JP2005019910A - Thermoelectric transduction segment element and manufacturing method of the same - Google Patents

Thermoelectric transduction segment element and manufacturing method of the same Download PDF

Info

Publication number
JP2005019910A
JP2005019910A JP2003186047A JP2003186047A JP2005019910A JP 2005019910 A JP2005019910 A JP 2005019910A JP 2003186047 A JP2003186047 A JP 2003186047A JP 2003186047 A JP2003186047 A JP 2003186047A JP 2005019910 A JP2005019910 A JP 2005019910A
Authority
JP
Japan
Prior art keywords
materials
thermoelectric
thermal expansion
different
segment element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003186047A
Other languages
Japanese (ja)
Other versions
JP4918672B2 (en
Inventor
Teruo Noguchi
照夫 野口
Atsushi Yamamoto
淳 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003186047A priority Critical patent/JP4918672B2/en
Publication of JP2005019910A publication Critical patent/JP2005019910A/en
Application granted granted Critical
Publication of JP4918672B2 publication Critical patent/JP4918672B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To ease a thermal stress between respective thermoelectric materials and between the thermoelectric materials and electrode-forming metal materials in a thermoelectric transduction segment element. <P>SOLUTION: Between different kinds of thermoelectric materials having mutually different thermal expansion coefficient, one or two kinds of other material layers, which are different in kind from both thermoelectric materials and have a thermal expansion coefficient of a medium between that of both thermoelectric materials, are inserted to ease a thermal stress between the thermoelectric materials, thus enable the employment of a sintering method. Further, other metal materials, which are different in kind from the thermoelectric materials and the electrode-forming metal materials and have a thermal expansion coefficient of a medium between that of both thermoelectric materials and electrode-forming metal materials, are inserted between the thermoelectric materials and the electrode-forming metal materials. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、熱膨張率の異なる熱電変換材料を接合してなるセグメント構造の熱電変換セグメント素子及びその製造方法に関する。
【0002】
【従来の技術】
熱電発電素子は一般的に、棒状、柱状の構造をもち、その片端を高温に、他端を低温に保って、その温度差に比例した電力を得るものである。しかし、熱電素子に用いる材料は性能を最適にする使用温度範囲があり、使用温度において発電出力又は発電効率を最大にするために、複数の材料を温度差に沿うように接合して用いることがある。この際、それらの材料を機械構造的にも電気的にも、図5のように直列に接合してなる素子をセグメント素子とよぶ。
【0003】
コバルト(Co)、アンチモン(Sb),テルル(Te)からなる化合物、Co(Sb1−xTe(以下構成元素の頭字を取ったCSTと略す)は、約200〜数100℃程度の温度域で優れた特性を有するN型熱電変換材料として、またビスマス(Bi)、テルル(Te)、アンチモン(Sb)からなる化合物Bi(Te 1−x Sb (以下構成元素の頭字を取ったBTS)は約200℃以下で優れたN型材料として知られる。
【0004】
もし、この2つの材料を機械的電気的に接合して、図5のようにCST(材料2)を温度の高い側にBTS(材料1)を低い側に使用できるならば、数百℃以下で特性の優れたN型熱電素子(この様な構造をセグメント式熱電素子と称する)を形成することができると考えられる。
【0005】
しかし、CSTとBTSという二種類の材料は熱膨張率が、前者は8 x10−6程度、後者は18x10−6程度であって、2倍以上の相違がある。従って、機械的強度が十分な接合を得ることは容易ではない。例えば、この二種材を用いて、一体構造のセグメント素子をホットプレスによる粉末焼結法で製造することを考える。この際CSTとBTSとは融点が異なるため、焼結温度を変えざるを得ない。実際、前者は600℃程度、後者は450℃前後がホットプレス時の最適温度であるから、同時に二つを焼結することはできず、先ず前者(CST)を焼結した後、その上にBTS の粉末を乗せてホットプレスを行う事が必要である。しかし、この際、以下の問題が生じるので、健全な素子を形成せしめることは困難である。
【0006】
1)CST材の上にそのままBTS材を乗せて焼結しても、前述の熱膨張率の相違による応力が材料の強度を超え、接合部付近で割れが生じる。
2)また、仮に接合して発電素子を製作できたとしても、室温と数100℃の間を頻繁に往復する発電運転をする間に、使用中の熱応力によって短寿命となる危険がある。
3)熱電素子はその高温度端と低温度端とに、電流を出入させるための金属電極を形成して実際の使用に供する。この金属電極は、実際に使用する際には銅や鉄のリード線と接合することを考慮してその材質が選択される。このため、熱電材料とFe、Ni、Cu等電極用金属材料とでは熱膨張率が著しく異なるのが通常である。実際、BTSなどではFeが一般に使用されるが、幸いBTSとFeとでは熱膨張率の差が比較的小さいので、問題は生じない。しかし、CSTはFe、Ni等に比して1/2以下程度の熱膨張率であるから、接合することは困難である。
【0007】
【発明が解決しようとする課題】
異種材料の熱膨張率が著しく異なる場合、接合法の如何を問わず、接合時と冷却後の温度差による熱膨張の相違が、大きな応力を材料にもたらし、材料を破壊する。特にロウ材を使わない焼結法などを採用して直接接合する場合に、この熱応力破壊を避けることは極めて困難である。
本発明は、上記の問題を克服するため、CSTとBTSとの間の熱応力、及び各熱電材料と電極用金属材料の間の熱応力を緩和することを目的としている。
【0008】
【課題を解決するための手段】
本発明では、熱膨張率の異なる異種の熱電材料の間に、何れとも異なる種類で、熱膨張率が両材料の中間の値をもつ別の1〜2種の材料層を挿入することにより熱応力を緩和して、前述した焼結法の採用を可能にするものである。
さらに、熱電材料と電極用金属材料との間に、何れとも異なる種類で、熱膨張率が両材料の中間の値をもつ別の金属材料層を挿入するものである。
【0009】
【発明の実施の形態】
CSTへの金属材料の接合
まず、焼結温度が高い方の材料(CST)の両端に何らかの金属材料を接合することが必要となる(図2)。これまで、CSTと金属との接合を、ホットプレスによる一体同時焼結によって試みた。その際に用いた材料と、それらの結果を表1にまとめる。
【表1】

