are provided, and each of the branch groove portions accommodates either the pair of opening valve members or the pair of closing valve members in a replaceable manner. 4. The mold according to claim 3, wherein a recess is formed, and each open valve member and each close valve member can be selectively positioned in each recess. 前記射出成形機は溶融樹脂材料を押し出すために押出位置へ向けて移動するスクリュー部材を備え、
該射出成形機から前記製品部キャビティへの前記溶融樹脂材料の注入により製品となる樹脂成形品を成形する運転条件下で、前記射出成形機から前記弁体で前記製品部キャビティを選択的に閉じた状態で前記バーフローキャビティに前記溶融樹脂材料を注入し、前記射出成形機の前記スクリュー部材の複数の各前記押出位置における前記バーフローキャビティ内での前記溶融樹脂材料の前記流動長を前記目盛りから読み取り、
他の射出成形機から前記製品部キャビティに前記溶融樹脂材料を注入して前記樹脂成形品を成形するのに先立ち、前記他の射出成形機から前記バーフローキャビティに前記溶融樹脂材料を注入するについて、前記目盛りから読み取った前記スクリュー部材の各前記押出位置に対応する押出位置における前記流動長に等しい流動長を得るべく前記押出位置毎の運転条件を設定し、設定された運転条件下で前記他の射出成形機から前記弁体で前記バーフローキャビティを閉じた状態で前記製品部キャビティに前記溶融樹脂を注入して成形品を成形することを特徴とする請求項3に記載の金型。
The injection molding machine includes a screw member that moves toward an extrusion position to extrude a molten resin material,
The product part cavity is selectively closed by the valve body from the injection molding machine under the operating condition of molding a resin molded product as a product by injecting the molten resin material from the injection molding machine into the product part cavity. The molten resin material is injected into the bar flow cavity in a state where the flow length of the molten resin material in the bar flow cavity at each of the plurality of extrusion positions of the screw member of the injection molding machine is scaled. Read from the
Prior to injecting the molten resin material into the product part cavity from another injection molding machine and molding the resin molded product, the molten resin material is injected into the bar flow cavity from the other injection molding machine. In order to obtain a flow length equal to the flow length at the extrusion position corresponding to each of the extrusion positions of the screw member read from the scale, operating conditions for each of the extrusion positions are set, and the other conditions are set under the set operating conditions. The mold according to claim 3, wherein the molten resin is injected into the product portion cavity in a state where the bar flow cavity is closed with the valve body from the injection molding machine of claim 3 to form a molded product.
JP2003189984A 2003-07-02 2003-07-02 Method for setting operation condition of injection molding machine and mold used in injection molding machine Pending JP2005022225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003189984A JP2005022225A (en) 2003-07-02 2003-07-02 Method for setting operation condition of injection molding machine and mold used in injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003189984A JP2005022225A (en) 2003-07-02 2003-07-02 Method for setting operation condition of injection molding machine and mold used in injection molding machine

Publications (1)

Publication Number Publication Date
JP2005022225A true JP2005022225A (en) 2005-01-27

Family

ID=34187997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189984A Pending JP2005022225A (en) 2003-07-02 2003-07-02 Method for setting operation condition of injection molding machine and mold used in injection molding machine

Country Status (1)

Country Link
JP (1) JP2005022225A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018229881A1 (en) 2017-06-13 2018-12-20 株式会社日本製鋼所 Screw shape estimation apparatus, screw shape estimation method, and screw shape estimation program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018229881A1 (en) 2017-06-13 2018-12-20 株式会社日本製鋼所 Screw shape estimation apparatus, screw shape estimation method, and screw shape estimation program

Similar Documents

Publication Publication Date Title
KR101025716B1 (en) In-mold degassing structure, and mold having the structure
US6767482B2 (en) Injection compression molding method and injection compression molding machine
CN111660507A (en) Injection mold with metal insert plastic part
US5776407A (en) Injection molding apparatus and method for shutting gate and compressing mold material
JP2005022225A (en) Method for setting operation condition of injection molding machine and mold used in injection molding machine
US20060159798A1 (en) Method for producing mould parts by injection and plugged needle nozzle for an injection mould
JPH07223242A (en) Plural piece molding die
JP3213931B2 (en) High-pressure injection molding method and high-pressure injection molding die apparatus used in the method
JP2013052622A (en) Injection device and injection control method of the same
JP4212840B2 (en) Injection mold
JPH09277327A (en) Injection-compression molding method of lens
CN204449257U (en) A kind of mould for machining support parts
JP3737873B2 (en) Lens injection compression molding method
JP3872921B2 (en) Injection compression molding method and injection compression molding apparatus
JP3156838B2 (en) Injection mold
JP2009143051A (en) Ejection mechanism of injection molding machine
JP6202163B1 (en) Mold injection device mounting plate and mold
JPH09239783A (en) Mold apparatus for injection molding
JPH09262880A (en) High pressure injection molding method and high pressure injection mold apparatus therefor
CN219055151U (en) Mould for evaluating deformation of cylinder
JPH09254209A (en) Device and method for injection compression molding of lens
CN109877292B (en) Aluminum alloy davit die casting die
JP4565819B2 (en) Injection molding method and injection mold for thick and long products
JP3248758B2 (en) Method of discharging accumulated resin in an injection molding machine
JP2002192561A (en) Mold