Figure 2005019910
【0010】
表1で見る限り、Tiは有望であるが、CSTとは熱膨張率が近いために巧く接合するものの、BSTとは接合できない。BTSと接合できる金属は、Fe、Ni等熱膨張率が13 x 10−6程度以上の材料である。また、Tiは活性で酸化性が極めて強いため、大気中では半田付けや銀ロー付けなどが不可能であり、このまま電極材にはなり得ない。そこで図2の構造の両端に更にもう一つの金属を接合することを試みた(図3)。
【0011】
金属2はBTSと熱膨張率が近く、かつ半田づけ等の容易に行えるものが望ましい。金属1はTiとして、まず金属2としてFeを試みた。この場合、CST、金属1、金属2の厚さも応力の大きさに関係し、特に金属1と金属2の厚さの比は考慮する必要があった。実際、CST:Ti:Fe=3mm:0.2mm:0.2mmでは、CSTとTiとの境界近傍で割れが発生た。Tiの厚さを0.4mmにすると、CSTの割れは無くなるが、金属2(Fe)と金属1(Ti)の界面近傍、又は金属2の内部で割れが発生し、剥離が生じた。
【0012】
次に、金属2として、Fe−10wt%Ti合金を用いたところ、割れ、剥離などは何処にも生じないことを見いだした。この際、Fe−10wt%Ti合金は、FeとTiの粉末を遊星ボールミルによって5時間粉砕・混合をして得た混合粉末を用いた。
以上を見やすくするため、表2にまとめた。
【表2】
Figure 2005019910
【0013】
何故、Fe−10wt%Ti合金がよいのかについては、必ずしも明確でないが、Fe−10wt%Tiの熱膨張率とヤング率の値が、結果として良好な接合を齎したものと考えられる。測定したヤング率は、〜1.1x10kgf/cmで、この値はTiにかなり近く、Feの約60%であった。
【0014】
BTSへの金属材料の接合
上述のFe−10Ti/Ti/CST/Ti/Fe−10TiにBSTを接合してセグメント構造の素子とする。ここで、問題はCSTの端部にある固体のFe−10wt%TiとBSTとの接合である。この下準備のため、Fe−10wt%Tiの予め焼結した板の上にBSTの粉末とFeの粉末を充填して一体焼結成型することを試みた(図4)。
この場合、焼結温度は450℃程度とした。Fe−10wt%TiとBST、及びFeとBSTともに接合性はよく、割れや剥離は生じない。
【0015】
CSTとBSTを接合して成るセグメント式n型素子
以上の準備による知見に基づき、図1に示すような最終的なCST−BTSの一体焼結N型セグメント素子を製造した。製造方法は以下の如くである。
CST、Ti、Fe−10wt%Tiの粉末を原料として、図3の構造をした棒状焼結体をCSTの焼結条件によって製作する。この焼結体の片側端上にBTSとFeの粉末をこの順序で充填し、BTSの焼結条件で焼結する。
Tiが大気中では酸化が著しくリード線との接合が困難であるのに対して、例示の構成は、実際に使用する際には素子最外側に位置するFe−10wt%Tiの鉄基合金電極が、銅や鉄のリード線と良好に接合されることになる。
【0016】
【発明の効果】
本発明では、熱膨張率の異なる異種の熱電材料の間に、何れとも異なる種類で、熱膨張率が両材料の中間の値をもつ別の1〜2種の材料層を挿入することにより熱応力を緩和して、前述した焼結法の採用を可能にするものである。
【図面の簡単な説明】
【図1】CST−BTSの一体焼結N型セグメント素子を示す図である。
【図2】焼結温度が高い方の材料(CST)の両端に金属材料を接合することを説明する図である。
【図3】図5の構造の両端に更にもう一つの金属を接合することを説明する図である。
【図4】Fe−10wt%Tiの予め焼結した板の上にBSTの粉末とFeの粉末を充填して一体焼結成型することを説明する図である。
【図5】一般的構成を有するセグメント素子を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a segmented thermoelectric conversion segment element formed by joining thermoelectric conversion materials having different coefficients of thermal expansion, and a method for manufacturing the same.
[0002]
[Prior art]
A thermoelectric power generation element generally has a rod-like or columnar structure, and one end is kept at a high temperature and the other end is kept at a low temperature to obtain electric power proportional to the temperature difference. However, the materials used for thermoelectric elements have a working temperature range that optimizes performance, and in order to maximize the power generation output or power generation efficiency at the working temperature, it is necessary to use a plurality of materials that are joined along the temperature difference. is there. At this time, an element formed by joining these materials in series, as shown in FIG. 5, both mechanically and electrically is called a segment element.
[0003]
Cobalt (Co), antimony (Sb), tellurium (Te) compound, Co (Sb 1-x Te x ) 3 (hereinafter abbreviated as CST with constituent elements abbreviations) is about 200 to several hundred degrees Celsius. As an N-type thermoelectric conversion material having excellent characteristics in the temperature range of the above, a compound Bi 3 (Te 1-x Sb x ) 3 (hereinafter referred to as a constituent element) composed of bismuth (Bi), tellurium (Te), and antimony (Sb) BTS) is known as an excellent N-type material at about 200 ° C. or less.
[0004]
If these two materials are mechanically and electrically joined and CST (material 2) can be used on the higher temperature side and BTS (material 1) on the lower side as shown in FIG. It is considered that an N-type thermoelectric element (such a structure is referred to as a segmented thermoelectric element) having excellent characteristics can be formed.
[0005]
However, two types of material thermal expansion rate of CST and the BTS, the former 8 x10 -6 mm, the latter is of the order of 18 × 10 -6, there is a difference more than twice. Therefore, it is not easy to obtain a bond having sufficient mechanical strength. For example, it is considered that a segment element having an integral structure is manufactured by a powder sintering method using hot pressing using these two kinds of materials. At this time, since CST and BTS have different melting points, the sintering temperature must be changed. Actually, the optimum temperature for hot pressing is about 600 ° C. for the former and about 450 ° C. for the latter, so it is impossible to sinter the two at the same time. It is necessary to hot-press with BTS powder. However, at this time, since the following problems occur, it is difficult to form a sound element.
[0006]
1) Even if the BTS material is directly placed on the CST material and sintered, the stress due to the difference in the thermal expansion coefficient exceeds the strength of the material, and cracks occur near the joint.
2) Even if the power generation element can be manufactured by joining, there is a risk that the lifespan may be shortened due to thermal stress during use during power generation operation that frequently reciprocates between room temperature and several hundred degrees Celsius.
3) The thermoelectric element is used for actual use by forming metal electrodes for allowing current to flow in and out at the high temperature end and the low temperature end. The material of the metal electrode is selected in consideration of joining with a copper or iron lead wire when actually used. For this reason, the coefficient of thermal expansion is usually significantly different between thermoelectric materials and metal materials for electrodes such as Fe, Ni and Cu. Actually, Fe is generally used in BTS and the like, but fortunately there is no problem because the difference in coefficient of thermal expansion between BTS and Fe is relatively small. However, since CST has a thermal expansion coefficient of about ½ or less than that of Fe, Ni, etc., it is difficult to join.
[0007]
[Problems to be solved by the invention]
When the thermal expansion coefficients of different types of materials are significantly different, the difference in thermal expansion due to the temperature difference at the time of bonding and after cooling causes a large stress to the material and breaks the material regardless of the bonding method. In particular, it is extremely difficult to avoid this thermal stress failure when directly joining by employing a sintering method that does not use a brazing material.
The present invention aims to alleviate the thermal stress between the CST and the BTS and the thermal stress between each thermoelectric material and the electrode metal material in order to overcome the above problems.
[0008]
[Means for Solving the Problems]
In the present invention, heat is inserted by inserting another one or two kinds of material layers having different thermal expansion coefficients between the two different types of thermoelectric materials having different thermal expansion coefficients. The stress is relieved and the above-described sintering method can be adopted.
Further, another metal material layer is inserted between the thermoelectric material and the electrode metal material, which is different from each other and has a thermal expansion coefficient intermediate between both materials.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Joining of metal material to CST First, it is necessary to join some metal material to both ends of the material having higher sintering temperature (CST) (FIG. 2). Until now, joining of CST and metal has been attempted by integral simultaneous sintering by hot pressing. Table 1 summarizes the materials used at that time and the results.
[Table 1]
Figure 2005019910
[0010]
As can be seen from Table 1, Ti is promising, but although it is skillfully joined to CST because of its close thermal expansion coefficient, it cannot be joined to BST. The metal that can be bonded to the BTS is a material having a thermal expansion coefficient of about 13 × 10 −6 or more, such as Fe and Ni. Further, since Ti is active and extremely oxidizable, it cannot be soldered or brazed in the atmosphere, and cannot be used as an electrode material. Therefore, another metal was tried to be bonded to both ends of the structure of FIG. 2 (FIG. 3).
[0011]
It is desirable that the metal 2 has a thermal expansion coefficient close to that of the BTS and can be easily soldered. Metal 1 was tried as Ti, and first as metal 2 Fe was tried. In this case, the thicknesses of CST, metal 1 and metal 2 are also related to the magnitude of stress, and in particular, the ratio of the thicknesses of metal 1 and metal 2 must be taken into consideration. In fact, when CST: Ti: Fe = 3 mm: 0.2 mm: 0.2 mm, cracks occurred near the boundary between CST and Ti. When the thickness of Ti was 0.4 mm, CST cracking disappeared, but cracking occurred in the vicinity of the interface between metal 2 (Fe) and metal 1 (Ti) or inside metal 2 and peeling occurred.
[0012]
Next, when an Fe-10 wt% Ti alloy was used as the metal 2, it was found that no cracks, peeling, etc. occurred anywhere. At this time, as the Fe-10 wt% Ti alloy, a mixed powder obtained by pulverizing and mixing Fe and Ti powder with a planetary ball mill for 5 hours was used.
To make it easier to see, the results are summarized in Table 2.
[Table 2]
Figure 2005019910
[0013]
The reason why the Fe-10 wt% Ti alloy is good is not necessarily clear, but the values of the thermal expansion coefficient and Young's modulus of Fe-10 wt% Ti are considered to result in good bonding. The measured Young's modulus was ˜1.1 × 10 6 kgf / cm 2, which was quite close to Ti and about 60% of Fe.
[0014]
Bonding of metal material to BTS A segment structure element is formed by bonding BST to the above-described Fe-10Ti / Ti / CST / Ti / Fe-10Ti. Here, the problem is the joining of solid Fe-10 wt% Ti at the end of CST and BST. For this preparation, an attempt was made to integrally sinter-mold by filling BST powder and Fe powder on a pre-sintered plate of Fe-10 wt% Ti (FIG. 4).
In this case, the sintering temperature was about 450 ° C. Both Fe-10 wt% Ti and BST and Fe and BST have good bondability, and no cracking or peeling occurs.
[0015]
A final CST-BTS integrally sintered N-type segment element as shown in FIG. 1 was manufactured based on the knowledge obtained by preparing more than the segment type n-type element formed by joining CST and BST. The manufacturing method is as follows.
A rod-like sintered body having the structure shown in FIG. 3 is manufactured under the CST sintering conditions using CST, Ti, and Fe-10 wt% Ti powder as raw materials. BTS and Fe powders are filled in this order on one end of the sintered body and sintered under the BTS sintering conditions.
Whereas Ti is easily oxidized in the atmosphere and joining to the lead wire is difficult, the example configuration is an Fe-10 wt% Ti iron-based alloy electrode positioned on the outermost side of the device when actually used. However, it will be satisfactorily bonded to copper or iron lead wires.
[0016]
【The invention's effect】
In the present invention, heat is inserted by inserting another one or two kinds of material layers having different thermal expansion coefficients between the two different types of thermoelectric materials having different thermal expansion coefficients. The stress is relieved and the above-described sintering method can be adopted.
[Brief description of the drawings]
FIG. 1 is a view showing an integrally sintered N-type segment element of CST-BTS.
FIG. 2 is a diagram for explaining that a metal material is bonded to both ends of a material (CST) having a higher sintering temperature.
FIG. 3 is a diagram illustrating that another metal is bonded to both ends of the structure of FIG. 5;
FIG. 4 is a view for explaining integral sintering molding by filling BST powder and Fe powder on a pre-sintered plate of Fe-10 wt% Ti.
FIG. 5 is a diagram showing a segment element having a general configuration.

Claims (4)

熱膨張率の異なる熱電変換材料を接合し、かつ両側に電極用金属材料を備えてなるセグメント構造の熱電変換セグメント素子において、
熱膨張率の異なる異種の熱電材料の間に、何れとも異なる種類で、熱膨張率が両材料の中間の値をもつ別の1種或いは2種の料層を挿入することにより熱応力を緩和して、一体接合を可能とした熱電変換セグメント素子。
In a thermoelectric conversion segment element having a segment structure in which thermoelectric conversion materials having different coefficients of thermal expansion are joined and metal materials for electrodes are provided on both sides,
Thermal stress can be alleviated by inserting one or two other layers with different thermal expansion coefficients between different types of thermoelectric materials with different thermal expansion coefficients. Thus, a thermoelectric conversion segment element that can be integrally joined.
熱電材料と電極用金属材料との間に、何れとも異なる種類で、熱膨張率が両材料の中間の値をもつ別の金属材料層を挿入した請求項1に記載の熱電変換セグメント素子。The thermoelectric conversion segment element according to claim 1, wherein another metal material layer having a different thermal expansion coefficient between the two materials is inserted between the thermoelectric material and the electrode metal material. 熱膨張率の異なる熱電変換材料を接合し、かつ両側に電極用金属材料を備えてなるセグメント構造の熱電変換セグメント素子の製造方法において、
熱膨張率の異なる異種の熱電材料の間に、何れとも異なる種類で、熱膨張率が両材料の中間の値をもつ別の1種或いは2種の料層を挿入することにより熱応力を緩和して、一体接合を可能とした熱電変換セグメント素子の製造方法。
In a method for manufacturing a segmented thermoelectric conversion segment element in which thermoelectric conversion materials having different coefficients of thermal expansion are joined and a metal material for an electrode is provided on both sides,
Thermal stress can be alleviated by inserting one or two other layers with different thermal expansion coefficients between different types of thermoelectric materials with different thermal expansion coefficients. And the manufacturing method of the thermoelectric conversion segment element which enabled integral joining.
熱電材料と電極用金属材料との間に、何れとも異なる種類で、熱膨張率が両材料の中間の値をもつ別の金属材料層を挿入した請求項3に記載の熱電変換セグメント素子の製造方法。4. The thermoelectric conversion segment element according to claim 3, wherein another metal material layer having a different thermal expansion coefficient between the two materials is inserted between the thermoelectric material and the electrode metal material. Method.
JP2003186047A 2003-06-30 2003-06-30 Thermoelectric conversion segment element and manufacturing method thereof. Expired - Lifetime JP4918672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003186047A JP4918672B2 (en) 2003-06-30 2003-06-30 Thermoelectric conversion segment element and manufacturing method thereof.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003186047A JP4918672B2 (en) 2003-06-30 2003-06-30 Thermoelectric conversion segment element and manufacturing method thereof.

Publications (2)

Publication Number Publication Date
JP2005019910A true JP2005019910A (en) 2005-01-20
JP4918672B2 JP4918672B2 (en) 2012-04-18

Family

ID=34185286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003186047A Expired - Lifetime JP4918672B2 (en) 2003-06-30 2003-06-30 Thermoelectric conversion segment element and manufacturing method thereof.

Country Status (1)

Country Link
JP (1) JP4918672B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2416244A (en) * 2004-07-07 2006-01-18 Nat Inst Of Advanced Ind Scien Thermoelectric element and thermoelectric module
JP2012064913A (en) * 2010-09-15 2012-03-29 Samsung Electro-Mechanics Co Ltd Asymmetric thermoelectric module and manufacturing method of the same
WO2013076765A1 (en) * 2011-11-22 2013-05-30 古河機械金属株式会社 Thermoelectric conversion module
JP2015153779A (en) * 2014-02-10 2015-08-24 昭和電工株式会社 Thermoelectric element, thermoelectric module and method of manufacturing thermoelectric element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2416244A (en) * 2004-07-07 2006-01-18 Nat Inst Of Advanced Ind Scien Thermoelectric element and thermoelectric module
GB2416244B (en) * 2004-07-07 2008-08-13 Nat Inst Of Advanced Ind Scien Thermoelectric element and thermoelectric module
JP2012064913A (en) * 2010-09-15 2012-03-29 Samsung Electro-Mechanics Co Ltd Asymmetric thermoelectric module and manufacturing method of the same
WO2013076765A1 (en) * 2011-11-22 2013-05-30 古河機械金属株式会社 Thermoelectric conversion module
US9337409B2 (en) 2011-11-22 2016-05-10 Furukawa Co., Ltd. Thermoelectric conversion module
JP2015153779A (en) * 2014-02-10 2015-08-24 昭和電工株式会社 Thermoelectric element, thermoelectric module and method of manufacturing thermoelectric element
US9960335B2 (en) 2014-02-10 2018-05-01 Showa Denko K.K. Thermoelectric element, thermoelectric module and method of manufacturing thermoelectric element

Also Published As

Publication number Publication date
JP4918672B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP5671258B2 (en) Thermoelectric conversion module
JP5386239B2 (en) Thermoelectric conversion module
US20120000500A1 (en) Thermoelectric conversion element and thermoelectric conversion module
JP2002094131A (en) Thermoelectric conversion element
US9337409B2 (en) Thermoelectric conversion module
WO2013011997A1 (en) Stacked thermoelectric conversion module
JP2014086623A (en) Thermoelectric conversion module
JPWO2014084315A1 (en) Thermoelectric conversion module
JP2007109942A (en) Thermoelectric module and manufacturing method thereof
JP2010034508A (en) Thermoelectric conversion module and method of manufacturing the same
WO2010082539A1 (en) Method for manufacturing thermoelectric conversion module
JP4850083B2 (en) Thermoelectric conversion module, power generation device and cooling device using the same
WO2017098863A1 (en) Thermoelectric conversion module and method for manufacturing same
JPH0697512A (en) Thermoelectric conversion element
JP5463204B2 (en) Thermoelectric element, manufacturing method thereof, and thermoelectric module
JP2003092435A (en) Thermoelectric module and its manufacturing method
CN103187519B (en) Electrothermal module and manufacture method thereof
JP2001267642A (en) Method of manufacturing thermoelectric conversion module
US9960335B2 (en) Thermoelectric element, thermoelectric module and method of manufacturing thermoelectric element
JP4918672B2 (en) Thermoelectric conversion segment element and manufacturing method thereof.
JPH07202274A (en) Thermoelectric device and its manufacture
JP5405993B2 (en) Thermoelectric conversion module and its joining member
JP7314927B2 (en) Thermoelectric conversion module member, thermoelectric conversion module, and method for manufacturing thermoelectric conversion module member
JP5514523B2 (en) Thermoelectric element, manufacturing method thereof, and thermoelectric module
JPH09172204A (en) Thermoelectric conversion apparatus and thermoelectric its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4918672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term